Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | /* * linux/mm/page_alloc.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 */ #include <linux/config.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/interrupt.h> #include <linux/pagemap.h> #include <linux/bootmem.h> #include <linux/slab.h> int nr_swap_pages; int nr_active_pages; int nr_inactive_dirty_pages; pg_data_t *pgdat_list; static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; static int zone_balance_ratio[MAX_NR_ZONES] = { 32, 128, 128, }; static int zone_balance_min[MAX_NR_ZONES] = { 10 , 10, 10, }; static int zone_balance_max[MAX_NR_ZONES] = { 255 , 255, 255, }; struct list_head active_list; struct list_head inactive_dirty_list; /* * Free_page() adds the page to the free lists. This is optimized for * fast normal cases (no error jumps taken normally). * * The way to optimize jumps for gcc-2.2.2 is to: * - select the "normal" case and put it inside the if () { XXX } * - no else-statements if you can avoid them * * With the above two rules, you get a straight-line execution path * for the normal case, giving better asm-code. */ #define memlist_init(x) INIT_LIST_HEAD(x) #define memlist_add_head list_add #define memlist_add_tail list_add_tail #define memlist_del list_del #define memlist_entry list_entry #define memlist_next(x) ((x)->next) #define memlist_prev(x) ((x)->prev) /* * Temporary debugging check. */ #define BAD_RANGE(zone,x) (((zone) != (x)->zone) || (((x)-mem_map) < (zone)->zone_start_mapnr) || (((x)-mem_map) >= (zone)->zone_start_mapnr+(zone)->size)) /* * Buddy system. Hairy. You really aren't expected to understand this * * Hint: -mask = 1+~mask */ static void FASTCALL(__free_pages_ok (struct page *page, unsigned long order)); static void __free_pages_ok (struct page *page, unsigned long order) { unsigned long index, page_idx, mask, flags; free_area_t *area; struct page *base; zone_t *zone; if (page->buffers) BUG(); if (page->mapping) BUG(); if (!VALID_PAGE(page)) BUG(); if (PageSwapCache(page)) BUG(); if (PageLocked(page)) BUG(); if (PageDecrAfter(page)) BUG(); if (PageActive(page)) BUG(); if (PageInactiveDirty(page)) BUG(); if (PageInactiveClean(page)) BUG(); page->flags &= ~((1<<PG_referenced) | (1<<PG_dirty)); page->age = PAGE_AGE_START; zone = page->zone; mask = (~0UL) << order; base = zone->zone_mem_map; page_idx = page - base; if (page_idx & ~mask) BUG(); index = page_idx >> (1 + order); area = zone->free_area + order; spin_lock_irqsave(&zone->lock, flags); zone->free_pages -= mask; while (mask + (1 << (MAX_ORDER-1))) { struct page *buddy1, *buddy2; if (area >= zone->free_area + MAX_ORDER) BUG(); if (!__test_and_change_bit(index, area->map)) /* * the buddy page is still allocated. */ break; /* * Move the buddy up one level. */ buddy1 = base + (page_idx ^ -mask); buddy2 = base + page_idx; if (BAD_RANGE(zone,buddy1)) BUG(); if (BAD_RANGE(zone,buddy2)) BUG(); memlist_del(&buddy1->list); mask <<= 1; area++; index >>= 1; page_idx &= mask; } memlist_add_head(&(base + page_idx)->list, &area->free_list); spin_unlock_irqrestore(&zone->lock, flags); /* * We don't want to protect this variable from race conditions * since it's nothing important, but we do want to make sure * it never gets negative. */ if (memory_pressure > NR_CPUS) memory_pressure--; } #define MARK_USED(index, order, area) \ __change_bit((index) >> (1+(order)), (area)->map) static inline struct page * expand (zone_t *zone, struct page *page, unsigned long index, int low, int high, free_area_t * area) { unsigned long size = 1 << high; while (high > low) { if (BAD_RANGE(zone,page)) BUG(); area--; high--; size >>= 1; memlist_add_head(&(page)->list, &(area)->free_list); MARK_USED(index, high, area); index += size; page += size; } if (BAD_RANGE(zone,page)) BUG(); return page; } static FASTCALL(struct page * rmqueue(zone_t *zone, unsigned long order)); static struct page * rmqueue(zone_t *zone, unsigned long order) { free_area_t * area = zone->free_area + order; unsigned long curr_order = order; struct list_head *head, *curr; unsigned long flags; struct page *page; spin_lock_irqsave(&zone->lock, flags); do { head = &area->free_list; curr = memlist_next(head); if (curr != head) { unsigned int index; page = memlist_entry(curr, struct page, list); if (BAD_RANGE(zone,page)) BUG(); memlist_del(curr); index = page - zone->zone_mem_map; if (curr_order != MAX_ORDER-1) MARK_USED(index, curr_order, area); zone->free_pages -= 1 << order; page = expand(zone, page, index, order, curr_order, area); spin_unlock_irqrestore(&zone->lock, flags); set_page_count(page, 1); if (BAD_RANGE(zone,page)) BUG(); DEBUG_ADD_PAGE return page; } curr_order++; area++; } while (curr_order < MAX_ORDER); spin_unlock_irqrestore(&zone->lock, flags); return NULL; } #define PAGES_MIN 0 #define PAGES_LOW 1 #define PAGES_HIGH 2 /* * This function does the dirty work for __alloc_pages * and is separated out to keep the code size smaller. * (suggested by Davem at 1:30 AM, typed by Rik at 6 AM) */ static struct page * __alloc_pages_limit(zonelist_t *zonelist, unsigned long order, int limit, int direct_reclaim) { zone_t **zone = zonelist->zones; for (;;) { zone_t *z = *(zone++); unsigned long water_mark; if (!z) break; if (!z->size) BUG(); /* * We allocate if the number of free + inactive_clean * pages is above the watermark. */ switch (limit) { default: case PAGES_MIN: water_mark = z->pages_min; break; case PAGES_LOW: water_mark = z->pages_low; break; case PAGES_HIGH: water_mark = z->pages_high; } if (z->free_pages + z->inactive_clean_pages >= water_mark) { struct page *page = NULL; /* If possible, reclaim a page directly. */ if (direct_reclaim) page = reclaim_page(z); /* If that fails, fall back to rmqueue. */ if (!page) page = rmqueue(z, order); if (page) return page; } } /* Found nothing. */ return NULL; } #ifndef CONFIG_DISCONTIGMEM struct page *_alloc_pages(unsigned int gfp_mask, unsigned long order) { return __alloc_pages(gfp_mask, order, contig_page_data.node_zonelists+(gfp_mask & GFP_ZONEMASK)); } #endif /* * This is the 'heart' of the zoned buddy allocator: */ struct page * __alloc_pages(unsigned int gfp_mask, unsigned long order, zonelist_t *zonelist) { zone_t **zone; int direct_reclaim = 0; struct page * page; /* * Allocations put pressure on the VM subsystem. */ memory_pressure++; /* * (If anyone calls gfp from interrupts nonatomically then it * will sooner or later tripped up by a schedule().) * * We are falling back to lower-level zones if allocation * in a higher zone fails. */ /* * Can we take pages directly from the inactive_clean * list? */ if (order == 0 && (gfp_mask & __GFP_WAIT)) direct_reclaim = 1; try_again: /* * First, see if we have any zones with lots of free memory. * * We allocate free memory first because it doesn't contain * any data ... DUH! */ zone = zonelist->zones; for (;;) { zone_t *z = *(zone++); if (!z) break; if (!z->size) BUG(); if (z->free_pages >= z->pages_low) { page = rmqueue(z, order); if (page) return page; } else if (z->free_pages < z->pages_min && waitqueue_active(&kreclaimd_wait)) { wake_up_interruptible(&kreclaimd_wait); } } /* * Try to allocate a page from a zone with a HIGH * amount of free + inactive_clean pages. * * If there is a lot of activity, inactive_target * will be high and we'll have a good chance of * finding a page using the HIGH limit. */ page = __alloc_pages_limit(zonelist, order, PAGES_HIGH, direct_reclaim); if (page) return page; /* * Then try to allocate a page from a zone with more * than zone->pages_low free + inactive_clean pages. * * When the working set is very large and VM activity * is low, we're most likely to have our allocation * succeed here. */ page = __alloc_pages_limit(zonelist, order, PAGES_LOW, direct_reclaim); if (page) return page; /* * OK, none of the zones on our zonelist has lots * of pages free. * * We wake up kswapd, in the hope that kswapd will * resolve this situation before memory gets tight. * * We also yield the CPU, because that: * - gives kswapd a chance to do something * - slows down allocations, in particular the * allocations from the fast allocator that's * causing the problems ... * - ... which minimises the impact the "bad guys" * have on the rest of the system * - if we don't have __GFP_IO set, kswapd may be * able to free some memory we can't free ourselves */ wakeup_kswapd(); if (gfp_mask & __GFP_WAIT) { __set_current_state(TASK_RUNNING); current->policy |= SCHED_YIELD; schedule(); } /* * After waking up kswapd, we try to allocate a page * from any zone which isn't critical yet. * * Kswapd should, in most situations, bring the situation * back to normal in no time. */ page = __alloc_pages_limit(zonelist, order, PAGES_MIN, direct_reclaim); if (page) return page; /* * Damn, we didn't succeed. * * This can be due to 2 reasons: * - we're doing a higher-order allocation * --> move pages to the free list until we succeed * - we're /really/ tight on memory * --> try to free pages ourselves with page_launder */ if (!(current->flags & PF_MEMALLOC)) { /* * Are we dealing with a higher order allocation? * * Move pages from the inactive_clean to the free list * in the hope of creating a large, physically contiguous * piece of free memory. */ if (order > 0 && (gfp_mask & __GFP_WAIT)) { zone = zonelist->zones; /* First, clean some dirty pages. */ current->flags |= PF_MEMALLOC; page_launder(gfp_mask, 1); current->flags &= ~PF_MEMALLOC; for (;;) { zone_t *z = *(zone++); if (!z) break; if (!z->size) continue; while (z->inactive_clean_pages) { struct page * page; /* Move one page to the free list. */ page = reclaim_page(z); if (!page) break; __free_page(page); /* Try if the allocation succeeds. */ page = rmqueue(z, order); if (page) return page; } } } /* * When we arrive here, we are really tight on memory. * Since kswapd didn't succeed in freeing pages for us, * we try to help it. * * Single page allocs loop until the allocation succeeds. * Multi-page allocs can fail due to memory fragmentation; * in that case we bail out to prevent infinite loops and * hanging device drivers ... * * Another issue are GFP_NOFS allocations; because they * do not have __GFP_FS set it's possible we cannot make * any progress freeing pages, in that case it's better * to give up than to deadlock the kernel looping here. */ if (gfp_mask & __GFP_WAIT) { if (!order || free_shortage()) { int progress = try_to_free_pages(gfp_mask); if (progress || (gfp_mask & __GFP_FS)) goto try_again; /* * Fail in case no progress was made and the * allocation may not be able to block on IO. */ return NULL; } } } /* * Final phase: allocate anything we can! * * Higher order allocations, GFP_ATOMIC allocations and * recursive allocations (PF_MEMALLOC) end up here. * * Only recursive allocations can use the very last pages * in the system, otherwise it would be just too easy to * deadlock the system... */ zone = zonelist->zones; for (;;) { zone_t *z = *(zone++); struct page * page = NULL; if (!z) break; if (!z->size) BUG(); /* * SUBTLE: direct_reclaim is only possible if the task * becomes PF_MEMALLOC while looping above. This will * happen when the OOM killer selects this task for * instant execution... */ if (direct_reclaim) { page = reclaim_page(z); if (page) return page; } /* XXX: is pages_min/4 a good amount to reserve for this? */ if (z->free_pages < z->pages_min / 4 && !(current->flags & PF_MEMALLOC)) continue; page = rmqueue(z, order); if (page) return page; } /* No luck.. */ printk(KERN_ERR "__alloc_pages: %lu-order allocation failed.\n", order); return NULL; } /* * Common helper functions. */ unsigned long __get_free_pages(int gfp_mask, unsigned long order) { struct page * page; page = alloc_pages(gfp_mask, order); if (!page) return 0; return (unsigned long) page_address(page); } unsigned long get_zeroed_page(int gfp_mask) { struct page * page; page = alloc_pages(gfp_mask, 0); if (page) { void *address = page_address(page); clear_page(address); return (unsigned long) address; } return 0; } void __free_pages(struct page *page, unsigned long order) { if (!PageReserved(page) && put_page_testzero(page)) __free_pages_ok(page, order); } void free_pages(unsigned long addr, unsigned long order) { if (addr != 0) __free_pages(virt_to_page(addr), order); } /* * Total amount of free (allocatable) RAM: */ unsigned int nr_free_pages (void) { unsigned int sum; zone_t *zone; pg_data_t *pgdat = pgdat_list; sum = 0; while (pgdat) { for (zone = pgdat->node_zones; zone < pgdat->node_zones + MAX_NR_ZONES; zone++) sum += zone->free_pages; pgdat = pgdat->node_next; } return