Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 | /* * fs/dcache.c * * Complete reimplementation * (C) 1997 Thomas Schoebel-Theuer */ /* * Notes on the allocation strategy: * * The dcache is a master of the icache - whenever a dcache entry * exists, the inode will always exist. "iput()" is done either when * the dcache entry is deleted or garbage collected. */ #include <linux/string.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/malloc.h> #include <linux/init.h> #define DCACHE_PARANOIA 1 /* #define DCACHE_DEBUG 1 */ /* For managing the dcache */ extern unsigned long num_physpages, page_cache_size; extern int inodes_stat[]; #define nr_inodes (inodes_stat[0]) /* * This is the single most critical data structure when it comes * to the dcache: the hashtable for lookups. Somebody should try * to make this good - I've just made it work. * * This hash-function tries to avoid losing too many bits of hash * information, yet avoid using a prime hash-size or similar. */ #define D_HASHBITS 10 #define D_HASHSIZE (1UL << D_HASHBITS) #define D_HASHMASK (D_HASHSIZE-1) static struct list_head dentry_hashtable[D_HASHSIZE]; static LIST_HEAD(dentry_unused); struct { int nr_dentry; int nr_unused; int age_limit; /* age in seconds */ int want_pages; /* pages requested by system */ int dummy[2]; } dentry_stat = {0, 0, 45, 0,}; static inline void d_free(struct dentry *dentry) { if (dentry->d_op && dentry->d_op->d_release) dentry->d_op->d_release(dentry); kfree(dentry->d_name.name); kfree(dentry); } /* * Release the dentry's inode, using the fileystem * d_iput() operation if defined. */ static inline void dentry_iput(struct dentry * dentry) { struct inode *inode = dentry->d_inode; if (inode) { dentry->d_inode = NULL; list_del(&dentry->d_alias); INIT_LIST_HEAD(&dentry->d_alias); if (dentry->d_op && dentry->d_op->d_iput) dentry->d_op->d_iput(dentry, inode); else iput(inode); } } /* * dput() * * This is complicated by the fact that we do not want to put * dentries that are no longer on any hash chain on the unused * list: we'd much rather just get rid of them immediately. * * However, that implies that we have to traverse the dentry * tree upwards to the parents which might _also_ now be * scheduled for deletion (it may have been only waiting for * its last child to go away). * * This tail recursion is done by hand as we don't want to depend * on the compiler to always get this right (gcc generally doesn't). * Real recursion would eat up our stack space. */ void dput(struct dentry *dentry) { int count; if (!dentry) return; repeat: count = dentry->d_count - 1; if (count != 0) goto out; /* * Note that if d_op->d_delete blocks, * the dentry could go back in use. * Each fs will have to watch for this. */ if (dentry->d_op && dentry->d_op->d_delete) { dentry->d_op->d_delete(dentry); count = dentry->d_count - 1; if (count != 0) goto out; } if (!list_empty(&dentry->d_lru)) { dentry_stat.nr_unused--; list_del(&dentry->d_lru); } if (list_empty(&dentry->d_hash)) { struct dentry * parent; list_del(&dentry->d_child); dentry_iput(dentry); parent = dentry->d_parent; d_free(dentry); if (dentry == parent) return; dentry = parent; goto repeat; } list_add(&dentry->d_lru, &dentry_unused); dentry_stat.nr_unused++; /* * Update the timestamp */ dentry->d_reftime = jiffies; out: if (count >= 0) { dentry->d_count = count; return; } printk(KERN_CRIT "Negative d_count (%d) for %s/%s\n", count, dentry->d_parent->d_name.name, dentry->d_name.name); *(int *)0 = 0; } /* * Try to invalidate the dentry if it turns out to be * possible. If there are other users of the dentry we * can't invalidate it. */ int d_invalidate(struct dentry * dentry) { /* Check whether to do a partial shrink_dcache */ if (!list_empty(&dentry->d_subdirs)) shrink_dcache_parent(dentry); if (dentry->d_count != 1) return -EBUSY; d_drop(dentry); return 0; } /* * Select less valuable dentries to be pruned when we need * inodes or memory. The selected dentries are moved to the * old end of the list where prune_dcache() can find them. * * Negative dentries are included in the selection so that * they don't accumulate at the end of the list. The count * returned is the total number of dentries selected, which * may be much larger than the requested number of inodes. */ int select_dcache(int inode_count, int page_count) { struct list_head *next, *tail = &dentry_unused; int found = 0, forward = 0, young = 8; int depth = dentry_stat.nr_unused >> 1; unsigned long min_value = 0, max_value = 4; if (page_count) max_value = -1; next = tail->prev; while (next != &dentry_unused && depth--) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_lru); struct inode *inode = dentry->d_inode; unsigned long value = 0; next = tmp->prev; if (forward) next = tmp->next; if (dentry->d_count) { dentry_stat.nr_unused--; list_del(tmp); INIT_LIST_HEAD(tmp); continue; } /* * Check the dentry's age to see whether to change direction. */ if (!forward) { int age = (jiffies - dentry->d_reftime) / HZ; if (age < dentry_stat.age_limit) { if (!