Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
 * fs/dcache.c
 *
 * Complete reimplementation
 * (C) 1997 Thomas Schoebel-Theuer,
 * with heavy changes by Linus Torvalds
 */

/*
 * Notes on the allocation strategy:
 *
 * The dcache is a master of the icache - whenever a dcache entry
 * exists, the inode will always exist. "iput()" is done either when
 * the dcache entry is deleted or garbage collected.
 */

#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/malloc.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/smp_lock.h>

#include <asm/uaccess.h>

#define DCACHE_PARANOIA 1
/* #define DCACHE_DEBUG 1 */

/* For managing the dcache */
extern unsigned long num_physpages, page_cache_size;
extern int inodes_stat[];
#define nr_inodes (inodes_stat[0])

kmem_cache_t *dentry_cache; 

/*
 * This is the single most critical data structure when it comes
 * to the dcache: the hashtable for lookups. Somebody should try
 * to make this good - I've just made it work.
 *
 * This hash-function tries to avoid losing too many bits of hash
 * information, yet avoid using a prime hash-size or similar.
 */
#define D_HASHBITS     14
#define D_HASHSIZE     (1UL << D_HASHBITS)
#define D_HASHMASK     (D_HASHSIZE-1)

static struct list_head dentry_hashtable[D_HASHSIZE];
static LIST_HEAD(dentry_unused);

struct {
	int nr_dentry;
	int nr_unused;
	int age_limit;		/* age in seconds */
	int want_pages;		/* pages requested by system */
	int dummy[2];
} dentry_stat = {0, 0, 45, 0,};

static inline void d_free(struct dentry *dentry)
{
	if (dentry->d_op && dentry->d_op->d_release)
		dentry->d_op->d_release(dentry);
	if (dname_external(dentry)) 
		kfree(dentry->d_name.name);
	kmem_cache_free(dentry_cache, dentry); 
}

/*
 * Release the dentry's inode, using the fileystem
 * d_iput() operation if defined.
 */
static inline void dentry_iput(struct dentry * dentry)
{
	struct inode *inode = dentry->d_inode;
	if (inode) {
		dentry->d_inode = NULL;
		list_del(&dentry->d_alias);
		INIT_LIST_HEAD(&dentry->d_alias);
		if (dentry->d_op && dentry->d_op->d_iput)
			dentry->d_op->d_iput(dentry, inode);
		else
			iput(inode);
	}
}

/*
 * dput()
 *
 * This is complicated by the fact that we do not want to put
 * dentries that are no longer on any hash chain on the unused
 * list: we'd much rather just get rid of them immediately.
 *
 * However, that implies that we have to traverse the dentry
 * tree upwards to the parents which might _also_ now be
 * scheduled for deletion (it may have been only waiting for
 * its last child to go away).
 *
 * This tail recursion is done by hand as we don't want to depend
 * on the compiler to always get this right (gcc generally doesn't).
 * Real recursion would eat up our stack space.
 */
void dput(struct dentry *dentry)
{
	int count;

	if (!dentry)
		return;

repeat:
	count = dentry->d_count - 1;
	if (count != 0)
		goto out;

	/*
	 * Note that if d_op->d_delete blocks,
	 * the dentry could go back in use.
	 * Each fs will have to watch for this.
	 */
	if (dentry->d_op && dentry->d_op->d_delete) {
		dentry->d_op->d_delete(dentry);

		count = dentry->d_count - 1;
		if (count != 0)
			goto out;
	}

	if (!list_empty(&dentry->d_lru)) {
		dentry_stat.nr_unused--;
		list_del(&dentry->d_lru);
	}
	if (list_empty(&dentry->d_hash)) {
		struct dentry * parent;

		list_del(&dentry->d_child);
		dentry_iput(dentry);
		parent = dentry->d_parent;
		d_free(dentry);
		if (dentry == parent)
			return;
		dentry = parent;
		goto repeat;
	}
	list_add(&dentry->d_lru, &dentry_unused);
	dentry_stat.nr_unused++;
	/*
	 * Update the timestamp
	 */
	dentry->d_reftime = jiffies;

out:
	if (count >= 0) {
		dentry->d_count = count;
		return;
	}

	printk(KERN_CRIT "Negative d_count (%d) for %s/%s\n",
		count,
		dentry->d_parent->d_name.name,
		dentry->d_name.name);
	*(int *)0 = 0;	
}

