Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 | /* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also entry.S and others). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' */ #include <linux/config.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/unistd.h> #include <linux/smp_lock.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/completion.h> #include <linux/namespace.h> #include <linux/personality.h> #include <linux/file.h> #include <linux/binfmts.h> #include <linux/mman.h> #include <linux/fs.h> #include <linux/security.h> #include <linux/futex.h> #include <linux/ptrace.h> #include <linux/mount.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> static kmem_cache_t *task_struct_cachep; extern int copy_semundo(unsigned long clone_flags, struct task_struct *tsk); extern void exit_semundo(struct task_struct *tsk); /* The idle threads do not count.. */ int nr_threads; int max_threads; unsigned long total_forks; /* Handle normal Linux uptimes. */ rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* outer */ /* * A per-CPU task cache - this relies on the fact that * the very last portion of sys_exit() is executed with * preemption turned off. */ static task_t *task_cache[NR_CPUS] __cacheline_aligned; void __put_task_struct(struct task_struct *tsk) { if (tsk != current) { free_thread_info(tsk->thread_info); kmem_cache_free(task_struct_cachep,tsk); } else { int cpu = get_cpu(); tsk = task_cache[cpu]; if (tsk) { free_thread_info(tsk->thread_info); kmem_cache_free(task_struct_cachep,tsk); } task_cache[cpu] = current; put_cpu(); } } void add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait) { unsigned long flags; wait->flags &= ~WQ_FLAG_EXCLUSIVE; spin_lock_irqsave(&q->lock, flags); __add_wait_queue(q, wait); spin_unlock_irqrestore(&q->lock, flags); } void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait) { unsigned long flags; wait->flags |= WQ_FLAG_EXCLUSIVE; spin_lock_irqsave(&q->lock, flags); __add_wait_queue_tail(q, wait); spin_unlock_irqrestore(&q->lock, flags); } void remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait) { unsigned long flags; spin_lock_irqsave(&q->lock, flags); __remove_wait_queue(q, wait); spin_unlock_irqrestore(&q->lock, flags); } void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) { unsigned long flags; __set_current_state(state); wait->flags &= ~WQ_FLAG_EXCLUSIVE; spin_lock_irqsave(&q->lock, flags); if (list_empty(&wait->task_list)) __add_wait_queue(q, wait); spin_unlock_irqrestore(&q->lock, flags); } void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) { unsigned long flags; __set_current_state(state); wait->flags |= WQ_FLAG_EXCLUSIVE; spin_lock_irqsave(&q->lock, flags); if (list_empty(&wait->task_list)) __add_wait_queue_tail(q, wait); spin_unlock_irqrestore(&q->lock, flags); } void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) { unsigned long flags; __set_current_state(TASK_RUNNING); if (!list_empty(&wait->task_list)) { spin_lock_irqsave(&q->lock, flags); list_del_init(&wait->task_list); spin_unlock_irqrestore(&q->lock, flags); } } int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync) { int ret = default_wake_function(wait, mode, sync); if (ret) list_del_init(&wait->task_list); return ret; } void __init fork_init(unsigned long mempages) { /* create a slab on which task_structs can be allocated */ task_struct_cachep = kmem_cache_create("task_struct", sizeof(struct task_struct),0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!task_struct_cachep) panic("fork_init(): cannot create task_struct SLAB cache"); /* * The default maximum number of threads is set to a safe * value: the thread structures can take up at most half * of memory. */ max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8; /* * we need to allow at least 20 threads to boot a system */ if(max_threads < 20) max_threads = 20; init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2; } static struct task_struct *dup_task_struct(struct task_struct *orig) { struct task_struct *tsk; struct thread_info *ti; int cpu = get_cpu(); tsk = task_cache[cpu]; task_cache[cpu] = NULL; put_cpu(); if (!tsk) { ti = alloc_thread_info(); if (!ti) return NULL; tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL); if (!tsk) { free_thread_info(ti); return NULL; } } else ti = tsk->thread_info; *ti = *orig->thread_info; *tsk = *orig; tsk->thread_info = ti; ti->task = tsk; atomic_set(&tsk->usage,1); return tsk; } #ifdef CONFIG_MMU static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm) { struct vm_area_struct * mpnt, *tmp, **pprev; int retval; unsigned long charge = 0; down_write(&oldmm->mmap_sem); flush_cache_mm(current->mm); mm->locked_vm = 0; mm->mmap = NULL; mm->mmap_cache = NULL; mm->free_area_cache = TASK_UNMAPPED_BASE; mm->map_count = 0; mm->rss = 0; mm->cpu_vm_mask = 0; pprev = &mm->mmap; /* * Add it to the mmlist after the parent. * Doing it this way means that we can order the list, * and fork() won't mess up the ordering significantly. * Add it first so that swapoff can see any swap entries. */ spin_lock(&mmlist_lock); list_add(&mm->mmlist, ¤t->mm->mmlist); mmlist_nr++; spin_unlock(&mmlist_lock); for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) { struct file *file; if(mpnt->vm_flags & VM_DONTCOPY) continue; if (mpnt->vm_flags & VM_ACCOUNT) { unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; if (!vm_enough_memory(len)) goto fail_nomem; charge += len; } tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!tmp) goto fail_nomem; *tmp = *mpnt; tmp->vm_flags &= ~VM_LOCKED; tmp->vm_mm = mm; tmp->vm_next = NULL; file = tmp->vm_file; INIT_LIST_HEAD(&tmp->shared); if (file) { struct inode *inode = file->f_dentry->d_inode; get_file(file); if (tmp->vm_flags & VM_DENYWRITE) atomic_dec(&inode->i_writecount); /* insert tmp into the share list, just after mpnt */ down(&inode->i_mapping->i_shared_sem); list_add_tail(&tmp->shared, &mpnt->shared); up(&inode->i_mapping->i_shared_sem); } /* * Link in the new vma and copy the page table entries: * link in first so that swapoff can see swap entries. */ spin_lock(&mm->page_table_lock); *pprev = tmp; pprev = &tmp->vm_next; mm->map_count++; retval = copy_page_range(mm, current->mm, tmp); spin_unlock(&mm->page_table_lock); if (tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); if (retval) goto fail; } retval = 0; build_mmap_rb(mm); out: flush_tlb_mm(current->mm); up_write(&oldmm->mmap_sem); return retval; fail_nomem: retval = -ENOMEM; fail: vm_unacct_memory(charge); goto out; } static inline int mm_alloc_pgd(struct mm_struct * mm) { mm->pgd = pgd_alloc(mm); if (unlikely(!mm->pgd)) return -ENOMEM; return 0; } static inline void mm_free_pgd(struct mm_struct * mm) { pgd_free(mm->pgd); } #else #define dup_mmap(mm, oldmm) (0) #define mm_alloc_pgd(mm) (0) #define mm_free_pgd(mm) #endif /* CONFIG_MMU */ spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; int mmlist_nr; #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL)) #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) #include <linux/init_task.h> static struct mm_struct * mm_init(struct mm_struct * mm) { atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); init_rwsem(&mm->mmap_sem); mm->core_waiters = 0; mm->page_table_lock = SPIN_LOCK_UNLOCKED; mm->ioctx_list_lock = RW_LOCK_UNLOCKED; mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm); mm->free_area_cache = TASK_UNMAPPED_BASE; if (likely(!mm_alloc_pgd(mm))) { mm->def_flags = 0; return mm; } free_mm(mm); return NULL; } /* * Allocate and initialize an mm_struct. */ struct mm_struct * mm_alloc(void) { struct mm_struct * mm; mm = allocate_mm(); if (mm) { memset(mm, 0, sizeof(*mm)); return mm_init(mm); } return NULL; } /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by * mmput. Free the page directory and the mm. */ inline void __mmdrop(struct mm_struct *mm) { BUG_ON(mm == &init_mm); mm_free_pgd(mm); destroy_context(mm); free_mm(mm); } /* * Decrement the use count and release all resources for an mm. */ void mmput(struct mm_struct *mm) { if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) { list_del(&mm->mmlist); mmlist_nr--; spin_unlock(&mmlist_lock); exit_aio(mm); exit_mmap(mm); mmdrop(mm); } } /* Please