--young) { forward = 1; next = dentry_unused.next; /* * Update the limits -- we don't want * files with too few or too many pages. */ if (page_count) { min_value = 3; max_value = 15; } #ifdef DCACHE_DEBUG printk("select_dcache: %s/%s age=%d, scanning forward\n", dentry->d_parent->d_name.name, dentry->d_name.name, age); #endif } continue; } } /* * Select dentries based on the page cache count ... * should factor in number of uses as well. We take * all negative dentries so that they don't accumulate. * (We skip inodes that aren't immediately available.) */ if (inode) { value = inode->i_nrpages; if (value >= max_value || value < min_value) continue; if (inode->i_state || inode->i_count > 1) continue; } /* * Move the selected dentries behind the tail. */ if (tmp != tail->prev) { list_del(tmp); list_add(tmp, tail->prev); } tail = tmp; found++; if (inode && --inode_count <= 0) break; if (page_count && (page_count -= value) <= 0) break; } return found; } /* * Throw away a dentry - free the inode, dput the parent. * This requires that the LRU list has already been * removed. */ static inline void prune_one_dentry(struct dentry * dentry) { struct dentry * parent; list_del(&dentry->d_hash); list_del(&dentry->d_child); dentry_iput(dentry); parent = dentry->d_parent; d_free(dentry); dput(parent); } /* * Shrink the dcache. This is done when we need * more memory, or simply when we need to unmount * something (at which point we need to unuse * all dentries). */ void prune_dcache(int count) { for (;;) { struct dentry *dentry; struct list_head *tmp = dentry_unused.prev; if (tmp == &dentry_unused) break; dentry_stat.nr_unused--; list_del(tmp); INIT_LIST_HEAD(tmp); dentry = list_entry(tmp, struct dentry, d_lru); if (!dentry->d_count) { prune_one_dentry(dentry); if (!--count) break; } } } /* * Shrink the dcache for the specified super block. * This allows us to unmount a device without disturbing * the dcache for the other devices. * * This implementation makes just two traversals of the * unused list. On the first pass we move the selected * dentries to the most recent end, and on the second * pass we free them. The second pass must restart after * each dput(), but since the target dentries are all at * the end, it's really just a single traversal. */ void shrink_dcache_sb(struct super_block * sb) { struct list_head *tmp, *next; struct dentry *dentry; /* * Pass one ... move the dentries for the specified * superblock to the most recent end of the unused list. */ next = dentry_unused.next; while (next != &dentry_unused) { tmp = next; next = tmp->next; dentry = list_entry(tmp, struct dentry, d_lru); if (dentry->d_sb != sb) continue; list_del(tmp); list_add(tmp, &dentry_unused); } /* * Pass two ... free the dentries for this superblock. */ repeat: next = dentry_unused.next; while (next != &dentry_unused) { tmp = next; next = tmp->next; dentry = list_entry(tmp, struct dentry, d_lru); if (dentry->d_sb != sb) continue; if (dentry->d_count) continue; dentry_stat.nr_unused--; list_del(tmp); INIT_LIST_HEAD(tmp); prune_one_dentry(dentry); goto repeat; } } /* * Search the dentry child list for the specified parent, * and move any unused dentries to the end of the unused * list for prune_dcache(). We descend to the next level * whenever the d_subdirs list is non-empty and continue * searching. */ static int select_parent(struct dentry * parent) { struct dentry *this_parent = parent; struct list_head *next; int found = 0; repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_child); next = tmp->next; if (!dentry->d_count) { list_del(&dentry->d_lru); list_add(&dentry->d_lru, dentry_unused.prev); found++; } /* * Descend a level if the d_subdirs list is non-empty. */ if (!list_empty(&dentry->d_subdirs)) { this_parent = dentry; #ifdef DCACHE_DEBUG printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n", dentry->d_parent->d_name.name, dentry->d_name.name, found); #endif goto repeat; } } /* * All done at this level ... ascend and resume the search. */ if (this_parent != parent) { next = this_parent->d_child.next; this_parent = this_parent->d_parent; #ifdef DCACHE_DEBUG printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n", this_parent->d_parent->d_name.name, this_parent->d_name.name, found); #endif