/*
 * Try to invalidate the dentry if it turns out to be
 * possible. If there are other dentries that can be
 * reached through this one we can't delete it.
 */
int d_invalidate(struct dentry * dentry)
{
	/*
	 * If it's already been dropped, return OK.
	 */
	if (list_empty(&dentry->d_hash))
		return 0;
	/*
	 * Check whether to do a partial shrink_dcache
	 * to get rid of unused child entries.
	 */
	if (!list_empty(&dentry->d_subdirs)) {
		shrink_dcache_parent(dentry);
	}

	/*
	 * Somebody else still using it?
	 *
	 * If it's a directory, we can't drop it
	 * for fear of somebody re-populating it
	 * with children (even though dropping it
	 * would make it unreachable from the root,
	 * we might still populate it if it was a
	 * working directory or similar).
	 */
	if (dentry->d_count > 1) {
		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode))
			return -EBUSY;
	}

	d_drop(dentry);
	return 0;
}

/*
 * Throw away a dentry - free the inode, dput the parent.
 * This requires that the LRU list has already been
 * removed.
 */
static inline void prune_one_dentry(struct dentry * dentry)
{
	struct dentry * parent;

	list_del(&dentry->d_hash);
	list_del(&dentry->d_child);
	dentry_iput(dentry);
	parent = dentry->d_parent;
	d_free(dentry);
	if (parent != dentry)
		dput(parent);
}

/*
 * Shrink the dcache. This is done when we need
 * more memory, or simply when we need to unmount
 * something (at which point we need to unuse
 * all dentries).
 */
void prune_dcache(int count)
{
	for (;;) {
		struct dentry *dentry;
		struct list_head *tmp = dentry_unused.prev;

		if (tmp == &dentry_unused)
			break;
		dentry_stat.nr_unused--;
		list_del(tmp);
		INIT_LIST_HEAD(tmp);
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (!dentry->d_count) {
			prune_one_dentry(dentry);
			if (!--count)
				break;
		}
	}
}

/*
 * Shrink the dcache for the specified super block.
 * This allows us to unmount a device without disturbing
 * the dcache for the other devices.
 *
 * This implementation makes just two traversals of the
 * unused list.  On the first pass we move the selected
 * dentries to the most recent end, and on the second
 * pass we free them.  The second pass must restart after
 * each dput(), but since the target dentries are all at
 * the end, it's really just a single traversal.
 */
void shrink_dcache_sb(struct super_block * sb)
{
	struct list_head *tmp, *next;
	struct dentry *dentry;

	/*
	 * Pass one ... move the dentries for the specified
	 * superblock to the most recent end of the unused list.
	 */
	next = dentry_unused.next;
	while (next != &dentry_unused) {
		tmp = next;
		next = tmp->next;
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (dentry->d_sb != sb)
			continue;
		list_del(tmp);
		list_add(tmp, &dentry_unused);
	}

	/*
	 * Pass two ... free the dentries for this superblock.
	 */
repeat:
	next = dentry_unused.next;
	while (next != &dentry_unused) {
		tmp = next;
		next = tmp->next;
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (dentry->d_sb != sb)
			continue;
		if (dentry->d_count)
			continue;
		dentry_stat.nr_unused--;
		list_del(tmp);
		INIT_LIST_HEAD(tmp);
		prune_one_dentry(dentry);
		goto repeat;
	}
}

