Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | /* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also system_call.s). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/mm.c': 'copy_page_tables()' */ #include <linux/malloc.h> #include <linux/init.h> #include <linux/unistd.h> #include <linux/smp_lock.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> /* The idle threads do not count.. */ int nr_threads=0; int nr_running=0; int max_threads; unsigned long total_forks = 0; /* Handle normal Linux uptimes. */ int last_pid=0; /* SLAB cache for mm_struct's. */ kmem_cache_t *mm_cachep; /* SLAB cache for files structs */ kmem_cache_t *files_cachep; struct task_struct *pidhash[PIDHASH_SZ]; /* UID task count cache, to prevent walking entire process list every * single fork() operation. */ #define UIDHASH_SZ (PIDHASH_SZ >> 2) static struct user_struct { atomic_t count; struct user_struct *next, **pprev; unsigned int uid; } *uidhash[UIDHASH_SZ]; spinlock_t uidhash_lock = SPIN_LOCK_UNLOCKED; kmem_cache_t *uid_cachep; #define uidhashfn(uid) (((uid >> 8) ^ uid) & (UIDHASH_SZ - 1)) /* * These routines must be called with the uidhash spinlock held! */ static inline void uid_hash_insert(struct user_struct *up, unsigned int hashent) { if((up->next = uidhash[hashent]) != NULL) uidhash[hashent]->pprev = &up->next; up->pprev = &uidhash[hashent]; uidhash[hashent] = up; } static inline void uid_hash_remove(struct user_struct *up) { if(up->next) up->next->pprev = up->pprev; *up->pprev = up->next; } static inline struct user_struct *uid_hash_find(unsigned short uid, unsigned int hashent) { struct user_struct *up, *next; next = uidhash[hashent]; for (;;) { up = next; if (next) { next = up->next; if (up->uid != uid) continue; atomic_inc(&up->count); } break; } return up; } /* * For SMP, we need to re-test the user struct counter * after having aquired the spinlock. This allows us to do * the common case (not freeing anything) without having * any locking. */ #ifdef __SMP__ #define uid_hash_free(up) (!atomic_read(&(up)->count)) #else #define uid_hash_free(up) (1) #endif void free_uid(struct task_struct *p) { struct user_struct *up = p->user; if (up) { p->user = NULL; if (atomic_dec_and_test(&up->count)) { spin_lock(&uidhash_lock); if (uid_hash_free(up)) { uid_hash_remove(up); kmem_cache_free(uid_cachep, up); } spin_unlock(&uidhash_lock); } } } int alloc_uid(struct task_struct *p) { unsigned int hashent = uidhashfn(p->uid); struct user_struct *up; spin_lock(&uidhash_lock); up = uid_hash_find(p->uid, hashent); spin_unlock(&uidhash_lock); if (!up) { struct user_struct *new; new = kmem_cache_alloc(uid_cachep, SLAB_KERNEL); if (!new) return -EAGAIN; new->uid = p->uid; atomic_set(&new->count, 1); /* * Before adding this, check whether we raced * on adding the same user already.. */ spin_lock(&uidhash_lock); up = uid_hash_find(p->uid, hashent); if (up) { kmem_cache_free(uid_cachep, new); } else { uid_hash_insert(new, hashent); up = new; } spin_unlock(&uidhash_lock); } p->user = up; return 0; } void __init fork_init(unsigned long mempages) { int i; uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!uid_cachep) panic("Cannot create uid taskcount SLAB cache\n"); for(i = 0; i < UIDHASH_SZ; i++) uidhash[i] = 0; /* * The default maximum number of threads is set to a safe * value: the thread structures can take up at most half * of memory. */ max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 2; init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2; } /* Protects next_safe and last_pid. */ spinlock_t lastpid_lock = SPIN_LOCK_UNLOCKED; static int get_pid(unsigned long flags) { static int next_safe = PID_MAX; struct task_struct *p; if (flags & CLONE_PID) return current->pid; spin_lock(&lastpid_lock); if((++last_pid) & 0xffff8000) { last_pid = 300; /* Skip daemons etc. */ goto inside; } if(last_pid >= next_safe) { inside: next_safe = PID_MAX; read_lock(&tasklist_lock); repeat: for_each_task(p) { if(p->pid == last_pid || p->pgrp == last_pid || p->session == last_pid) { if(++last_pid >= next_safe) { if(last_pid & 0xffff8000) last_pid = 