goto resume; } return found; } /* * Prune the dcache to remove unused children of the parent dentry. */ void shrink_dcache_parent(struct dentry * parent) { int found; while ((found = select_parent(parent)) != 0) prune_dcache(found); } /* * This is called from do_try_to_free_page() to indicate * that we should reduce the dcache and inode cache memory. */ void shrink_dcache_memory() { dentry_stat.want_pages++; } /* * This carries out the request received by the above routine. */ void check_dcache_memory() { if (dentry_stat.want_pages) { unsigned int count, goal = 0; /* * Set the page goal. We don't necessarily need to trim * the dcache just because the system needs memory ... */ if (page_cache_size > (num_physpages >> 1)) goal = (dentry_stat.want_pages * page_cache_size) / num_physpages; dentry_stat.want_pages = 0; if (goal) { if (goal > 50) goal = 50; count = select_dcache(32, goal); #ifdef DCACHE_DEBUG printk(KERN_DEBUG "check_dcache_memory: goal=%d, count=%d\n", goal, count); #endif if (count) { prune_dcache(count); free_inode_memory(count); } } } } #define NAME_ALLOC_LEN(len) ((len+16) & ~15) struct dentry * d_alloc(struct dentry * parent, const struct qstr *name) { char * str; struct dentry *dentry; /* * Prune the dcache if there are too many unused dentries. */ if (dentry_stat.nr_unused > 3*(nr_inodes >> 1)) { #ifdef DCACHE_DEBUG printk("d_alloc: %d unused, pruning dcache\n", dentry_stat.nr_unused); #endif prune_dcache(8); free_inode_memory(8); } dentry = kmalloc(sizeof(struct dentry), GFP_KERNEL); if (!dentry) return NULL; str = kmalloc(NAME_ALLOC_LEN(name->len), GFP_KERNEL); if (!str) { kfree(dentry); return NULL; } memcpy(str, name->name, name->len); str[name->len] = 0; dentry->d_count = 1; dentry->d_flags = 0; dentry->d_inode = NULL; dentry->d_parent = NULL; dentry->d_sb = NULL; if (parent) { dentry->d_parent = dget(parent); dentry->d_sb = parent->d_sb; list_add(&dentry->d_child, &parent->d_subdirs); } else INIT_LIST_HEAD(&dentry->d_child); dentry->d_mounts = dentry; dentry->d_covers = dentry; INIT_LIST_HEAD(&dentry->d_hash); INIT_LIST_HEAD(&dentry->d_lru); INIT_LIST_HEAD(&dentry->d_subdirs); INIT_LIST_HEAD(&dentry->d_alias); dentry->d_name.name = str; dentry->d_name.len = name->len; dentry->d_name.hash = name->hash; dentry->d_op = NULL; dentry->d_fsdata = NULL; return dentry; } /* * Fill in inode information in the entry. * * This turns negative dentries into productive full members * of society. * * NOTE! This assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache.. */ void d_instantiate(struct dentry *entry, struct inode * inode) { if (inode) list_add(&entry->d_alias, &inode->i_dentry); entry->d_inode = inode; } struct dentry * d_alloc_root(struct inode * root_inode, struct dentry *old_root) { struct dentry *res = NULL; if (root_inode) { res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 }); if (res) { res->d_sb = root_inode->i_sb; res->d_parent = res; d_instantiate(res, root_inode); } } return res; } static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash) { hash += (unsigned long) parent; hash = hash ^ (hash >> D_HASHBITS) ^ (hash >> D_HASHBITS*2); return dentry_hashtable + (hash & D_HASHMASK); } struct dentry * d_lookup(struct dentry * parent, struct qstr * name) { unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct list_head *head = d_hash(parent,hash); struct list_head *tmp = head->next; while (tmp != head) { struct dentry * dentry = list_entry(tmp, struct dentry, d_hash); tmp = tmp->next; if (dentry->d_name.hash != hash) continue; if (dentry->d_parent != parent) continue; if (parent->d_op && parent->d_op->d_compare) { if (parent->d_op->d_compare(parent, &dentry->d_name, name)) continue; } else { if (dentry->d_name.len != len) continue; if (memcmp(dentry->d_name.name, str, len)) continue; } return dget(dentry); } return NULL; } /* * An insecure source has sent us a dentry, here we verify it. * * This is just to make knfsd able to have the dentry pointer * in the NFS file handle. * * NOTE! Do _not_ dereference the pointers before we have * validated them. We can test the pointer values, but we * must not actually use them until we have found a valid * copy of the pointer in kernel space.. */ int d_validate(struct dentry *dentry, struct dentry *dparent, unsigned int hash, unsigned int len) { struct list_head *base, *lhp; int valid = 1; if (dentry != dparent) { base = d_hash(dparent, hash); lhp = base; while ((lhp = lhp->next) != base) { if (dentry == list_entry(lhp, struct dentry, d_hash)) goto out; } } else { /* * Special case: local mount