/*
 * Check whether a root dentry would be in use if all of its
 * child dentries were freed. This allows a non-destructive
 * test for unmounting a device.
 */
int is_root_busy(struct dentry *root)
{
	struct dentry *this_parent = root;
	struct list_head *next;
	int count = root->d_count;

repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		/* Decrement count for unused children */
		count += (dentry->d_count - 1);
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
			goto repeat;
		}
		/* root is busy if any leaf is busy */
		if (dentry->d_count)
			return 1;
	}
	/*
	 * All done at this level ... ascend and resume the search.
	 */
	if (this_parent != root) {
		next = this_parent->d_child.next; 
		this_parent = this_parent->d_parent;
		goto resume;
	}
	return (count > 1); /* remaining users? */
}

/*
 * Search the dentry child list for the specified parent,
 * and move any unused dentries to the end of the unused
 * list for prune_dcache(). We descend to the next level
 * whenever the d_subdirs list is non-empty and continue
 * searching.
 */
static int select_parent(struct dentry * parent)
{
	struct dentry *this_parent = parent;
	struct list_head *next;
	int found = 0;

repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		if (!dentry->d_count) {
			list_del(&dentry->d_lru);
			list_add(&dentry->d_lru, dentry_unused.prev);
			found++;
		}
		/*
		 * Descend a level if the d_subdirs list is non-empty.
		 */
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
#ifdef DCACHE_DEBUG
printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
dentry->d_parent->d_name.name, dentry->d_name.name, found);
#endif
			goto repeat;
		}
	}
	/*
	 * All done at this level ... ascend and resume the search.
	 */
	if (this_parent != parent) {
		next = this_parent->d_child.next; 
		this_parent = this_parent->d_parent;
#ifdef DCACHE_DEBUG
printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
#endif
		goto resume;
	}
	return found;
}

/*
 * Prune the dcache to remove unused children of the parent dentry.
 */
void shrink_dcache_parent(struct dentry * parent)
{
	int found;

	while ((found = select_parent(parent)) != 0)
		prune_dcache(found);
}

/*
 * This is called from kswapd when we think we need some
 * more memory, but aren't really sure how much. So we
 * carefully try to free a _bit_ of our dcache, but not
 * too much.
 *
 * Priority:
 *   0 - very urgent: shrink everything
 *  ...
 *   6 - base-level: try to shrink a bit.
 */
int shrink_dcache_memory(int priority, unsigned int gfp_mask)
{
	if (gfp_mask & __GFP_IO) {
		int count = 0;
		lock_kernel();
		if (priority)
			count = dentry_stat.nr_unused / priority;
		prune_dcache(count);
		unlock_kernel();
		/* FIXME: kmem_cache_shrink here should tell us
		   the number of pages freed, and it should
		   work in a __GFP_DMA/__GFP_HIGHMEM behaviour
		   to free only the interesting pages in
		   function of the needs of the current allocation. */
		kmem_cache_shrink(dentry_cache);
	}

	return 0;
}

#define NAME_ALLOC_LEN(len)	((len+16) & ~15)

struct dentry * d_alloc(struct dentry * parent, const struct qstr *name)
{
	char * str;
	struct dentry *dentry;

	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 
	if (!dentry)
		return NULL;

	if (name->len > DNAME_INLINE_LEN-1) {
		str = kmalloc(NAME_ALLOC_LEN(name->len), GFP_KERNEL);
		if (!str) {
			kmem_cache_free(dentry_cache, dentry); 
			return NULL;
		}
	} else
		str = dentry->d_iname; 

	memcpy(str, name->name, name->len);
	str[name->len] = 0;

	dentry->d_count = 1;
	dentry->d_flags = 0;
	dentry->d_inode = NULL;
	dentry->d_parent = NULL;
	dentry->d_sb = NULL;
	if (parent) {
		dentry->d_parent = dget(parent);
		dentry->d_sb = parent->d_sb;
		list_add(&dentry->d_child, &parent->d_subdirs);
	} else
		INIT_LIST_HEAD(&dentry->d_child);
		