300; next_safe = PID_MAX; } goto repeat; } if(p->pid > last_pid && next_safe > p->pid) next_safe = p->pid; if(p->pgrp > last_pid && next_safe > p->pgrp) next_safe = p->pgrp; if(p->session > last_pid && next_safe > p->session) next_safe = p->session; } read_unlock(&tasklist_lock); } spin_unlock(&lastpid_lock); return last_pid; } static inline int dup_mmap(struct mm_struct * mm) { struct vm_area_struct * mpnt, *tmp, **pprev; int retval; /* Kill me slowly. UGLY! FIXME! */ memcpy(&mm->start_code, ¤t->mm->start_code, 15*sizeof(unsigned long)); flush_cache_mm(current->mm); pprev = &mm->mmap; for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) { struct file *file; retval = -ENOMEM; tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!tmp) goto fail_nomem; *tmp = *mpnt; tmp->vm_flags &= ~VM_LOCKED; tmp->vm_mm = mm; mm->map_count++; tmp->vm_next = NULL; file = tmp->vm_file; if (file) { struct inode *inode = file->f_dentry->d_inode; get_file(file); if (tmp->vm_flags & VM_DENYWRITE) atomic_dec(&inode->i_writecount); /* insert tmp into the share list, just after mpnt */ spin_lock(&inode->i_mapping->i_shared_lock); if((tmp->vm_next_share = mpnt->vm_next_share) != NULL) mpnt->vm_next_share->vm_pprev_share = &tmp->vm_next_share; mpnt->vm_next_share = tmp; tmp->vm_pprev_share = &mpnt->vm_next_share; spin_unlock(&inode->i_mapping->i_shared_lock); } /* Copy the pages, but defer checking for errors */ retval = copy_page_range(mm, current->mm, tmp); if (!retval && tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); /* * Link in the new vma even if an error occurred, * so that exit_mmap() can clean up the mess. */ tmp->vm_next = *pprev; *pprev = tmp; pprev = &tmp->vm_next; if (retval) goto fail_nomem; } retval = 0; if (mm->map_count >= AVL_MIN_MAP_COUNT) build_mmap_avl(mm); fail_nomem: flush_tlb_mm(current->mm); return retval; } /* * Allocate and initialize an mm_struct. */ struct mm_struct * mm_alloc(void) { struct mm_struct * mm; mm = kmem_cache_alloc(mm_cachep, SLAB_KERNEL); if (mm) { memset(mm, 0, sizeof(*mm)); atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); init_MUTEX(&mm->mmap_sem); mm->page_table_lock = SPIN_LOCK_UNLOCKED; mm->pgd = pgd_alloc(); if (mm->pgd) return mm; kmem_cache_free(mm_cachep, mm); } return NULL; } /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by * mmput. Free the page directory and the mm. */ inline void __mmdrop(struct mm_struct *mm) { if (mm == &init_mm) BUG(); pgd_free(mm->pgd); destroy_context(mm); kmem_cache_free(mm_cachep, mm); } /* * Decrement the use count and release all resources for an mm. */ void mmput(struct mm_struct *mm) { if (atomic_dec_and_test(&mm->mm_users)) { exit_mmap(mm); mmdrop(mm); } } /* Please note the differences between mmput and mm_release. * mmput is called whenever we stop holding onto a mm_struct, * error success whatever. * * mm_release is called after a mm_struct has been removed * from the current process. * * This difference is important for error handling, when we * only half set up a mm_struct for a new process and need to restore * the old one. Because we mmput the new mm_struct before * restoring the old one. . . * Eric Biederman 10 January 1998 */ void mm_release(void) { struct task_struct *tsk = current; /* notify parent sleeping on vfork() */ if (tsk->flags & PF_VFORK) { tsk->flags &= ~PF_VFORK; up(tsk->p_opptr->vfork_sem); } } static inline int copy_mm(unsigned long clone_flags, struct task_struct * tsk) { struct mm_struct * mm; int retval; tsk->min_flt = tsk->maj_flt = 0; tsk->cmin_flt = tsk->cmaj_flt = 0; tsk->nswap = tsk->cnswap = 0; tsk->mm = NULL; tsk->active_mm = NULL; /* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */ mm = current->mm; if (!mm) return 0; if (clone_flags & CLONE_VM) { atomic_inc(&mm->mm_users); goto good_mm; } retval = -ENOMEM; mm = mm_alloc(); if (!mm) goto fail_nomem; tsk->mm = mm; tsk->active_mm = mm; /* * child gets a private LDT (if there was an LDT in the parent) */ copy_segments(tsk, mm); down(¤t->mm->mmap_sem); retval = dup_mmap(mm); up(¤t->mm->mmap_sem); if (retval) goto free_pt; good_mm: tsk->mm = mm; tsk->active_mm = mm; init_new_context(tsk,mm); return 0; free_pt: mmput(mm); fail_nomem: return retval; } static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) { if (clone_flags & CLONE_FS) { atomic_inc(¤t->fs->count); return 0; } tsk->fs = kmalloc(sizeof(*tsk->fs), GFP_KERNEL); if (!tsk->fs) return -1; atomic_set(&tsk->fs->count, 1); tsk->fs->umask = current->fs->umask; tsk->fs->root = dget(current->fs->root); tsk->fs->pwd = dget(current->fs->pwd); return 0; } static int count_open_files(struct files_struct *files, int size) { int i; /* Find the last open fd */ for (i = size/(8*sizeof(long)); i > 0; ) { if (files->open_fds->fds_bits[--i]) break; } i = (i+1) * 8 * sizeof(long); return i; } static int copy_files(unsigned long clone_flags, struct task_struct * tsk) { struct files_struct *oldf, *newf; struct file **old_fds, **new_fds; int open_files, nfds, size, i, error = 0; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) goto out; if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); goto out; } tsk->files = NULL; error = -ENOMEM; newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); if (!newf) goto out; atomic_set(&newf->count, 1); newf->file_lock = RW_LOCK_UNLOCKED; newf->next_fd = 0; newf->max_fds = NR_OPEN_DEFAULT; newf->max_fdset = __FD_SETSIZE; newf->close_on_exec = &newf->close_on_exec_init; newf->open_fds = &newf->open_fds_init; newf->fd = &newf->fd_array[0]; /* We don't yet have the oldf readlock, but even if the old fdset gets grown now, we'll only copy up to "size" fds */ size = oldf->max_fdset; if (size > __FD_SETSIZE) { newf->max_fdset = 0; write_lock(&newf->file_lock); error = expand_fdset(newf, size); write_unlock(&newf->file_lock); if (error) goto out_release; } read_lock(&oldf->file_lock); open_files = count_open_files(oldf, size); /* * Check whether we need to allocate a larger fd array. * Note: we're not a clone task, so the open count won't * change. */ nfds = NR_OPEN_DEFAULT; if (open_files > nfds) { read_unlock(&oldf->file_lock); newf->max_fds = 0; write_lock(&newf->file_lock); error = expand_fd_array(newf, open_files); write_unlock(&newf->file_lock); if (error) goto out_release; nfds = newf->max_fds; read_lock(&oldf->file_lock); } old_fds = oldf->fd; new_fds = newf->fd; memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8); memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8); for (i = open_files; i != 0; i--) { struct file *f = *old_fds++; if (f) get_file(f); *new_fds++ = f; } read_unlock(&oldf->file_lock); /* compute the remainder to be cleared */ size = (newf->max_fds - open_files) * sizeof(struct file *); /* This is long word aligned thus could use a optimized version */ memset(new_fds, 0, size); if (newf->max_fdset > open_files) { int left = (newf->max_fdset-open_files)/8; int start = open_files / (8 * sizeof(unsigned long)); memset(&newf->open_fds->fds_bits[start], 0, left); memset(&newf->close_on_exec->fds_bits[start], 0, left); } tsk->files = newf; error = 0; out: return error; out_release: free_fdset (newf->close_on_exec, newf->max_fdset); free_fdset (newf->open_fds, newf->max_fdset); kmem_cache_free(files_cachep, newf); goto out; } static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) { if (clone_flags & CLONE_SIGHAND) { atomic_inc(¤t->sig->count); return 0; } tsk->sig = kmalloc(sizeof(*tsk->sig), GFP_KERNEL); if (!tsk->sig) return -1; spin_lock_init(&tsk->sig->siglock); atomic_set(&tsk->sig->count, 1); memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action)); return 0; } static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) { unsigned long new_flags = p->flags; new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU | PF_VFORK); new_flags |= PF_FORKNOEXEC; if (!