Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | /* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also system_call.s). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/mm.c': 'copy_page_tables()' */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/malloc.h> #include <linux/ldt.h> #include <asm/segment.h> #include <asm/system.h> int nr_tasks=1; int nr_running=1; long last_pid=0; static int find_empty_process(void) { int free_task; int i, tasks_free; int this_user_tasks; repeat: if ((++last_pid) & 0xffff8000) last_pid=1; this_user_tasks = 0; tasks_free = 0; free_task = -EAGAIN; i = NR_TASKS; while (--i > 0) { if (!task[i]) { free_task = i; tasks_free++; continue; } if (task[i]->uid == current->uid) this_user_tasks++; if (task[i]->pid == last_pid || task[i]->pgrp == last_pid || task[i]->session == last_pid) goto repeat; } if (tasks_free <= MIN_TASKS_LEFT_FOR_ROOT || this_user_tasks > current->rlim[RLIMIT_NPROC].rlim_cur) if (current->uid) return -EAGAIN; return free_task; } static struct file * copy_fd(struct file * old_file) { struct file * new_file = get_empty_filp(); int error; if (new_file) { memcpy(new_file,old_file,sizeof(struct file)); new_file->f_count = 1; if (new_file->f_inode) new_file->f_inode->i_count++; if (new_file->f_op && new_file->f_op->open) { error = new_file->f_op->open(new_file->f_inode,new_file); if (error) { iput(new_file->f_inode); new_file->f_count = 0; new_file = NULL; } } } return new_file; } static int dup_mmap(struct task_struct * tsk) { struct vm_area_struct * mpnt, **p, *tmp; tsk->mm->mmap = NULL; p = &tsk->mm->mmap; for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) { tmp = (struct vm_area_struct *) kmalloc(sizeof(struct vm_area_struct), GFP_KERNEL); if (!tmp) { exit_mmap(tsk); return -ENOMEM; } *tmp = *mpnt; tmp->vm_task = tsk; tmp->vm_next = NULL; if (tmp->vm_inode) { tmp->vm_inode->i_count++; /* insert tmp into the share list, just after mpnt */ tmp->vm_next_share->vm_prev_share = tmp; mpnt->vm_next_share = tmp; tmp->vm_prev_share = mpnt; } if (tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); *p = tmp; p = &tmp->vm_next; } build_mmap_avl(tsk); return 0; } /* * SHAREFD not yet implemented.. */ static void copy_files(unsigned long clone_flags, struct task_struct * p) { int i; struct file * f; if (clone_flags & COPYFD) { for (i=0; i<NR_OPEN;i++) if ((f = p->files->fd[i]) != NULL) p->files->fd[i] = copy_fd(f); } else { for (i=0; i<NR_OPEN;i++) if ((f = p->files->fd[i]) != NULL) f->f_count++; } } /* * CLONEVM not yet correctly implemented: needs to clone the mmap * instead of duplicating it.. */ static int copy_mm(unsigned long clone_flags, struct task_struct * p) { if (clone_flags & COPYVM) { p->mm->min_flt = p->mm->maj_flt = 0; p->mm->cmin_flt = p->mm->cmaj_flt = 0; if (copy_page_tables(p)) return 1; return dup_mmap(p); } else { if (clone_page_tables(p)) return 1; return dup_mmap(p); /* wrong.. */ } } static void copy_fs(unsigned long clone_flags, struct task_struct * p) { if (current->fs->pwd) current->fs->pwd->i_count++; if (current->fs->root) current->fs->root->i_count++; } /* * Ok, this is the main fork-routine. It copies the system process * information (task[nr]) and sets up the necessary registers. It * also copies the data segment in its entirety. */ int do_fork(unsigned long clone_flags, unsigned long usp, struct pt_regs *regs) { int nr; unsigned long new_stack; struct task_struct *p; if(!(p = (struct task_struct*)__get_free_page(GFP_KERNEL))) goto bad_fork; new_stack = get_free_page(GFP_KERNEL); if (!new_stack) goto bad_fork_free; nr = find_empty_process(); if (nr < 0) goto bad_fork_free; *p = *current; if (p->exec_domain && p->exec_domain->use_count) (*p->exec_domain->use_count)++; if (p->binfmt && p->binfmt->use_count) (*p->binfmt->use_count)++; p->did_exec = 0; p->kernel_stack_page = new_stack; *(unsigned long *) p->kernel_stack_page = STACK_MAGIC; p->state = TASK_UNINTERRUPTIBLE; p->flags &= ~(PF_PTRACED|PF_TRACESYS); p->pid = last_pid; p->p_pptr = p->p_opptr = current; p->p_cptr = NULL; p->signal = 0; p->it_real_value = p->it_virt_value = p->it_prof_value = 0; p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0; p->leader = 0; /* process leadership doesn't inherit */ p->tty_old_pgrp = 0; p->utime = p->stime = 0; p->cutime = p->cstime = 0; p->start_time = jiffies; p->mm->swappable = 0; /* don't try to swap it out before it's set up */ task[nr] = p; SET_LINKS(p); nr_tasks++; /* copy all the process information */ copy_thread(nr, clone_flags, usp, p, regs); if (copy_mm(clone_flags, p)) goto bad_fork_cleanup; p->semundo = NULL; copy_files(clone_flags, p); copy_fs(clone_flags, p); /* ok, now we should be set up.. */ p->mm->swappable = 1; p->exit_signal = clone_flags & CSIGNAL; p->counter = current->counter >> 1; p->state = TASK_RUNNING; /* do this last, just in case */ return p->pid; bad_fork_cleanup: task[nr] = NULL; REMOVE_LINKS(p); nr_tasks--; bad_fork_free: free_page(new_stack); free_page((long) p); bad_fork: return -EAGAIN; } |