	dentry->d_mounts = dentry;
	dentry->d_covers = dentry;
	INIT_LIST_HEAD(&dentry->d_hash);
	INIT_LIST_HEAD(&dentry->d_lru);
	INIT_LIST_HEAD(&dentry->d_subdirs);
	INIT_LIST_HEAD(&dentry->d_alias);

	dentry->d_name.name = str;
	dentry->d_name.len = name->len;
	dentry->d_name.hash = name->hash;
	dentry->d_op = NULL;
	dentry->d_fsdata = NULL;
	return dentry;
}

/*
 * Fill in inode information in the entry.
 *
 * This turns negative dentries into productive full members
 * of society.
 *
 * NOTE! This assumes that the inode count has been incremented
 * (or otherwise set) by the caller to indicate that it is now
 * in use by the dcache..
 */
void d_instantiate(struct dentry *entry, struct inode * inode)
{
	if (inode)
		list_add(&entry->d_alias, &inode->i_dentry);
	entry->d_inode = inode;
}

struct dentry * d_alloc_root(struct inode * root_inode)
{
	struct dentry *res = NULL;

	if (root_inode) {
		res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 });
		if (res) {
			res->d_sb = root_inode->i_sb;
			res->d_parent = res;
			d_instantiate(res, root_inode);
		}
	}
	return res;
}

static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash)
{
	hash += (unsigned long) parent;
	hash = hash ^ (hash >> D_HASHBITS) ^ (hash >> D_HASHBITS*2);
	return dentry_hashtable + (hash & D_HASHMASK);
}

struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
{
	unsigned int len = name->len;
	unsigned int hash = name->hash;
	const unsigned char *str = name->name;
	struct list_head *head = d_hash(parent,hash);
	struct list_head *tmp = head->next;

	for (;;) {
		struct dentry * dentry = list_entry(tmp, struct dentry, d_hash);
		if (tmp == head)
			break;
		tmp = tmp->next;
		if (dentry->d_name.hash != hash)
			continue;
		if (dentry->d_parent != parent)
			continue;
		if (parent->d_op && parent->d_op->d_compare) {
			if (parent->d_op->d_compare(parent, &dentry->d_name, name))
				continue;
		} else {
			if (dentry->d_name.len != len)
				continue;
			if (memcmp(dentry->d_name.name, str, len))
				continue;
		}
		return dget(dentry);
	}
	return NULL;
}

/*
 * An insecure source has sent us a dentry, here we verify it.
 *
 * This is just to make knfsd able to have the dentry pointer
 * in the NFS file handle.
 *
 * NOTE! Do _not_ dereference the pointers before we have
 * validated them. We can test the pointer values, but we
 * must not actually use them until we have found a valid
 * copy of the pointer in kernel space..
 */
int d_validate(struct dentry *dentry, struct dentry *dparent,
	       unsigned int hash, unsigned int len)
{
	struct list_head *base, *lhp;
	int valid = 1;

	if (dentry != dparent) {
		base = d_hash(dparent, hash);
		lhp = base;
		while ((lhp = lhp->next) != base) {
			if (dentry == list_entry(lhp, struct dentry, d_hash))
				goto out;
		}
	} else {
		/*
		 * Special case: local mount points don't live in
		 * the hashes, so we search the super blocks.
		 */
		struct super_block *sb = sb_entry(super_blocks.next);

		for (; sb != sb_entry(&super_blocks); 
		     sb = sb_entry(sb->s_list.next)) {
			if (!sb->s_dev)
				continue;
			if (sb->s_root == dentry)
				goto out;
		}
	}
	valid = 0;
out:
	return valid;
}

