Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | /* * linux/mm/page_alloc.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie */ #include <linux/config.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/head.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/swap.h> #include <linux/fs.h> #include <linux/swapctl.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pagemap.h> #include <asm/dma.h> #include <asm/system.h> /* for cli()/sti() */ #include <asm/uaccess.h> /* for copy_to/from_user */ #include <asm/bitops.h> #include <asm/pgtable.h> #include <asm/spinlock.h> int nr_swap_pages = 0; int nr_free_pages = 0; /* * Free area management * * The free_area_list arrays point to the queue heads of the free areas * of different sizes */ #if CONFIG_AP1000 /* the AP+ needs to allocate 8MB contiguous, aligned chunks of ram for the ring buffers */ #define NR_MEM_LISTS 12 #else #define NR_MEM_LISTS 6 #endif /* The start of this MUST match the start of "struct page" */ struct free_area_struct { struct page *next; struct page *prev; unsigned int * map; }; #define memory_head(x) ((struct page *)(x)) static struct free_area_struct free_area[NR_MEM_LISTS]; static inline void init_mem_queue(struct free_area_struct * head) { head->next = memory_head(head); head->prev = memory_head(head); } static inline void add_mem_queue(struct free_area_struct * head, struct page * entry) { struct page * next = head->next; entry->prev = memory_head(head); entry->next = next; next->prev = entry; head->next = entry; } static inline void remove_mem_queue(struct page * entry) { struct page * next = entry->next; struct page * prev = entry->prev; next->prev = prev; prev->next = next; } /* * Free_page() adds the page to the free lists. This is optimized for * fast normal cases (no error jumps taken normally). * * The way to optimize jumps for gcc-2.2.2 is to: * - select the "normal" case and put it inside the if () { XXX } * - no else-statements if you can avoid them * * With the above two rules, you get a straight-line execution path * for the normal case, giving better asm-code. */ /* * Buddy system. Hairy. You really aren't expected to understand this * * Hint: -mask = 1+~mask */ spinlock_t page_alloc_lock = SPIN_LOCK_UNLOCKED; /* * This routine is used by the kernel swap daemon to determine * whether we have "enough" free pages. It is fairly arbitrary, * having a low-water and high-water mark. * * This returns: * 0 - urgent need for memory * 1 - need some memory, but do it slowly in the background * 2 - no need to even think about it. */ int free_memory_available(void) { static int available = 1; if (nr_free_pages < freepages.low) { available = 0; return 0; } if (nr_free_pages > freepages.high) { available = 1; return 2; } return available; } static inline void free_pages_ok(unsigned long map_nr, unsigned long order) { struct free_area_struct *area = free_area + order; unsigned long index = map_nr >> (1 + order); unsigned long mask = (~0UL) << order; unsigned long flags; spin_lock_irqsave(&page_alloc_lock, flags); #define list(x) (mem_map+(x)) map_nr &= mask; nr_free_pages -= mask; while (mask + (1 << (NR_MEM_LISTS-1))) { if (!test_and_change_bit(index, area->map)) break; remove_mem_queue(list(map_nr ^ -mask)); mask <<= 1; area++; index >>= 1; map_nr &= mask; } add_mem_queue(area, list(map_nr)); #undef list spin_unlock_irqrestore(&page_alloc_lock, flags); } void __free_page(struct page *page) { if (!PageReserved(page) && atomic_dec_and_test(&page->count)) { if (PageSwapCache(page)) panic ("Freeing swap cache page"); free_pages_ok(page->map_nr, 0); return; } if (PageSwapCache(page) && atomic_read(&page->count) == 1) printk(KERN_WARNING "VM: Releasing swap cache page at %p", __builtin_return_address(0)); } void free_pages(unsigned long addr, unsigned long order) { unsigned long map_nr = MAP_NR(addr); if (map_nr < max_mapnr) { mem_map_t * map = mem_map + map_nr; if (PageReserved(map)) return; if (atomic_dec_and_test(&map->count)) { if (PageSwapCache(map)) panic ("Freeing swap cache pages"); free_pages_ok(map_nr, order); return; } if (PageSwapCache(map) && atomic_read(&map->count) == 1) printk(KERN_WARNING "VM: Releasing swap cache pages at %p", __builtin_return_address(0)); } } /* * Some ugly macros to speed up __get_free_pages().. */ #define MARK_USED(index, order, area) \ change_bit((index) >> (1+(order)), (area)->map) #define CAN_DMA(x) (PageDMA(x)) #define ADDRESS(x) (PAGE_OFFSET + ((x) << PAGE_SHIFT)) #define RMQUEUE(order, dma) \ do { struct free_area_struct * area = free_area+order; \ unsigned long new_order = order; \ do { struct page *prev = memory_head(area), *ret = prev->next; \ while (memory_head(area) != ret) { \ if (!dma || CAN_DMA(ret)) { \ unsigned long map_nr = ret->map_nr; \ (prev->next = ret->next)->prev = prev; \ MARK_USED(map_nr, new_order, area); \ nr_free_pages -= 