Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 | /* * fs/dcache.c * * Complete reimplementation * (C) 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ /* * Notes on the allocation strategy: * * The dcache is a master of the icache - whenever a dcache entry * exists, the inode will always exist. "iput()" is done either when * the dcache entry is deleted or garbage collected. */ #include <linux/config.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/smp_lock.h> #include <linux/cache.h> #include <linux/module.h> #include <asm/uaccess.h> #define DCACHE_PARANOIA 1 /* #define DCACHE_DEBUG 1 */ spinlock_t dcache_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; rwlock_t dparent_lock __cacheline_aligned_in_smp = RW_LOCK_UNLOCKED; /* Right now the dcache depends on the kernel lock */ #define check_lock() if (!kernel_locked()) BUG() static kmem_cache_t *dentry_cache; /* * This is the single most critical data structure when it comes * to the dcache: the hashtable for lookups. Somebody should try * to make this good - I've just made it work. * * This hash-function tries to avoid losing too many bits of hash * information, yet avoid using a prime hash-size or similar. */ #define D_HASHBITS d_hash_shift #define D_HASHMASK d_hash_mask static unsigned int d_hash_mask; static unsigned int d_hash_shift; static struct list_head *dentry_hashtable; static LIST_HEAD(dentry_unused); /* Statistics gathering. */ struct dentry_stat_t dentry_stat = {0, 0, 45, 0,}; /* no dcache_lock, please */ static inline void d_free(struct dentry *dentry) { if (dentry->d_op && dentry->d_op->d_release) dentry->d_op->d_release(dentry); if (dname_external(dentry)) kfree(dentry->d_name.name); kmem_cache_free(dentry_cache, dentry); dentry_stat.nr_dentry--; } /* * Release the dentry's inode, using the fileystem * d_iput() operation if defined. * Called with dcache_lock held, drops it. */ static inline void dentry_iput(struct dentry * dentry) { struct inode *inode = dentry->d_inode; if (inode) { dentry->d_inode = NULL; list_del_init(&dentry->d_alias); spin_unlock(&dcache_lock); if (dentry->d_op && dentry->d_op->d_iput) dentry->d_op->d_iput(dentry, inode); else iput(inode); } else spin_unlock(&dcache_lock); } /* * This is dput * * This is complicated by the fact that we do not want to put * dentries that are no longer on any hash chain on the unused * list: we'd much rather just get rid of them immediately. * * However, that implies that we have to traverse the dentry * tree upwards to the parents which might _also_ now be * scheduled for deletion (it may have been only waiting for * its last child to go away). * * This tail recursion is done by hand as we don't want to depend * on the compiler to always get this right (gcc generally doesn't). * Real recursion would eat up our stack space. */ /* * dput - release a dentry * @dentry: dentry to release * * Release a dentry. This will drop the usage count and if appropriate * call the dentry unlink method as well as removing it from the queues and * releasing its resources. If the parent dentries were scheduled for release * they too may now get deleted. * * no dcache lock, please. */ void dput(struct dentry *dentry) { if (!dentry) return; repeat: if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) return; /* dput on a free dentry? */ if (!list_empty(&dentry->d_lru)) BUG(); /* * AV: ->d_delete() is _NOT_ allowed to block now. */ if (dentry->d_op && dentry->d_op->d_delete) { if (dentry->d_op->d_delete(dentry)) goto unhash_it; } /* Unreachable? Get rid of it */ if (list_empty(&dentry->d_hash)) goto kill_it; list_add(&dentry->d_lru, &dentry_unused); dentry_stat.nr_unused++; spin_unlock(&dcache_lock); return; unhash_it: list_del_init(&dentry->d_hash); kill_it: { struct dentry *parent; list_del(&dentry->d_child); /* drops the lock, at that point nobody can reach this dentry */ dentry_iput(dentry); parent = dentry->d_parent; d_free(dentry); if (dentry == parent) return; dentry = parent; goto repeat; } } /** * d_invalidate - invalidate a dentry * @dentry: dentry to invalidate * * Try to invalidate the dentry if it turns out to be * possible. If there are other dentries that can be * reached through this one we can't delete it and we * return -EBUSY. On success we return 