/*
 * When a file is deleted, we have two options:
 * - turn this dentry into a negative dentry
 * - unhash this dentry and free it.
 *
 * Usually, we want to just turn this into
 * a negative dentry, but if anybody else is
 * currently using the dentry or the inode
 * we can't do that and we fall back on removing
 * it from the hash queues and waiting for
 * it to be deleted later when it has no users
 */
void d_delete(struct dentry * dentry)
{
	/*
	 * Are we the only user?
	 */
	if (dentry->d_count == 1) {
		dentry_iput(dentry);
		return;
	}

	/*
	 * If not, just drop the dentry and let dput
	 * pick up the tab..
	 */
	d_drop(dentry);
}

void d_rehash(struct dentry * entry)
{
	struct dentry * parent = entry->d_parent;

	list_add(&entry->d_hash, d_hash(parent, entry->d_name.hash));
}

#define do_switch(x,y) do { \
	__typeof__ (x) __tmp = x; \
	x = y; y = __tmp; } while (0)

/*
 * When switching names, the actual string doesn't strictly have to
 * be preserved in the target - because we're dropping the target
 * anyway. As such, we can just do a simple memcpy() to copy over
 * the new name before we switch.
 *
 * Note that we have to be a lot more careful about getting the hash
 * switched - we have to switch the hash value properly even if it
 * then no longer matches the actual (corrupted) string of the target.
 * The has value has to match the hash queue that the dentry is on..
 */
static inline void switch_names(struct dentry * dentry, struct dentry * target)
{
	const unsigned char *old_name, *new_name;

	memcpy(dentry->d_iname, target->d_iname, DNAME_INLINE_LEN); 
	old_name = target->d_name.name;
	new_name = dentry->d_name.name;
	if (old_name == target->d_iname)
		old_name = dentry->d_iname;
	if (new_name == dentry->d_iname)
		new_name = target->d_iname;
	target->d_name.name = new_name;
	dentry->d_name.name = old_name;
}

/*
 * We cannibalize "target" when moving dentry on top of it,
 * because it's going to be thrown away anyway. We could be more
 * polite about it, though.
 *
 * This forceful removal will result in ugly /proc output if
 * somebody holds a file open that got deleted due to a rename.
 * We could be nicer about the deleted file, and let it show
 * up under the name it got deleted rather than the name that
 * deleted it.
 *
 * Careful with the hash switch. The hash switch depends on
 * the fact that any list-entry can be a head of the list.
 * Think about it.
 */
void d_move(struct dentry * dentry, struct dentry * target)
{
	if (!dentry->d_inode)
		printk(KERN_WARNING "VFS: moving negative dcache entry\n");

	/* Move the dentry to the target hash queue */
	list_del(&dentry->d_hash);
	list_add(&dentry->d_hash, &target->d_hash);

	/* Unhash the target: dput() will then get rid of it */
	list_del(&target->d_hash);
	INIT_LIST_HEAD(&target->d_hash);

	list_del(&dentry->d_child);
	list_del(&target->d_child);

	/* Switch the parents and the names.. */
	switch_names(dentry, target);
	do_switch(dentry->d_parent, target->d_parent);
	do_switch(dentry->d_name.len, target->d_name.len);
	do_switch(dentry->d_name.hash, target->d_name.hash);

	/* And add them back to the (new) parent lists */
	list_add(&target->d_child, &target->d_parent->d_subdirs);
	list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
}

/*
 * "buflen" should be PAGE_SIZE or more.
 */
char * d_path(struct dentry *dentry, char *buffer, int buflen)
{
	char * end = buffer+buflen;
	char * retval;
	struct dentry * root = current->fs->root;

	*--end = '\0';
	buflen--;
	if (!IS_ROOT(dentry) && list_empty(&dentry->d_hash)) {
		buflen -= 10;
		end -= 10;
		memcpy(end, " (deleted)", 10);
	}

