Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * General Purpose functions for the global management of the
 * Communication Processor Module.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
 * In addition to the individual control of the communication
 * channels, there are a few functions that globally affect the
 * communication processor.
 *
 * Buffer descriptors must be allocated from the dual ported memory
 * space.  The allocator for that is here.  When the communication
 * process is reset, we reclaim the memory available.  There is
 * currently no deallocator for this memory.
 * The amount of space available is platform dependent.  On the
 * MBX, the EPPC software loads additional microcode into the
 * communication processor, and uses some of the DP ram for this
 * purpose.  Current, the first 512 bytes and the last 256 bytes of
 * memory are used.  Right now I am conservative and only use the
 * memory that can never be used for microcode.  If there are
 * applications that require more DP ram, we can expand the boundaries
 * but then we have to be careful of any downloaded microcode.
 */
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <asm/mpc8xx.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/8xx_immap.h>
#include <asm/commproc.h>
#include <asm/io.h>
#include <asm/tlbflush.h>
#include <asm/rheap.h>

static void m8xx_cpm_dpinit(void);
static	uint	host_buffer;	/* One page of host buffer */
static	uint	host_end;	/* end + 1 */
cpm8xx_t	*cpmp;		/* Pointer to comm processor space */

/* CPM interrupt vector functions.
*/
struct	cpm_action {
	void	(*handler)(void *);
	void	*dev_id;
};
static	struct	cpm_action cpm_vecs[CPMVEC_NR];
static	irqreturn_t cpm_interrupt(int irq, void * dev);
static	irqreturn_t cpm_error_interrupt(int irq, void *dev);
static	void	alloc_host_memory(void);
/* Define a table of names to identify CPM interrupt handlers in
 * /proc/interrupts.
 */
const char *cpm_int_name[] =
	{ "error",	"PC4",		"PC5",		"SMC2",
	  "SMC1",	"SPI",		"PC6",		"Timer 4",
	  "",		"PC7",		"PC8",		"PC9",
	  "Timer 3",	"",		"PC10",		"PC11",
	  "I2C",	"RISC Timer",	"Timer 2",	"",
	  "IDMA2",	"IDMA1",	"SDMA error",	"PC12",
	  "PC13",	"Timer 1",	"PC14",		"SCC4",
	  "SCC3",	"SCC2",		"SCC1",		"PC15"
	};

static void
cpm_mask_irq(unsigned int irq)
{
	int cpm_vec = irq - CPM_IRQ_OFFSET;

	clrbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, (1 << cpm_vec));
}

static void
cpm_unmask_irq(unsigned int irq)
{
	int cpm_vec = irq - CPM_IRQ_OFFSET;

	setbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, (1 << cpm_vec));
}

static void
cpm_ack(unsigned int irq)
{
	/* We do not need to do anything here. */
}

static void
cpm_eoi(unsigned int irq)
{
	int cpm_vec = irq - CPM_IRQ_OFFSET;

	out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr, (1 << cpm_vec));
}

struct hw_interrupt_type cpm_pic = {
	.typename	= " CPM      ",
	.enable		= cpm_unmask_irq,
	.disable	= cpm_mask_irq,
	.ack		= cpm_ack,
	.end		= cpm_eoi,
};

void
m8xx_cpm_reset(void)
{
	volatile immap_t	 *imp;
	volatile cpm8xx_t	*commproc;

	imp = (immap_t *)IMAP_ADDR;
	commproc = (cpm8xx_t *)&imp->im_cpm;

#ifdef CONFIG_UCODE_PATCH
	/* Perform a reset.
	*/
	commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG);

	/* Wait for it.
	*/
	while (commproc->cp_cpcr & CPM_CR_FLG);

	cpm_load_patch(imp);
#endif

	/* Set SDMA Bus Request priority 5.
	 * On 860T, this also enables FEC priority 6.  I am not sure
	 * this is what we realy want for some applications, but the
	 * manual recommends it.
	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
	 */
	out_be32(&imp->im_siu_conf.sc_sdcr, 1),

	/* Reclaim the DP memory for our use. */
	m8xx_cpm_dpinit();

	/* Tell everyone where the comm processor resides.
	*/
	cpmp = (cpm8xx_t *)commproc;
}