0. * * no dcache lock. */ int d_invalidate(struct dentry * dentry) { /* * If it's already been dropped, return OK. */ spin_lock(&dcache_lock); if (list_empty(&dentry->d_hash)) { spin_unlock(&dcache_lock); return 0; } /* * Check whether to do a partial shrink_dcache * to get rid of unused child entries. */ if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&dcache_lock); shrink_dcache_parent(dentry); spin_lock(&dcache_lock); } /* * Somebody else still using it? * * If it's a directory, we can't drop it * for fear of somebody re-populating it * with children (even though dropping it * would make it unreachable from the root, * we might still populate it if it was a * working directory or similar). */ if (atomic_read(&dentry->d_count) > 1) { if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { spin_unlock(&dcache_lock); return -EBUSY; } } list_del_init(&dentry->d_hash); spin_unlock(&dcache_lock); return 0; } /* This should be called _only_ with dcache_lock held */ static inline struct dentry * __dget_locked(struct dentry *dentry) { atomic_inc(&dentry->d_count); if (atomic_read(&dentry->d_count) == 1) { dentry_stat.nr_unused--; list_del_init(&dentry->d_lru); } return dentry; } struct dentry * dget_locked(struct dentry *dentry) { return __dget_locked(dentry); } /** * d_find_alias - grab a hashed alias of inode * @inode: inode in question * * If inode has a hashed alias - acquire the reference to alias and * return it. Otherwise return NULL. Notice that if inode is a directory * there can be only one alias and it can be unhashed only if it has * no children. */ struct dentry * d_find_alias(struct inode *inode) { struct list_head *head, *next, *tmp; struct dentry *alias; spin_lock(&dcache_lock); head = &inode->i_dentry; next = inode->i_dentry.next; while (next != head) { tmp = next; next = tmp->next; alias = list_entry(tmp, struct dentry, d_alias); if (!list_empty(&alias->d_hash)) { __dget_locked(alias); spin_unlock(&dcache_lock); return alias; } } spin_unlock(&dcache_lock); return NULL; } /* * Try to kill dentries associated with this inode. * WARNING: you must own a reference to inode. */ void d_prune_aliases(struct inode *inode) { struct list_head *tmp, *head = &inode->i_dentry; restart: spin_lock(&dcache_lock); tmp = head; while ((tmp = tmp->next) != head) { struct dentry *dentry = list_entry(tmp, struct dentry, d_alias); if (!atomic_read(&dentry->d_count)) { __dget_locked(dentry); spin_unlock(&dcache_lock); d_drop(dentry); dput(dentry); goto restart; } } spin_unlock(&dcache_lock); } /* * Throw away a dentry - free the inode, dput the parent. * This requires that the LRU list has already been * removed. * Called with dcache_lock, drops it and then regains. */ static inline void prune_one_dentry(struct dentry * dentry) { struct dentry * parent; list_del_init(&dentry->d_hash); list_del(&dentry->d_child); dentry_iput(dentry); parent = dentry->d_parent; d_free(dentry); if (parent != dentry) dput(parent); spin_lock(&dcache_lock); } /** * prune_dcache - shrink the dcache * @count: number of entries to try and free * * Shrink the dcache. This is done when we need * more memory, or simply when we need to unmount * something (at which point we need to unuse * all dentries). * * This function may fail to free any resources if * all the dentries are in use. */ void prune_dcache(int count) { spin_lock(&dcache_lock); for (;;) { struct dentry *dentry; struct list_head *tmp; tmp = dentry_unused.prev; if (tmp == &dentry_unused) break; list_del_init(tmp); dentry = list_entry(tmp, struct dentry, d_lru); /* If the dentry was recently referenced, don't free it. */ if (dentry->d_vfs_flags & DCACHE_REFERENCED) { dentry->d_vfs_flags &= ~DCACHE_REFERENCED; list_add(&dentry->d_lru, &dentry_unused); continue; } dentry_stat.nr_unused--; /* Unused dentry with a count? */ if (atomic_read(&dentry->d_count)) BUG(); prune_one_dentry(dentry); if (!