	/* Get '/' right */
	retval = end-1;
	*retval = '/';

	for (;;) {
		struct dentry * parent;
		int namelen;

		if (dentry == root)
			break;
		dentry = dentry->d_covers;
		parent = dentry->d_parent;
		if (dentry == parent)
			break;
		namelen = dentry->d_name.len;
		buflen -= namelen + 1;
		if (buflen < 0)
			break;
		end -= namelen;
		memcpy(end, dentry->d_name.name, namelen);
		*--end = '/';
		retval = end;
		dentry = parent;
	}
	return retval;
}

/*
 * NOTE! The user-level library version returns a
 * character pointer. The kernel system call just
 * returns the length of the buffer filled (which
 * includes the ending '\0' character), or a negative
 * error value. So libc would do something like
 *
 *	char *getcwd(char * buf, size_t size)
 *	{
 *		int retval;
 *
 *		retval = sys_getcwd(buf, size);
 *		if (retval >= 0)
 *			return buf;
 *		errno = -retval;
 *		return NULL;
 *	}
 */
asmlinkage long sys_getcwd(char *buf, unsigned long size)
{
	int error;
	struct dentry *pwd = current->fs->pwd; 

	error = -ENOENT;
	/* Has the current directory has been unlinked? */
	if (pwd->d_parent == pwd || !list_empty(&pwd->d_hash)) {
		char *page = (char *) __get_free_page(GFP_USER);
		error = -ENOMEM;
		if (page) {
			unsigned long len;
			char * cwd = d_path(pwd, page, PAGE_SIZE);

			error = -ERANGE;
			len = PAGE_SIZE + page - cwd;
			if (len <= size) {
				error = len;
				if (copy_to_user(buf, cwd, len))
					error = -EFAULT;
			}
			free_page((unsigned long) page);
		}
	}
	return error;
}

/*
 * Test whether new_dentry is a subdirectory of old_dentry.
 *
 * Trivially implemented using the dcache structure
 */
int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
{
	int result;

	result = 0;
	for (;;) {
		if (new_dentry != old_dentry) {
			struct dentry * parent = new_dentry->d_parent;
			if (parent == new_dentry)
				break;
			new_dentry = parent;
			continue;
		}
		result = 1;
		break;
	}
	return result;
}

/*
 * Check whether a dentry already exists for the given name,
 * and return the inode number if it has an inode.
 *
 * This routine is used to post-process directory listings for
 * filesystems using synthetic inode numbers, and is necessary
 * to keep getcwd() working.
 */
ino_t find_inode_number(struct dentry *dir, struct qstr *name)
{
	struct dentry * dentry;
	ino_t ino = 0;

	/*
	 * Check for a fs-specific hash function. Note that we must
	 * calculate the standard hash first, as the d_op->d_hash()
	 * routine may choose to leave the hash value unchanged.
	 */
	name->hash = full_name_hash(name->name, name->len);
	if (dir->d_op && dir->d_op->d_hash)
	{
		if (dir->d_op->d_hash(dir, name) != 0)
			goto out;
	}

	dentry = d_lookup(dir, name);
	if (dentry)
	{
		if (dentry->d_inode)
			ino = dentry->d_inode->i_ino;
		dput(dentry);
	}
out:
	return ino;
}

void __init dcache_init(void)
{
	int i;
	struct list_head *d = dentry_hashtable;

	/* 
	 * A constructor could be added for stable state like the lists,
	 * but it is probably not worth it because of the cache nature
	 * of the dcache. 
	 * If fragmentation is too bad then the SLAB_HWCACHE_ALIGN
	 * flag could be removed here, to hint to the allocator that
	 * it should not try to get multiple page regions.  
	 */
	dentry_cache = kmem_cache_create("dentry_cache",
					 sizeof(struct dentry),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL, NULL);
	if (!dentry_cache)
		panic("Cannot create dentry cache");

	i = D_HASHSIZE;
	do {
		INIT_LIST_HEAD(d);
		d++;
		i--;
	} while (i);
}