note the differences between mmput and mm_release. * mmput is called whenever we stop holding onto a mm_struct, * error success whatever. * * mm_release is called after a mm_struct has been removed * from the current process. * * This difference is important for error handling, when we * only half set up a mm_struct for a new process and need to restore * the old one. Because we mmput the new mm_struct before * restoring the old one. . . * Eric Biederman 10 January 1998 */ void mm_release(struct task_struct *tsk, struct mm_struct *mm) { struct completion *vfork_done = tsk->vfork_done; /* Get rid of any cached register state */ deactivate_mm(tsk, mm); /* notify parent sleeping on vfork() */ if (vfork_done) { tsk->vfork_done = NULL; complete(vfork_done); } if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) { int * tidptr = tsk->clear_child_tid; tsk->clear_child_tid = NULL; /* * We dont check the error code - if userspace has * not set up a proper pointer then tough luck. */ put_user(0, tidptr); sys_futex((unsigned long)tidptr, FUTEX_WAKE, 1, NULL); } } static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) { struct mm_struct * mm, *oldmm; int retval; tsk->min_flt = tsk->maj_flt = 0; tsk->cmin_flt = tsk->cmaj_flt = 0; tsk->nswap = tsk->cnswap = 0; tsk->mm = NULL; tsk->active_mm = NULL; /* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */ oldmm = current->mm; if (!oldmm) return 0; if (clone_flags & CLONE_VM) { atomic_inc(&oldmm->mm_users); mm = oldmm; /* * There are cases where the PTL is held to ensure no * new threads start up in user mode using an mm, which * allows optimizing out ipis; the tlb_gather_mmu code * is an example. */ spin_unlock_wait(&oldmm->page_table_lock); goto good_mm; } retval = -ENOMEM; mm = allocate_mm(); if (!mm) goto fail_nomem; /* Copy the current MM stuff.. */ memcpy(mm, oldmm, sizeof(*mm)); if (!mm_init(mm)) goto fail_nomem; if (init_new_context(tsk,mm)) goto free_pt; retval = dup_mmap(mm, oldmm); if (retval) goto free_pt; good_mm: tsk->mm = mm; tsk->active_mm = mm; return 0; free_pt: mmput(mm); fail_nomem: return retval; } static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) { struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); /* We don't need to lock fs - think why ;-) */ if (fs) { atomic_set(&fs->count, 1); fs->lock = RW_LOCK_UNLOCKED; fs->umask = old->umask; read_lock(&old->lock); fs->rootmnt = mntget(old->rootmnt); fs->root = dget(old->root); fs->pwdmnt = mntget(old->pwdmnt); fs->pwd = dget(old->pwd); if (old->altroot) { fs->altrootmnt = mntget(old->altrootmnt); fs->altroot = dget(old->altroot); } else { fs->altrootmnt = NULL; fs->altroot = NULL; } read_unlock(&old->lock); } return fs; } struct fs_struct *copy_fs_struct(struct fs_struct *old) { return __copy_fs_struct(old); } static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) { if (clone_flags & CLONE_FS) { atomic_inc(¤t->fs->count); return 0; } tsk->fs = __copy_fs_struct(current->fs); if (!tsk->fs) return -1; return 0; } static int count_open_files(struct files_struct *files, int size) { int i; /* Find the last open fd */ for (i = size/(8*sizeof(long)); i > 0; ) { if (files->open_fds->fds_bits[--i]) break; } i = (i+1) * 8 * sizeof(long); return i; } static int copy_files(unsigned long clone_flags, struct task_struct * tsk) { struct files_struct *oldf, *newf; struct file **old_fds, **new_fds; int open_files, nfds, size, i, error = 0; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) goto out; if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); goto out; } tsk->files = NULL; error = -ENOMEM; newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); if (!newf) goto out; atomic_set(&newf->count, 1); newf->file_lock = RW_LOCK_UNLOCKED; newf->next_fd = 0; newf->max_fds = NR_OPEN_DEFAULT; newf->max_fdset = __FD_SETSIZE; newf->close_on_exec = &newf->close_on_exec_init; newf->open_fds = &newf->open_fds_init; newf->fd = &newf->fd_array[0]; /* We don't yet have the oldf readlock, but