sum; } /* * Total amount of inactive_clean (allocatable) RAM: */ unsigned int nr_inactive_clean_pages (void) { unsigned int sum; zone_t *zone; pg_data_t *pgdat = pgdat_list; sum = 0; while (pgdat) { for (zone = pgdat->node_zones; zone < pgdat->node_zones + MAX_NR_ZONES; zone++) sum += zone->inactive_clean_pages; pgdat = pgdat->node_next; } return sum; } /* * Amount of free RAM allocatable as buffer memory: */ unsigned int nr_free_buffer_pages (void) { unsigned int sum = 0; zonelist_t *zonelist; zone_t **zonep, *zone; zonelist = contig_page_data.node_zonelists + (GFP_NOFS & GFP_ZONEMASK); zonep = zonelist->zones; for (zone = *zonep++; zone; zone = *zonep++) { unsigned int pages = zone->free_pages + zone->inactive_clean_pages + zone->inactive_dirty_pages; /* Allow the buffer cache to fill up at least "pages_high" pages */ if (pages < zone->pages_high) pages = zone->pages_high; sum += pages; } return sum; } #if CONFIG_HIGHMEM unsigned int nr_free_highpages (void) { pg_data_t *pgdat = pgdat_list; unsigned int pages = 0; while (pgdat) { pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; pgdat = pgdat->node_next; } return pages; } #endif /* * Show free area list (used inside shift_scroll-lock stuff) * We also calculate the percentage fragmentation. We do this by counting the * memory on each free list with the exception of the first item on the list. */ void show_free_areas_core(pg_data_t *pgdat) { unsigned long order; unsigned type; printk("Free pages: %6dkB (%6dkB HighMem)\n", nr_free_pages() << (PAGE_SHIFT-10), nr_free_highpages() << (PAGE_SHIFT-10)); printk("( Active: %d, inactive_dirty: %d, inactive_clean: %d, free: %d (%d %d %d) )\n", nr_active_pages, nr_inactive_dirty_pages, nr_inactive_clean_pages(), nr_free_pages(), freepages.min, freepages.low, freepages.high); for (type = 0; type < MAX_NR_ZONES; type++) { struct list_head *head, *curr; zone_t *zone = pgdat->node_zones + type; unsigned long nr, total, flags; total = 0; if (zone->size) { spin_lock_irqsave(&zone->lock, flags); for (order = 0; order < MAX_ORDER; order++) { head = &(zone->free_area + order)->free_list; curr = head; nr = 0; for (;;) { curr = memlist_next(curr); if (curr == head) break; nr++; } total += nr * (1 << order); printk("%lu*%lukB ", nr, (PAGE_SIZE>>10) << order); } spin_unlock_irqrestore(&zone->lock, flags); } printk("= %lukB)\n", total * (PAGE_SIZE>>10)); } #ifdef SWAP_CACHE_INFO show_swap_cache_info(); #endif } void show_free_areas(void) { show_free_areas_core(pgdat_list); } /* * Builds allocation fallback zone lists. */ static inline void build_zonelists(pg_data_t *pgdat) { int i, j, k; for (i = 0; i <= GFP_ZONEMASK; i++) { zonelist_t *zonelist; zone_t *zone; zonelist = pgdat->node_zonelists + i; memset(zonelist, 0, sizeof(*zonelist)); j = 0; k = ZONE_NORMAL; if (i & __GFP_HIGHMEM) k = ZONE_HIGHMEM; if (i & __GFP_DMA) k = ZONE_DMA; switch (k) { default: BUG(); /* * fallthrough: */ case ZONE_HIGHMEM: zone = pgdat->node_zones + ZONE_HIGHMEM; if (zone->size) { #ifndef CONFIG_HIGHMEM BUG(); #endif zonelist->zones[j++] = zone; } case ZONE_NORMAL: zone = pgdat->node_zones + ZONE_NORMAL; if (zone->size) zonelist->zones[j++] = zone; case ZONE_DMA: zone = pgdat->node_zones + ZONE_DMA; if (zone->size) zonelist->zones[j++] = zone; } zonelist->zones[j++] = NULL; } } #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) /* * Set up the zone data structures: * - mark all pages reserved * - mark all memory queues empty * - clear the memory bitmaps */ void __init free_area_init_core(int nid, pg_data_t *pgdat, struct page **gmap, unsigned long *zones_size, unsigned long zone_start_paddr, unsigned long *zholes_size, struct page *lmem_map) { struct page *p; unsigned long i, j; unsigned long map_size; unsigned long totalpages, offset, realtotalpages; const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1); if (zone_start_paddr & ~PAGE_MASK) BUG(); totalpages = 0; for (i = 0; i < MAX_NR_ZONES; i++) { unsigned long size = zones_size[i]; totalpages += size; } realtotalpages = totalpages; if (zholes_size) for (i = 0; i < MAX_NR_ZONES; i++) realtotalpages -= zholes_size[i]; printk("On node %d totalpages: %lu\n", nid, realtotalpages); memlist_init(&active_list); memlist_init(&inactive_dirty_list); /* * Some architectures (with lots of mem and discontinous memory * maps) have to search for a good mem_map area: * For discontigmem, the conceptual mem map array starts from * PAGE_OFFSET, we need to align the actual array onto a mem map * boundary, so that MAP_NR works. */ map_size = (totalpages + 1)*sizeof(struct page); if (lmem_map == (struct page *)0) { lmem_map = (struct page *) alloc_bootmem_node(pgdat, map_size); lmem_map = (struct page *)(PAGE_OFFSET + MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET)); } *gmap = pgdat->node_mem_map = lmem_map; pgdat->node_size = totalpages; pgdat->node_start_paddr = zone_start_paddr; pgdat->node_start_mapnr = (lmem_map - mem_map); /* * Initially all pages are reserved - free ones are freed * up by free_all_bootmem() once the early boot process is * done. */ for (p = lmem_map; p < lmem_map + totalpages; p++) { set_page_count(p, 0); SetPageReserved(p); init_waitqueue_head(&p->wait); memlist_init(&p->list); } offset = lmem_map - mem_map; for (j = 0; j < MAX_NR_ZONES; j++) { zone_t *zone = pgdat->node_zones + j; unsigned long mask; unsigned long size, realsize; realsize = size = zones_size[j]; if (zholes_size) realsize -= zholes_size[j]; printk("zone(%lu): %lu pages.\n", j, size); zone->size = size; zone->name = zone_names[j]; zone->lock = SPIN_LOCK_UNLOCKED; zone->zone_pgdat = pgdat; zone->free_pages = 0; zone->inactive_clean_pages = 0; zone->inactive_dirty_pages = 0; memlist_init(&zone->inactive_clean_list); if (!size) continue; mask = (realsize / zone_balance_ratio[j]); if (mask < zone_balance_min[j]) mask = zone_balance_min[j]; else if (mask > zone_balance_max[j]) mask = zone_balance_max[j]; zone->pages_min = mask; zone->pages_low = mask*2; zone->pages_high = mask*3; /* * Add these free targets to the global free target; * we have to be SURE that freepages.high is higher * than SUM [zone->pages_min] for all zones, otherwise * we may have bad bad problems. * * This means we cannot make the freepages array writable * in /proc, but have to add a separate extra_free_target * for people who require it to catch load spikes in eg. * gigabit ethernet routing... */ freepages.min += mask; freepages.low += mask*2; freepages.high += mask*3; zone->zone_mem_map = mem_map + offset; zone->zone_start_mapnr = offset; zone->zone_start_paddr = zone_start_paddr; if ((zone_start_paddr >> PAGE_SHIFT) & (zone_required_alignment-1)) printk("BUG: wrong zone alignment, it will crash\n"); for (i = 0; i < size; i++) { struct page *page = mem_map + offset + i; page->zone = zone; if (j != ZONE_HIGHMEM) page->virtual = __va(zone_start_paddr); zone_start_paddr += PAGE_SIZE; } offset += size; for (i = 0; ; i++) { unsigned long bitmap_size; memlist_init(&zone->free_area[i].free_list); if (i == MAX_ORDER-1) { zone->free_area[i].map = NULL; break; } /* * Page buddy system uses "index >> (i+1)", * where "index" is at most "size-1". * * The extra "+3" is to round down to byte * size (8 bits per byte assumption). Thus * we get "(size-1) >> (i+4)" as the last byte * we can access. * * The "+1" is because we want to round the * byte allocation up rather than down. So * we should have had a "+7" before we shifted * down by three. Also, we have to add one as * we actually _use_ the last bit (it's [0,n] * inclusive, not [0,n[). * * So we actually had +7+1 before we shift * down by 3. But (n+8) >> 3 == (n >> 3) + 1 * (modulo overflows, which we do not have). * * Finally, we LONG_ALIGN because all bitmap * operations are on longs. */ bitmap_size = (size-1) >> (i+4); bitmap_size = LONG_ALIGN(bitmap_size+1); zone->free_area[i].map = (unsigned long *) alloc_bootmem_node(pgdat, bitmap_size); } } build_zonelists(pgdat); } void __init free_area_init(unsigned long *zones_size) { free_area_init_core(0, &contig_page_data, &mem_map, zones_size, 0, 0, 0); } static int __init setup_mem_frac(char *str) { int j = 0; while (get_option(&str, &zone_balance_ratio[j++]) == 2); printk("setup_mem_frac: "); for (j = 0; j < MAX_NR_ZONES; j++) printk("%d ", zone_balance_ratio[j]); printk("\n"); return 1; } __setup("memfrac=", setup_mem_frac); |