--count) break; } spin_unlock(&dcache_lock); } /* * Shrink the dcache for the specified super block. * This allows us to unmount a device without disturbing * the dcache for the other devices. * * This implementation makes just two traversals of the * unused list. On the first pass we move the selected * dentries to the most recent end, and on the second * pass we free them. The second pass must restart after * each dput(), but since the target dentries are all at * the end, it's really just a single traversal. */ /** * shrink_dcache_sb - shrink dcache for a superblock * @sb: superblock * * Shrink the dcache for the specified super block. This * is used to free the dcache before unmounting a file * system */ void shrink_dcache_sb(struct super_block * sb) { struct list_head *tmp, *next; struct dentry *dentry; /* * Pass one ... move the dentries for the specified * superblock to the most recent end of the unused list. */ spin_lock(&dcache_lock); next = dentry_unused.next; while (next != &dentry_unused) { tmp = next; next = tmp->next; dentry = list_entry(tmp, struct dentry, d_lru); if (dentry->d_sb != sb) continue; list_del(tmp); list_add(tmp, &dentry_unused); } /* * Pass two ... free the dentries for this superblock. */ repeat: next = dentry_unused.next; while (next != &dentry_unused) { tmp = next; next = tmp->next; dentry = list_entry(tmp, struct dentry, d_lru); if (dentry->d_sb != sb) continue; if (atomic_read(&dentry->d_count)) continue; dentry_stat.nr_unused--; list_del_init(tmp); prune_one_dentry(dentry); goto repeat; } spin_unlock(&dcache_lock); } /* * Search for at least 1 mount point in the dentry's subdirs. * We descend to the next level whenever the d_subdirs * list is non-empty and continue searching. */ /** * have_submounts - check for mounts over a dentry * @parent: dentry to check. * * Return true if the parent or its subdirectories contain * a mount point */ int have_submounts(struct dentry *parent) { struct dentry *this_parent = parent; struct list_head *next; spin_lock(&dcache_lock); if (d_mountpoint(parent)) goto positive; repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_child); next = tmp->next; /* Have we found a mount point ? */ if (d_mountpoint(dentry)) goto positive; if (!list_empty(&dentry->d_subdirs)) { this_parent = dentry; goto repeat; } } /* * All done at this level ... ascend and resume the search. */ if (this_parent != parent) { next = this_parent->d_child.next; this_parent = this_parent->d_parent; goto resume; } spin_unlock(&dcache_lock); return 0; /* No mount points found in tree */ positive: spin_unlock(&dcache_lock); return 1; } /* * Search the dentry child list for the specified parent, * and move any unused dentries to the end of the unused * list for prune_dcache(). We descend to the next level * whenever the d_subdirs list is non-empty and continue * searching. */ static int select_parent(struct dentry * parent) { struct dentry *this_parent = parent; struct list_head *next; int found = 0; spin_lock(&dcache_lock); repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_child); next = tmp->next; if (!atomic_read(&dentry->d_count)) { list_del(&dentry->d_lru); list_add(&dentry->d_lru, dentry_unused.prev); found++; } /* * Descend a level if the d_subdirs list is non-empty. */ if (!list_empty(&dentry->d_subdirs)) { this_parent = dentry; #ifdef DCACHE_DEBUG printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n", dentry->d_parent->d_name.name, dentry->d_name.name, found); #endif goto repeat; } } /* * All done at this level ... ascend and resume the search. */ if (this_parent != parent) { next = this_parent->d_child.next; this_parent = this_parent->d_parent; #ifdef DCACHE_DEBUG printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n", this_parent->d_parent->d_name.name, this_parent->d_name.name, found); #endif goto resume; } spin_unlock(&dcache_lock); return found; } /** * shrink_dcache_parent - prune dcache * @parent: parent of entries to prune * * Prune the dcache to remove unused children of the parent dentry. */ void shrink_dcache_parent(struct dentry * parent) { int found; while ((found = select_parent(parent)) != 0) prune_dcache(found); } /* * This is called from kswapd when we think we need some * more memory, but aren't really sure how much. So we * carefully try to free a _bit_ of our dcache, but not * too much. * * Priority: * 1 - very urgent: shrink everything * ... * 6 - base-level: try to shrink a bit. */ int shrink_dcache_memory(int priority, unsigned int gfp_mask) { int count = 0; /* * Nasty deadlock avoidance. * * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op-> * put_inode->ext2_discard_prealloc->ext2_free_blocks->lock_super-> * DEADLOCK. * * We should make sure we don't hold the superblock lock over * block allocations, but for now: */ if (!