/* We used to do this earlier, but have to postpone as long as possible
 * to ensure the kernel VM is now running.
 */
static void
alloc_host_memory(void)
{
	dma_addr_t	physaddr;

	/* Set the host page for allocation.
	*/
	host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
			GFP_KERNEL);
	host_end = host_buffer + PAGE_SIZE;
}

/* This is called during init_IRQ.  We used to do it above, but this
 * was too early since init_IRQ was not yet called.
 */
static struct irqaction cpm_error_irqaction = {
	.handler = cpm_error_interrupt,
	.mask = CPU_MASK_NONE,
};
static struct irqaction cpm_interrupt_irqaction = {
	.handler = cpm_interrupt,
	.mask = CPU_MASK_NONE,
	.name = "CPM cascade",
};

void
cpm_interrupt_init(void)
{
	int i;

	/* Initialize the CPM interrupt controller.
	*/
	out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr,
	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
		((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK);
	out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, 0);

        /* install the CPM interrupt controller routines for the CPM
         * interrupt vectors
         */
        for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ )
                irq_desc[i].chip = &cpm_pic;

	/* Set our interrupt handler with the core CPU.	*/
	if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction))
		panic("Could not allocate CPM IRQ!");

	/* Install our own error handler. */
	cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR];
	if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction))
		panic("Could not allocate CPM error IRQ!");

	setbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr, CICR_IEN);
}

/*
 * Get the CPM interrupt vector.
 */
int
cpm_get_irq(void)
{
	int cpm_vec;

	/* Get the vector by setting the ACK bit and then reading
	 * the register.
	 */
	out_be16(&((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr, 1);
	cpm_vec = in_be16(&((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr);
	cpm_vec >>= 11;

	return cpm_vec;
}

/* CPM interrupt controller cascade interrupt.
*/
static	irqreturn_t
cpm_interrupt(int irq, void * dev)
{
	/* This interrupt handler never actually gets called.  It is
	 * installed only to unmask the CPM cascade interrupt in the SIU
	 * and to make the CPM cascade interrupt visible in /proc/interrupts.
	 */
	return IRQ_HANDLED;
}

/* The CPM can generate the error interrupt when there is a race condition
 * between generating and masking interrupts.  All we have to do is ACK it
 * and return.  This is a no-op function so we don't need any special
 * tests in the interrupt handler.
 */
static	irqreturn_t
cpm_error_interrupt(int irq, void *dev)
{
	return IRQ_HANDLED;
}

/* A helper function to translate the handler prototype required by
 * request_irq() to the handler prototype required by cpm_install_handler().
 */
static irqreturn_t
cpm_handler_helper(int irq, void *dev_id)
{
	int cpm_vec = irq - CPM_IRQ_OFFSET;

	(*cpm_vecs[cpm_vec].handler)(dev_id);

	return IRQ_HANDLED;
}

/* Install a CPM interrupt handler.
 * This routine accepts a CPM interrupt vector in the range 0 to 31.
 * This routine is retained for backward compatibility.  Rather than using
 * this routine to install a CPM interrupt handler, you can now use
 * request_irq() with an IRQ in the range CPM_IRQ_OFFSET to
 * CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47).
 *
 * Notice that the prototype of the interrupt handler function must be
 * different depending on whether you install the handler with
 * request_irq() or cpm_install_handler().
 */
void
cpm_install_handler(int cpm_vec, void (*handler)(void *), void *dev_id)
{
	int err;

	/* If null handler, assume we are trying to free the IRQ.
	*/
	if (!handler) {
		free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id);
		return;
	}

	if (cpm_vecs[cpm_vec].handler != 0)
		printk(KERN_INFO "CPM interrupt %x replacing %x\n",
			(uint)handler, (uint)cpm_vecs[cpm_vec].handler);
	cpm_vecs[cpm_vec].handler = handler;
	cpm_vecs[cpm_vec].dev_id = dev_id;

	if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper,
					0, cpm_int_name[cpm_vec], dev_id)))
		printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n",
				err, cpm_vec);
}