1 << order; \ EXPAND(ret, map_nr, order, new_order, area); \ spin_unlock_irqrestore(&page_alloc_lock, flags); \ return ADDRESS(map_nr); \ } \ prev = ret; \ ret = ret->next; \ } \ new_order++; area++; \ } while (new_order < NR_MEM_LISTS); \ } while (0) #define EXPAND(map,index,low,high,area) \ do { unsigned long size = 1 << high; \ while (high > low) { \ area--; high--; size >>= 1; \ add_mem_queue(area, map); \ MARK_USED(index, high, area); \ index += size; \ map += size; \ } \ atomic_set(&map->count, 1); \ map->age = PAGE_INITIAL_AGE; \ } while (0) unsigned long __get_free_pages(int gfp_mask, unsigned long order) { unsigned long flags; if (order >= NR_MEM_LISTS) goto nopage; if (gfp_mask & __GFP_WAIT) { if (in_interrupt()) { static int count = 0; if (++count < 5) { printk("gfp called nonatomically from interrupt %p\n", __builtin_return_address(0)); } goto nopage; } if (freepages.min > nr_free_pages) { int freed; freed = try_to_free_pages(gfp_mask, SWAP_CLUSTER_MAX); /* * Low priority (user) allocations must not * succeed if we didn't have enough memory * and we couldn't get more.. */ if (!freed && !(gfp_mask & (__GFP_MED | __GFP_HIGH))) goto nopage; } } spin_lock_irqsave(&page_alloc_lock, flags); RMQUEUE(order, (gfp_mask & GFP_DMA)); spin_unlock_irqrestore(&page_alloc_lock, flags); nopage: return 0; } /* * Show free area list (used inside shift_scroll-lock stuff) * We also calculate the percentage fragmentation. We do this by counting the * memory on each free list with the exception of the first item on the list. */ void show_free_areas(void) { unsigned long order, flags; unsigned long total = 0; printk("Free pages: %6dkB\n ( ",nr_free_pages<<(PAGE_SHIFT-10)); printk("Free: %d (%d %d %d)\n", nr_free_pages, freepages.min, freepages.low, freepages.high); spin_lock_irqsave(&page_alloc_lock, flags); for (order=0 ; order < NR_MEM_LISTS; order++) { struct page * tmp; unsigned long nr = 0; for (tmp = free_area[order].next ; tmp != memory_head(free_area+order) ; tmp = tmp->next) { nr ++; } total += nr * ((PAGE_SIZE>>10) << order); printk("%lu*%lukB ", nr, (unsigned long)((PAGE_SIZE>>10) << order)); } spin_unlock_irqrestore(&page_alloc_lock, flags); printk("= %lukB)\n", total); #ifdef SWAP_CACHE_INFO show_swap_cache_info(); #endif } #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) /* * set up the free-area data structures: * - mark all pages reserved * - mark all memory queues empty * - clear the memory bitmaps */ __initfunc(unsigned long free_area_init(unsigned long start_mem, unsigned long end_mem)) { mem_map_t * p; unsigned long mask = PAGE_MASK; unsigned long i; /* * Select nr of pages we try to keep free for important stuff * with a minimum of 10 pages and a maximum of 256 pages, so * that we don't waste too much memory on large systems. * This is fairly arbitrary, but based on some behaviour * analysis. */ i = (end_mem - PAGE_OFFSET) >> (PAGE_SHIFT+7); if (i < 10) i = 10; if (i > 256) i = 256; freepages.min = i; freepages.low = i * 2; freepages.high = i * 3; mem_map = (mem_map_t *) LONG_ALIGN(start_mem); p = mem_map + MAP_NR(end_mem); start_mem = LONG_ALIGN((unsigned long) p); memset(mem_map, 0, start_mem - (unsigned long) mem_map); do { --p; atomic_set(&p->count, 0); p->flags = (1 << PG_DMA) | (1 << PG_reserved); p->map_nr = p - mem_map; } while (p > mem_map); for (i = 0 ; i < NR_MEM_LISTS ; i++) { unsigned long bitmap_size; init_mem_queue(free_area+i); mask += mask; end_mem = (end_mem + ~mask) & mask; bitmap_size = (end_mem - PAGE_OFFSET) >> (PAGE_SHIFT + i); bitmap_size = (bitmap_size + 7) >> 3; bitmap_size = LONG_ALIGN(bitmap_size); free_area[i].map = (unsigned int *) start_mem; memset((void *) start_mem, 0, bitmap_size); start_mem += bitmap_size; } return start_mem; } /* * The tests may look silly, but it essentially makes sure that * no other process did a swap-in on us just as we were waiting. * * Also, don't bother to add to the swap cache if this page-in * was due to a write access. */ void swap_in(struct task_struct * tsk, struct vm_area_struct * vma, pte_t * page_table, unsigned long entry, int write_access) { unsigned long page; struct page *page_map; page_map = read_swap_cache(entry); if (pte_val(*page_table) != entry) { if (page_map) free_page_and_swap_cache(page_address(page_map)); return; } if (!page_map) { set_pte(page_table, BAD_PAGE); swap_free(entry); oom(tsk); return; } page = page_address(page_map); vma->vm_mm->rss++; tsk->min_flt++; swap_free(entry); if (!write_access || is_page_shared(page_map)) { set_pte(page_table, mk_pte(page, vma->vm_page_prot)); return; } /* The page is unshared, and we want write access. In this case, it is safe to tear down the swap cache and give the page over entirely to this process. */ delete_from_swap_cache(page_map); set_pte(page_table, pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)))); return; } |