even if the old fdset gets grown now, we'll only copy up to "size" fds */ size = oldf->max_fdset; if (size > __FD_SETSIZE) { newf->max_fdset = 0; write_lock(&newf->file_lock); error = expand_fdset(newf, size-1); write_unlock(&newf->file_lock); if (error) goto out_release; } read_lock(&oldf->file_lock); open_files = count_open_files(oldf, size); /* * Check whether we need to allocate a larger fd array. * Note: we're not a clone task, so the open count won't * change. */ nfds = NR_OPEN_DEFAULT; if (open_files > nfds) { read_unlock(&oldf->file_lock); newf->max_fds = 0; write_lock(&newf->file_lock); error = expand_fd_array(newf, open_files-1); write_unlock(&newf->file_lock); if (error) goto out_release; nfds = newf->max_fds; read_lock(&oldf->file_lock); } old_fds = oldf->fd; new_fds = newf->fd; memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8); memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8); for (i = open_files; i != 0; i--) { struct file *f = *old_fds++; if (f) get_file(f); *new_fds++ = f; } read_unlock(&oldf->file_lock); /* compute the remainder to be cleared */ size = (newf->max_fds - open_files) * sizeof(struct file *); /* This is long word aligned thus could use a optimized version */ memset(new_fds, 0, size); if (newf->max_fdset > open_files) { int left = (newf->max_fdset-open_files)/8; int start = open_files / (8 * sizeof(unsigned long)); memset(&newf->open_fds->fds_bits[start], 0, left); memset(&newf->close_on_exec->fds_bits[start], 0, left); } tsk->files = newf; error = 0; out: return error; out_release: free_fdset (newf->close_on_exec, newf->max_fdset); free_fdset (newf->open_fds, newf->max_fdset); kmem_cache_free(files_cachep, newf); goto out; } static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) { struct signal_struct *sig; if (clone_flags & CLONE_SIGHAND) { atomic_inc(¤t->sig->count); return 0; } sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL); tsk->sig = sig; if (!sig) return -1; spin_lock_init(&sig->siglock); atomic_set(&sig->count, 1); sig->group_exit = 0; sig->group_exit_code = 0; sig->group_exit_task = NULL; memcpy(sig->action, current->sig->action, sizeof(sig->action)); sig->curr_target = NULL; init_sigpending(&sig->shared_pending); return 0; } static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) { unsigned long new_flags = p->flags; new_flags &= ~PF_SUPERPRIV; new_flags |= PF_FORKNOEXEC; if (!(clone_flags & CLONE_PTRACE)) p->ptrace = 0; p->flags = new_flags; } asmlinkage int sys_set_tid_address(int *tidptr) { current->clear_child_tid = tidptr; return current->pid; } /* * This creates a new process as a copy of the old one, * but does not actually start it yet. * * It copies the registers, and all the appropriate * parts of the process environment (as per the clone * flags). The actual kick-off is left to the caller. */ static struct task_struct *copy_process(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size, int *parent_tidptr, int *child_tidptr) { int retval; struct task_struct *p = NULL; if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return ERR_PTR(-EINVAL); /* * Thread groups must share signals as well, and detached threads * can only be started up within the thread group. */ if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) return ERR_PTR(-EINVAL); if ((clone_flags & CLONE_DETACHED) && !(clone_flags & CLONE_THREAD)) return ERR_PTR(-EINVAL); retval = security_task_create(clone_flags); if (retval) goto fork_out; retval = -ENOMEM; p = dup_task_struct(current); if (!p) goto fork_out; retval = -EAGAIN; if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur) { if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE)) goto bad_fork_free; } atomic_inc(&p->user->__count); atomic_inc(&p->user->processes); /* * Counter increases are protected by * the kernel lock so nr_threads can't * increase under us (but it may decrease). */ if (nr_threads >= max_threads) goto bad_fork_cleanup_count; if (!try_module_get(p->thread_info->exec_domain->module)) goto bad_fork_cleanup_count; if (p->binfmt && !try_module_get(p->binfmt->module)) goto bad_fork_cleanup_put_domain; #ifdef CONFIG_PREEMPT /* * schedule_tail drops this_rq()->lock so we compensate with a count * of 1. Also, we want to start with kernel preemption disabled. */ p->thread_info->preempt_count = 1; #endif p->did_exec = 0; p->state = TASK_UNINTERRUPTIBLE; copy_flags(clone_flags, p); if (clone_flags & CLONE_IDLETASK) p->pid = 0; else { p->pid = alloc_pidmap(); if (p->pid == -1) goto bad_fork_cleanup; } retval = -EFAULT; if (clone_flags & CLONE_PARENT_SETTID) if (put_user(p->pid, parent_tidptr)) goto bad_fork_cleanup; p->proc_dentry = NULL; INIT_LIST_HEAD(&p->run_list); INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); init_waitqueue_head(&p->wait_chldexit); p->vfork_done = NULL; spin_lock_init(&p->alloc_lock); spin_lock_init(&p->switch_lock); clear_tsk_thread_flag(p,TIF_SIGPENDING); init_sigpending(&p->pending); p->it_real_value = p->it_virt_value = p->it_prof_value = 0; p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0; init_timer(&p->real_timer); p->real_timer.data = (unsigned long) p; p->leader = 0; /* session leadership doesn't inherit */ p->tty_old_pgrp = 0; p->utime = p->stime = 0; p->cutime = p->cstime = 0; p->array = NULL; p->lock_depth = -1; /* -1 = no lock */ p->start_time = jiffies; p->security = NULL; retval = -ENOMEM; if (security_task_alloc(p)) goto bad_fork_cleanup; /* copy all the process information */ if (copy_semundo(clone_flags, p)) goto bad_fork_cleanup_security; if (copy_files(clone_flags, p)) goto bad_fork_cleanup_semundo; if (copy_fs(clone_flags, p)) goto bad_fork_cleanup_files; if (copy_sighand(clone_flags, p)) goto bad_fork_cleanup_fs; if (copy_mm(clone_flags, p)) goto bad_fork_cleanup_sighand; if (copy_namespace(clone_flags, p)) goto bad_fork_cleanup_mm; retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); if (retval) goto bad_fork_cleanup_namespace; if (clone_flags & CLONE_CHILD_SETTID) p->set_child_tid = child_tidptr; /* * Clear TID on mm_release()? */ if (clone_flags & CLONE_CHILD_CLEARTID) p->clear_child_tid = child_tidptr; /* * Syscall tracing should be turned off in the child regardless * of CLONE_PTRACE. */ clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); /* Our parent execution domain becomes current domain These must match for thread signalling to apply */ p->parent_exec_id = p->self_exec_id; /* ok, now we should be set up.. */ if (clone_flags & CLONE_DETACHED) p->exit_signal = -1; else p->exit_signal = clone_flags & CSIGNAL; p->pdeath_signal = 0; /* * Share the timeslice between parent and child, thus the * total amount of pending timeslices in the system doesnt change, * resulting in more scheduling fairness. */ local_irq_disable(); p->time_slice = (current->time_slice + 1) >> 1; /* * The remainder of the first timeslice might be recovered by * the parent if the child exits early enough. */ p->first_time_slice = 1; current->time_slice >>= 1; p->sleep_timestamp = jiffies; if (!current->time_slice) { /* * This case is rare, it happens when the parent has only * a single jiffy left from its timeslice. Taking the * runqueue lock is not a problem. */ current->time_slice = 1; preempt_disable(); scheduler_tick(0, 0); local_irq_enable(); preempt_enable(); } else local_irq_enable(); /* * Ok, add it to the run-queues and make it * visible to the rest of the system. * * Let it rip! */ p->tgid = p->pid; p->group_leader = p; INIT_LIST_HEAD(&p->ptrace_children); INIT_LIST_HEAD(&p->ptrace_list); /* Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* * Check for pending SIGKILL! The new thread should not be allowed * to slip out of an OOM kill. (or normal SIGKILL.) */ if (sigismember(¤t->pending.signal, SIGKILL)) { write_unlock_irq(&tasklist_lock); goto bad_fork_cleanup_namespace; } /* CLONE_PARENT re-uses the old parent */ if (clone_flags & CLONE_PARENT) p->real_parent = current->real_parent; else p->real_parent = current; p->parent = p->real_parent; if (clone_flags & CLONE_THREAD) { spin_lock(¤t->sig->siglock); /* * Important: if an exit-all has been started then * do not create