points don't live in * the hashes, so we search the super blocks. */ struct super_block *sb = super_blocks + 0; for (; sb < super_blocks + NR_SUPER; sb++) { if (!sb->s_dev) continue; if (sb->s_root == dentry) goto out; } } valid = 0; out: return valid; } /* * When a file is deleted, we have two options: * - turn this dentry into a negative dentry * - unhash this dentry and free it. * * Usually, we want to just turn this into * a negative dentry, but if anybody else is * currently using the dentry or the inode * we can't do that and we fall back on removing * it from the hash queues and waiting for * it to be deleted later when it has no users */ void d_delete(struct dentry * dentry) { /* * Are we the only user? */ if (dentry->d_count == 1) { dentry_iput(dentry); return; } /* * If not, just drop the dentry and let dput * pick up the tab.. */ d_drop(dentry); } void d_add(struct dentry * entry, struct inode * inode) { struct dentry * parent = entry->d_parent; list_add(&entry->d_hash, d_hash(parent, entry->d_name.hash)); d_instantiate(entry, inode); } #define switch(x,y) do { \ __typeof__ (x) __tmp = x; \ x = y; y = __tmp; } while (0) /* * We cannibalize "target" when moving dentry on top of it, * because it's going to be thrown away anyway. We could be more * polite about it, though. * * This forceful removal will result in ugly /proc output if * somebody holds a file open that got deleted due to a rename. * We could be nicer about the deleted file, and let it show * up under the name it got deleted rather than the name that * deleted it. * * Careful with the hash switch. The hash switch depends on * the fact that any list-entry can be a head of the list. * Think about it. */ void d_move(struct dentry * dentry, struct dentry * target) { if (!dentry->d_inode) printk(KERN_WARNING "VFS: moving negative dcache entry\n"); /* Move the dentry to the target hash queue */ list_del(&dentry->d_hash); list_add(&dentry->d_hash, &target->d_hash); /* Unhash the target: dput() will then get rid of it */ list_del(&target->d_hash); INIT_LIST_HEAD(&target->d_hash); list_del(&dentry->d_child); list_del(&target->d_child); /* Switch the parents and the names.. */ switch(dentry->d_parent, target->d_parent); switch(dentry->d_name.name, target->d_name.name); switch(dentry->d_name.len, target->d_name.len); switch(dentry->d_name.hash, target->d_name.hash); list_add(&target->d_child, &target->d_parent->d_subdirs); list_add(&dentry->d_child, &dentry->d_parent->d_subdirs); } /* * "buflen" should be PAGE_SIZE or more. */ char * d_path(struct dentry *dentry, char *buffer, int buflen) { char * end = buffer+buflen; char * retval; struct dentry * root = current->fs->root; *--end = '\0'; buflen--; if (dentry->d_parent != dentry && list_empty(&dentry->d_hash)) { buflen -= 10; end -= 10; memcpy(end, " (deleted)", 10); } /* Get '/' right */ retval = end-1; *retval = '/'; for (;;) { struct dentry * parent; int namelen; if (dentry == root) break; dentry = dentry->d_covers; parent = dentry->d_parent; if (dentry == parent) break; namelen = dentry->d_name.len; buflen -= namelen + 1; if (buflen < 0) break; end -= namelen; memcpy(end, dentry->d_name.name, namelen); *--end = '/'; retval = end; dentry = parent; } return retval; } /* * Test whether new_dentry is a subdirectory of old_dentry. * * Trivially implemented using the dcache structure */ int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry) { int result; result = 0; for (;;) { if (new_dentry != old_dentry) { struct dentry * parent = new_dentry->d_parent; if (parent == new_dentry) break; new_dentry = parent; continue; } result = 1; break; } return result; } /* * Check whether a dentry already exists for the given name, * and return the inode number if it has an inode. * * This routine is used to post-process directory listings for * filesystems using synthetic inode numbers, and is necessary * to keep getcwd() working. */ ino_t find_inode_number(struct dentry *dir, struct qstr *name) { struct dentry * dentry; ino_t ino = 0; /* * Check for a fs-specific hash function. Note that we must * calculate the standard hash first, as the d_op->d_hash() * routine may choose to leave the hash value unchanged. */ name->hash = full_name_hash(name->name, name->len); if (dir->d_op && dir->d_op->d_hash) { if (dir->d_op->d_hash(dir, name) != 0) goto out; } dentry = d_lookup(dir, name); if (dentry) { if (dentry->d_inode) ino = dentry->d_inode->i_ino; dput(dentry); } out: return ino; } __initfunc(void dcache_init(void)) { int i; struct list_head *d = dentry_hashtable; i = D_HASHSIZE; do { INIT_LIST_HEAD(d); d++; i--; } while (i); } |