(clone_flags & CLONE_PTRACE)) new_flags &= ~(PF_PTRACED|PF_TRACESYS); if (clone_flags & CLONE_VFORK) new_flags |= PF_VFORK; p->flags = new_flags; } /* * Ok, this is the main fork-routine. It copies the system process * information (task[nr]) and sets up the necessary registers. It * also copies the data segment in its entirety. */ int do_fork(unsigned long clone_flags, unsigned long usp, struct pt_regs *regs) { int retval = -ENOMEM; struct task_struct *p; DECLARE_MUTEX_LOCKED(sem); if (clone_flags & CLONE_PID) { /* This is only allowed from the boot up thread */ if (current->pid) return -EPERM; } current->vfork_sem = &sem; p = alloc_task_struct(); if (!p) goto fork_out; *p = *current; lock_kernel(); retval = -EAGAIN; if (p->user) { if (atomic_read(&p->user->count) >= p->rlim[RLIMIT_NPROC].rlim_cur) goto bad_fork_free; atomic_inc(&p->user->count); } /* * Counter increases are protected by * the kernel lock so nr_threads can't * increase under us (but it may decrease). */ if (nr_threads >= max_threads) goto bad_fork_cleanup_count; if (p->exec_domain && p->exec_domain->module) __MOD_INC_USE_COUNT(p->exec_domain->module); if (p->binfmt && p->binfmt->module) __MOD_INC_USE_COUNT(p->binfmt->module); p->did_exec = 0; p->swappable = 0; p->state = TASK_UNINTERRUPTIBLE; copy_flags(clone_flags, p); p->pid = get_pid(clone_flags); /* * This is a "shadow run" state. The process * is marked runnable, but isn't actually on * any run queue yet.. (that happens at the * very end). */ p->state = TASK_RUNNING; p->run_list.next = NULL; p->run_list.prev = NULL; if ((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT)) { p->p_opptr = current; if (!(current->flags & PF_PTRACED)) p->p_pptr = current; } p->p_cptr = NULL; init_waitqueue_head(&p->wait_chldexit); p->vfork_sem = NULL; sema_init(&p->exit_sem, 1); p->sigpending = 0; sigemptyset(&p->signal); p->sigqueue = NULL; p->sigqueue_tail = &p->sigqueue; p->it_real_value = p->it_virt_value = p->it_prof_value = 0; p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0; init_timer(&p->real_timer); p->real_timer.data = (unsigned long) p; p->leader = 0; /* session leadership doesn't inherit */ p->tty_old_pgrp = 0; p->times.tms_utime = p->times.tms_stime = 0; p->times.tms_cutime = p->times.tms_cstime = 0; #ifdef __SMP__ { int i; p->has_cpu = 0; p->processor = current->processor; /* ?? should we just memset this ?? */ for(i = 0; i < smp_num_cpus; i++) p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0; spin_lock_init(&p->sigmask_lock); } #endif p->lock_depth = -1; /* -1 = no lock */ p->start_time = jiffies; retval = -ENOMEM; /* copy all the process information */ if (copy_files(clone_flags, p)) goto bad_fork_cleanup; if (copy_fs(clone_flags, p)) goto bad_fork_cleanup_files; if (copy_sighand(clone_flags, p)) goto bad_fork_cleanup_fs; if (copy_mm(clone_flags, p)) goto bad_fork_cleanup_sighand; retval = copy_thread(0, clone_flags, usp, p, regs); if (retval) goto bad_fork_cleanup_sighand; p->semundo = NULL; /* Our parent execution domain becomes current domain These must match for thread signalling to apply */ p->parent_exec_id = p->self_exec_id; /* ok, now we should be set up.. */ p->swappable = 1; p->exit_signal = clone_flags & CSIGNAL; p->pdeath_signal = 0; /* * "share" dynamic priority between parent and child, thus the * total amount of dynamic priorities in the system doesnt change, * more scheduling fairness. This is only important in the first * timeslice, on the long run the scheduling behaviour is unchanged. */ p->counter = (current->counter + 1) >> 1; current->counter >>= 1; if (!current->counter) current->need_resched = 1; /* * Ok, add it to the run-queues and make it * visible to the rest of the system. * * Let it rip! */ retval = p->pid; write_lock_irq(&tasklist_lock); SET_LINKS(p); hash_pid(p); nr_threads++; write_unlock_irq(&tasklist_lock); wake_up_process(p); /* do this last */ ++total_forks; bad_fork: unlock_kernel(); fork_out: if ((clone_flags & CLONE_VFORK) && (retval > 0)) down(&sem); return retval; bad_fork_cleanup_sighand: exit_sighand(p); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup: put_exec_domain(p->exec_domain); if (p->binfmt && p->binfmt->module) __MOD_DEC_USE_COUNT(p->binfmt->module); bad_fork_cleanup_count: if (p->user) free_uid(p); bad_fork_free: free_task_struct(p); goto bad_fork; } void __init filescache_init(void) { files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!files_cachep) panic("Cannot create files cache"); } |