this new thread - the whole thread * group is supposed to exit anyway. */ if (current->sig->group_exit) { spin_unlock(¤t->sig->siglock); write_unlock_irq(&tasklist_lock); goto bad_fork_cleanup_namespace; } p->tgid = current->tgid; p->group_leader = current->group_leader; spin_unlock(¤t->sig->siglock); } SET_LINKS(p); if (p->ptrace & PT_PTRACED) __ptrace_link(p, current->parent); attach_pid(p, PIDTYPE_PID, p->pid); if (thread_group_leader(p)) { attach_pid(p, PIDTYPE_TGID, p->tgid); attach_pid(p, PIDTYPE_PGID, p->pgrp); attach_pid(p, PIDTYPE_SID, p->session); } else link_pid(p, p->pids + PIDTYPE_TGID, &p->group_leader->pids[PIDTYPE_TGID].pid); nr_threads++; write_unlock_irq(&tasklist_lock); retval = 0; fork_out: if (retval) return ERR_PTR(retval); return p; bad_fork_cleanup_namespace: exit_namespace(p); bad_fork_cleanup_mm: exit_mm(p); bad_fork_cleanup_sighand: exit_sighand(p); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_semundo(p); bad_fork_cleanup_security: security_task_free(p); bad_fork_cleanup: if (p->pid > 0) free_pidmap(p->pid); if (p->binfmt) module_put(p->binfmt->module); bad_fork_cleanup_put_domain: module_put(p->thread_info->exec_domain->module); bad_fork_cleanup_count: atomic_dec(&p->user->processes); free_uid(p->user); bad_fork_free: put_task_struct(p); goto fork_out; } static inline int fork_traceflag (unsigned clone_flags) { if (clone_flags & (CLONE_UNTRACED | CLONE_IDLETASK)) return 0; else if (clone_flags & CLONE_VFORK) { if (current->ptrace & PT_TRACE_VFORK) return PTRACE_EVENT_VFORK; } else if ((clone_flags & CSIGNAL) != SIGCHLD) { if (current->ptrace & PT_TRACE_CLONE) return PTRACE_EVENT_CLONE; } else if (current->ptrace & PT_TRACE_FORK) return PTRACE_EVENT_FORK; return 0; } /* * Ok, this is the main fork-routine. * * It copies the process, and if successful kick-starts * it and waits for it to finish using the VM if required. */ struct task_struct *do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size, int *parent_tidptr, int *child_tidptr) { struct task_struct *p; int trace = 0; if (unlikely(current->ptrace)) { trace = fork_traceflag (clone_flags); if (trace) clone_flags |= CLONE_PTRACE; } p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr); if (!IS_ERR(p)) { struct completion vfork; if (clone_flags & CLONE_VFORK) { p->vfork_done = &vfork; init_completion(&vfork); } if (p->ptrace & PT_PTRACED) send_sig(SIGSTOP, p, 1); wake_up_forked_process(p); /* do this last */ ++total_forks; if (unlikely (trace)) { current->ptrace_message = (unsigned long) p->pid; ptrace_notify ((trace << 8) | SIGTRAP); } if (clone_flags & CLONE_VFORK) wait_for_completion(&vfork); else /* * Let the child process run first, to avoid most of the * COW overhead when the child exec()s afterwards. */ set_need_resched(); } return p; } /* SLAB cache for signal_struct structures (tsk->sig) */ kmem_cache_t *sigact_cachep; /* SLAB cache for files_struct structures (tsk->files) */ kmem_cache_t *files_cachep; /* SLAB cache for fs_struct structures (tsk->fs) */ kmem_cache_t *fs_cachep; /* SLAB cache for vm_area_struct structures */ kmem_cache_t *vm_area_cachep; /* SLAB cache for mm_struct structures (tsk->mm) */ kmem_cache_t *mm_cachep; void __init proc_caches_init(void) { sigact_cachep = kmem_cache_create("signal_act", sizeof(struct signal_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!sigact_cachep) panic("Cannot create signal action SLAB cache"); files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!files_cachep) panic("Cannot create files SLAB cache"); fs_cachep = kmem_cache_create("fs_cache", sizeof(struct fs_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!fs_cachep) panic("Cannot create fs_struct SLAB cache"); vm_area_cachep = kmem_cache_create("vm_area_struct", sizeof(struct vm_area_struct), 0, 0, NULL, NULL); if(!vm_area_cachep) panic("vma_init: Cannot alloc vm_area_struct SLAB cache"); mm_cachep = kmem_cache_create("mm_struct", sizeof(struct mm_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!mm_cachep) panic("vma_init: Cannot alloc mm_struct SLAB cache"); } |