/* Free a CPM interrupt handler.
 * This routine accepts a CPM interrupt vector in the range 0 to 31.
 * This routine is retained for backward compatibility.
 */
void
cpm_free_handler(int cpm_vec)
{
	request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0,
		cpm_vecs[cpm_vec].dev_id);

	cpm_vecs[cpm_vec].handler = NULL;
	cpm_vecs[cpm_vec].dev_id = NULL;
}

/* We also own one page of host buffer space for the allocation of
 * UART "fifos" and the like.
 */
uint
m8xx_cpm_hostalloc(uint size)
{
	uint	retloc;

	if (host_buffer == 0)
		alloc_host_memory();

	if ((host_buffer + size) >= host_end)
		return(0);

	retloc = host_buffer;
	host_buffer += size;

	return(retloc);
}

/* Set a baud rate generator.  This needs lots of work.  There are
 * four BRGs, any of which can be wired to any channel.
 * The internal baud rate clock is the system clock divided by 16.
 * This assumes the baudrate is 16x oversampled by the uart.
 */
#define BRG_INT_CLK		(((bd_t *)__res)->bi_intfreq)
#define BRG_UART_CLK		(BRG_INT_CLK/16)
#define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)

void
cpm_setbrg(uint brg, uint rate)
{
	volatile uint	*bp;

	/* This is good enough to get SMCs running.....
	*/
	bp = (uint *)&cpmp->cp_brgc1;
	bp += brg;
	/* The BRG has a 12-bit counter.  For really slow baud rates (or
	 * really fast processors), we may have to further divide by 16.
	 */
	if (((BRG_UART_CLK / rate) - 1) < 4096)
		*bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN;
	else
		*bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
						CPM_BRG_EN | CPM_BRG_DIV16;
}

/*
 * dpalloc / dpfree bits.
 */
static spinlock_t cpm_dpmem_lock;
/*
 * 16 blocks should be enough to satisfy all requests
 * until the memory subsystem goes up...
 */
static rh_block_t cpm_boot_dpmem_rh_block[16];
static rh_info_t cpm_dpmem_info;

#define CPM_DPMEM_ALIGNMENT	8

void m8xx_cpm_dpinit(void)
{
	spin_lock_init(&cpm_dpmem_lock);

	/* Initialize the info header */
	rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
			sizeof(cpm_boot_dpmem_rh_block) /
			sizeof(cpm_boot_dpmem_rh_block[0]),
			cpm_boot_dpmem_rh_block);

	/*
	 * Attach the usable dpmem area.
	 * XXX: This is actually crap.  CPM_DATAONLY_BASE and
	 * CPM_DATAONLY_SIZE are a subset of the available dparm.  It varies
	 * with the processor and the microcode patches applied / activated.
	 * But the following should be at least safe.
	 */
	rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
}

/*
 * Allocate the requested size worth of DP memory.
 * This function returns an offset into the DPRAM area.
 * Use cpm_dpram_addr() to get the virtual address of the area.
 */
uint cpm_dpalloc(uint size, uint align)
{
	void *start;
	unsigned long flags;

	spin_lock_irqsave(&cpm_dpmem_lock, flags);
	cpm_dpmem_info.alignment = align;
	start = rh_alloc(&cpm_dpmem_info, size, "commproc");
	spin_unlock_irqrestore(&cpm_dpmem_lock, flags);

	return (uint)start;
}
EXPORT_SYMBOL(cpm_dpalloc);

int cpm_dpfree(uint offset)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&cpm_dpmem_lock, flags);
	ret = rh_free(&cpm_dpmem_info, (void *)offset);
	spin_unlock_irqrestore(&cpm_dpmem_lock, flags);

	return ret;
}
EXPORT_SYMBOL(cpm_dpfree);

uint cpm_dpalloc_fixed(uint offset, uint size, uint align)
{
	void *start;
	unsigned long flags;

	spin_lock_irqsave(&cpm_dpmem_lock, flags);
	cpm_dpmem_info.alignment = align;
	start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc");
	spin_unlock_irqrestore(&cpm_dpmem_lock, flags);

	return (uint)start;
}
EXPORT_SYMBOL(cpm_dpalloc_fixed);

void cpm_dpdump(void)
{
	rh_dump(&cpm_dpmem_info);
}
EXPORT_SYMBOL(cpm_dpdump);

void *cpm_dpram_addr(uint offset)
{
	return ((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem + offset;
}
EXPORT_SYMBOL(cpm_dpram_addr);