(gfp_mask & __GFP_FS)) return 0; count = dentry_stat.nr_unused / priority; prune_dcache(count); kmem_cache_shrink(dentry_cache); return 0; } #define NAME_ALLOC_LEN(len) ((len+16) & ~15) /** * d_alloc - allocate a dcache entry * @parent: parent of entry to allocate * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry * d_alloc(struct dentry * parent, const struct qstr *name) { char * str; struct dentry *dentry; dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); if (!dentry) return NULL; if (name->len > DNAME_INLINE_LEN-1) { str = kmalloc(NAME_ALLOC_LEN(name->len), GFP_KERNEL); if (!str) { kmem_cache_free(dentry_cache, dentry); return NULL; } } else str = dentry->d_iname; memcpy(str, name->name, name->len); str[name->len] = 0; atomic_set(&dentry->d_count, 1); dentry->d_vfs_flags = 0; dentry->d_flags = 0; dentry->d_inode = NULL; dentry->d_parent = NULL; dentry->d_sb = NULL; dentry->d_name.name = str; dentry->d_name.len = name->len; dentry->d_name.hash = name->hash; dentry->d_op = NULL; dentry->d_fsdata = NULL; dentry->d_mounted = 0; INIT_LIST_HEAD(&dentry->d_hash); INIT_LIST_HEAD(&dentry->d_lru); INIT_LIST_HEAD(&dentry->d_subdirs); INIT_LIST_HEAD(&dentry->d_alias); if (parent) { dentry->d_parent = dget(parent); dentry->d_sb = parent->d_sb; spin_lock(&dcache_lock); list_add(&dentry->d_child, &parent->d_subdirs); spin_unlock(&dcache_lock); } else INIT_LIST_HEAD(&dentry->d_child); dentry_stat.nr_dentry++; return dentry; } /** * d_instantiate - fill in inode information for a dentry * @entry: dentry to complete * @inode: inode to attach to this dentry * * Fill in inode information in the entry. * * This turns negative dentries into productive full members * of society. * * NOTE! This assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache. */ void d_instantiate(struct dentry *entry, struct inode * inode) { if (!list_empty(&entry->d_alias)) BUG(); spin_lock(&dcache_lock); if (inode) list_add(&entry->d_alias, &inode->i_dentry); entry->d_inode = inode; spin_unlock(&dcache_lock); } /** * d_alloc_root - allocate root dentry * @root_inode: inode to allocate the root for * * Allocate a root ("/") dentry for the inode given. The inode is * instantiated and returned. %NULL is returned if there is insufficient * memory or the inode passed is %NULL. */ struct dentry * d_alloc_root(struct inode * root_inode) { struct dentry *res = NULL; if (root_inode) { res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 }); if (res) { res->d_sb = root_inode->i_sb; res->d_parent = res; d_instantiate(res, root_inode); } } return res; } static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash) { hash += (unsigned long) parent / L1_CACHE_BYTES; hash = hash ^ (hash >> D_HASHBITS); return dentry_hashtable + (hash & D_HASHMASK); } /** * d_lookup - search for a dentry * @parent: parent dentry * @name: qstr of name we wish to find * * Searches the children of the parent dentry for the name in question. If * the dentry is found its reference count is incremented and the dentry * is returned. The caller must use d_put to free the entry when it has * finished using it. %NULL is returned on failure. */ struct dentry * d_lookup(struct dentry * parent, struct qstr * name) { unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct list_head *head = d_hash(parent,hash); struct list_head *tmp; spin_lock(&dcache_lock); tmp = head->next; for (;;) { struct dentry * dentry = list_entry(tmp, struct dentry, d_hash); if (tmp == head) break; tmp = tmp->next; if (dentry->d_name.hash != hash) continue; if (dentry->d_parent != parent) continue; if (parent->d_op && parent->d_op->d_compare) { if (parent->d_op->d_compare(parent, &dentry->d_name, name)) continue; } else { if (dentry->d_name.len != len) continue; if (memcmp(dentry->d_name.name, str, len)) continue; } __dget_locked(dentry); dentry->d_vfs_flags |= DCACHE_REFERENCED; spin_unlock(&dcache_lock); return dentry; } spin_unlock(&dcache_lock); return NULL; } /** * d_validate - verify dentry provided from insecure source * @dentry: The dentry alleged to be valid child of @dparent * @dparent: The parent dentry (known to be valid) * @hash: Hash of the dentry * @len: Length of the name * * An insecure source has sent us a dentry, here we verify it and dget() it. * This is used by ncpfs in its readdir implementation. * Zero is returned in the dentry is invalid. */ int d_validate(struct dentry *dentry, struct dentry *dparent) { unsigned long dent_addr = (unsigned long) dentry; unsigned long min_addr = PAGE_OFFSET; unsigned long align_mask = 0x0F; struct list_head *base, *lhp; if (dent_addr < min_addr) goto out; if (dent_addr > (unsigned long)high_memory - sizeof(struct dentry)) goto out; if (dent_addr & align_mask) goto out; if ((!kern_addr_valid(dent_addr)) || (!kern_addr_valid(dent_addr -1 + sizeof(struct dentry)))) goto out; if (dentry->d_parent != dparent) goto out; spin_lock(&dcache_lock); lhp = base = d_hash(dparent, dentry->d_name.hash); while ((lhp = lhp->next) != base) { if (dentry == list_entry(lhp, struct dentry, d_hash)) { __dget_locked(dentry); spin_unlock(&dcache_lock); return 1; } } spin_unlock(&dcache_lock); out: return 0; } /* * When a file is deleted, we have two options: * - turn this dentry into a negative dentry * - unhash this dentry and free it. * * Usually, we want to just turn this into * a negative dentry, but if anybody else is * currently using the dentry or the inode * we can't do that and we fall back on removing * it from the hash queues and waiting for * it to be deleted later when it has no users */ /** * d_delete - delete a dentry * @dentry: The dentry to delete * * Turn the dentry into a negative dentry if possible, otherwise * remove it from the hash queues so it can be deleted later */ void d_delete(struct dentry * dentry) { /* * Are we the only user? */ spin_lock(&dcache_lock); if (atomic_read(&dentry->d_count) == 1) { dentry_iput(dentry); return; } spin_unlock(&dcache_lock); /* * If not, just drop the dentry and let dput * pick up the tab.. */ d_drop(dentry); } /** * d_rehash - add an entry back to the hash * @entry: dentry to add to the hash * * Adds a dentry to the hash according to its name. */ void d_rehash(struct dentry * entry) { struct list_head *list = d_hash(entry->d_parent, entry->d_name.hash); if (!list_empty(&entry->d_hash)) BUG(); spin_lock(&dcache_lock); list_add(&entry->d_hash, list); spin_unlock(&dcache_lock); } #define do_switch(x,y) do { \ __typeof__ (x) __tmp = x; \ x = y; y = __tmp; } while (0) /* * When switching names, the actual string doesn't strictly have to * be preserved in the target - because we're dropping the target * anyway. As such, we can just do a simple memcpy() to copy over * the new name before we switch. * * Note that we have to be a lot more careful about getting the hash * switched - we have to switch the hash value properly even if it * then no longer matches the actual (corrupted) string of the target. * The hash value has to match the hash queue that the dentry is on.. */ static inline void switch_names(struct dentry * dentry, struct dentry * target) { const unsigned char *old_name, *new_name; check_lock(); memcpy(dentry->d_iname, target->d_iname, DNAME_INLINE_LEN); old_name = target->d_name.name; new_name = dentry->d_name.name; if (old_name == target->d_iname) old_name = dentry->d_iname; if (new_name == dentry->d_iname) new_name = target->d_iname; target->d_name.name = new_name; dentry->d_name.name = old_name; } /* * We cannibalize "target" when moving dentry on top of it, * because it's going to be thrown away anyway. We could be more * polite about it, though. * * This forceful removal will result in ugly /proc output if * somebody holds a file open that got deleted due to a rename. * We could be nicer about the deleted file, and let it show * up under the name it got deleted rather than the name that * deleted it. * * Careful with the hash switch. The hash switch depends on * the fact that any list-entry can be a head of the list. * Think about it. */ /** * d_move - move a dentry * @dentry: entry to move * @target: new dentry * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. */ void d_move(struct dentry * dentry, struct dentry * target) { check_lock(); if (!dentry->d_inode) printk(KERN_WARNING "VFS: moving negative dcache entry\n"); spin_lock(&dcache_lock); /* Move the dentry to the target hash queue */ list_del(&dentry->d_hash); list_add(&dentry->d_hash, &target->d_hash); /* Unhash the target: dput() will then get rid of it */ list_del_init(&target->d_hash); list_del(&dentry->d_child); list_del(&target->d_child); /* Switch the parents and the names.. */ switch_names(dentry, target); write_lock(&dparent_lock); do_switch(dentry->d_parent, target->d_parent); write_unlock(&dparent_lock); do_switch(dentry->d_name.len, target->d_name.len); do_switch(dentry->d_name.hash, target->d_name.hash); /* And add them back to the (new) parent lists */ list_add(&target->d_child, &target->d_parent->d_subdirs); list_add(&dentry->d_child, &dentry->d_parent->d_subdirs); spin_unlock(&dcache_lock); } /** * d_path - return the path of a dentry * @dentry: dentry to report * @vfsmnt: vfsmnt to which the dentry belongs * @root: root dentry * @rootmnt: vfsmnt to which the root dentry belongs * @buffer: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. If the entry has been deleted * the string " (deleted)" is appended. Note that this is ambiguous. Returns * the buffer. * * "buflen" should be %PAGE_SIZE or more. Caller holds the dcache_lock. */ char * __d_path(struct dentry *dentry, struct vfsmount *vfsmnt, struct dentry *root, struct vfsmount *rootmnt, char *buffer, int buflen) { char * end = buffer+buflen; char * retval; int namelen; *--end = '\0'; buflen--; if (!IS_ROOT(dentry) && list_empty(&dentry->d_hash)) { buflen -= 10; end -= 10; memcpy(end, " (deleted)", 10); } /* Get '/' right */ retval = end-1; *retval = '/'; for (;;) { struct dentry * parent; if (dentry == root && vfsmnt == rootmnt) break; if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { /* Global root? */ if (vfsmnt->mnt_parent == vfsmnt) goto global_root; dentry = vfsmnt->mnt_mountpoint; vfsmnt = vfsmnt->mnt_parent; continue; } parent = dentry->d_parent; namelen = dentry->d_name.len; buflen -= namelen + 1; if (buflen < 0) break; end -= namelen; memcpy(end, dentry->d_name.name, namelen); *--end = '/'; retval = end; dentry = parent; } return retval; global_root: namelen = dentry->d_name.len; buflen -= namelen; if (buflen >= 0) { retval -= namelen-1; /* hit the slash */ memcpy(retval, dentry->d_name.name, namelen); } return retval; } /* * NOTE! The user-level library version returns a * character pointer. The kernel system call just * returns the length of the buffer filled (which * includes the ending '\0' character), or a negative * error value. So libc would do something like * * char *getcwd(char * buf, size_t size) * { * int retval; * * retval = sys_getcwd(buf, size); * if (retval >= 0) * return buf; * errno = -retval; * return NULL; * } */ asmlinkage long sys_getcwd(char *buf, unsigned long size) { int error; struct vfsmount *pwdmnt, *rootmnt; struct dentry *pwd, *root; char *page = (char *) __get_free_page(GFP_USER); if (!page) return -ENOMEM; read_lock(¤t->fs->lock); pwdmnt = mntget(current->fs->pwdmnt); pwd = dget(current->fs->pwd); rootmnt = mntget(current->fs->rootmnt); root = dget(current->fs->root); read_unlock(¤t->fs->lock); error = -ENOENT; /* Has the current directory has been unlinked? */ spin_lock(&dcache_lock); if (pwd->d_parent == pwd || !list_empty(&pwd->d_hash)) { unsigned long len; char * cwd; cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE); spin_unlock(&dcache_lock); error = -ERANGE; len = PAGE_SIZE + page - cwd; if (len <= size) { error = len; if (copy_to_user(buf, cwd, len)) error = -EFAULT; } } else spin_unlock(&dcache_lock); dput(pwd); mntput(pwdmnt); dput(root); mntput(rootmnt); free_page((unsigned long) page); return error; } /* * Test whether new_dentry is a subdirectory of old_dentry. * * Trivially implemented using the dcache structure */ /** * is_subdir - is new dentry a subdirectory of old_dentry * @new_dentry: new dentry * @old_dentry: old dentry * * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). * Returns 0 otherwise. */ int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry) { int result; result = 0; for (;;) { if (new_dentry != old_dentry) { struct dentry * parent = new_dentry->d_parent; if (parent == new_dentry) break; new_dentry = parent; continue; } result = 1; break; } return result; } void d_genocide(struct dentry *root) { struct dentry *this_parent = root; struct list_head *next; spin_lock(&dcache_lock); repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_child); next = tmp->next; if (d_unhashed(dentry)||!dentry->d_inode) continue; if (!list_empty(&dentry->d_subdirs)) { this_parent = dentry; goto repeat; } atomic_dec(&dentry->d_count); } if (this_parent != root) { next = this_parent->d_child.next; atomic_dec(&this_parent->d_count); this_parent = this_parent->d_parent; goto resume; } spin_unlock(&dcache_lock); } /** * find_inode_number - check for dentry with name * @dir: directory to check * @name: Name to find. * * Check whether a dentry already exists for the given name, * and return the inode number if it has an inode. Otherwise * 0 is returned. * * This routine is used to post-process directory listings for * filesystems using synthetic inode numbers, and is necessary * to keep getcwd() working. */ ino_t find_inode_number(struct dentry *dir, struct qstr *name) { struct dentry * dentry; ino_t ino = 0; /* * Check for a fs-specific hash function. Note that we must * calculate the standard hash first, as the d_op->d_hash() * routine may choose to leave the hash value unchanged. */ name->hash = full_name_hash(name->name, name->len); if (dir->d_op && dir->d_op->d_hash) { if (dir->d_op->d_hash(dir, name) != 0) goto out; } dentry = d_lookup(dir, name); if (dentry) { if (dentry->d_inode) ino = dentry->d_inode->i_ino; dput(dentry); } out: return ino; } static void __init dcache_init(unsigned long mempages) { struct list_head *d; unsigned long order; unsigned int nr_hash; int i; /* * A constructor could be added for stable state like the lists, * but it is probably not worth it because of the cache nature * of the dcache. * If fragmentation is too bad then the SLAB_HWCACHE_ALIGN * flag could be removed here, to hint to the allocator that * it should not try to get multiple page regions. */ dentry_cache = kmem_cache_create("dentry_cache", sizeof(struct dentry), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!dentry_cache) panic("Cannot create dentry cache"); #if PAGE_SHIFT < 13 mempages >>= (13 - PAGE_SHIFT); #endif mempages *= sizeof(struct list_head); for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++) ; do { unsigned long tmp; nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct list_head); d_hash_mask = (nr_hash - 1); tmp = nr_hash; d_hash_shift = 0; while ((tmp >>= 1UL) != 0UL) d_hash_shift++; dentry_hashtable = (struct list_head *) __get_free_pages(GFP_ATOMIC, order); } while (dentry_hashtable == NULL && --order >= 0); printk("Dentry-cache hash table entries: %d (order: %ld, %ld bytes)\n", nr_hash, order, (PAGE_SIZE << order)); if (!dentry_hashtable) panic("Failed to allocate dcache hash table\n"); d = dentry_hashtable; i = nr_hash; do { INIT_LIST_HEAD(d); d++; i--; } while (i); } static void init_buffer_head(void * foo, kmem_cache_t * cachep, unsigned long flags) { if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { struct buffer_head * bh = (struct buffer_head *) foo; memset(bh, 0, sizeof(*bh)); init_waitqueue_head(&bh->b_wait); } } /* SLAB cache for __getname() consumers */ kmem_cache_t *names_cachep; /* SLAB cache for file structures */ kmem_cache_t *filp_cachep; /* SLAB cache for dquot structures */ kmem_cache_t *dquot_cachep; /* SLAB cache for buffer_head structures */ kmem_cache_t *bh_cachep; EXPORT_SYMBOL(bh_cachep); EXPORT_SYMBOL(d_genocide); extern void bdev_cache_init(void); extern void cdev_cache_init(void); void __init vfs_caches_init(unsigned long mempages) { bh_cachep = kmem_cache_create("buffer_head", sizeof(struct buffer_head), 0, SLAB_HWCACHE_ALIGN, init_buffer_head, NULL); if(!bh_cachep) panic("Cannot create buffer head SLAB cache"); names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!names_cachep) panic("Cannot create names SLAB cache"); filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!filp_cachep) panic("Cannot create filp SLAB cache"); #if defined (CONFIG_QUOTA) dquot_cachep = kmem_cache_create("dquot", sizeof(struct dquot), sizeof(unsigned long) * 4, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!dquot_cachep) panic("Cannot create dquot SLAB cache"); #endif dcache_init(mempages); inode_init(mempages); files_init(mempages); mnt_init(mempages); bdev_cache_init(); cdev_cache_init(); } |