Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/module.h>

int nr_swap_pages;
int nr_active_pages;
int nr_inactive_pages;
LIST_HEAD(inactive_list);
LIST_HEAD(active_list);
pg_data_t *pgdat_list;

/*
 *
 * The zone_table array is used to look up the address of the
 * struct zone corresponding to a given zone number (ZONE_DMA,
 * ZONE_NORMAL, or ZONE_HIGHMEM).
 */
zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];
EXPORT_SYMBOL(zone_table);

static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
static int zone_balance_ratio[MAX_NR_ZONES] __initdata = { 128, 128, 128, };
static int zone_balance_min[MAX_NR_ZONES] __initdata = { 20 , 20, 20, };
static int zone_balance_max[MAX_NR_ZONES] __initdata = { 255 , 255, 255, };
static int lower_zone_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };

int vm_gfp_debug = 0;

static void FASTCALL(__free_pages_ok (struct page *page, unsigned int order));

static spinlock_t free_pages_ok_no_irq_lock = SPIN_LOCK_UNLOCKED;
struct page * free_pages_ok_no_irq_head;

static void do_free_pages_ok_no_irq(void * arg)
{
       struct page * page, * __page;

       spin_lock_irq(&free_pages_ok_no_irq_lock);

       page = free_pages_ok_no_irq_head;
       free_pages_ok_no_irq_head = NULL;

       spin_unlock_irq(&free_pages_ok_no_irq_lock);

       while (page) {
               __page = page;
               page = page->next_hash;
               __free_pages_ok(__page, __page->index);
       }
}

static struct tq_struct free_pages_ok_no_irq_task = {
       .routine        = do_free_pages_ok_no_irq,
};


/*
 * Temporary debugging check.
 */
#define BAD_RANGE(zone, page)						\
(									\
	(((page) - mem_map) >= ((zone)->zone_start_mapnr+(zone)->size))	\
	|| (((page) - mem_map) < (zone)->zone_start_mapnr)		\
	|| ((zone) != page_zone(page))					\
)

/*
 * Freeing function for a buddy system allocator.
 * Contrary to prior comments, this is *NOT* hairy, and there
 * is no reason for anyone not to understand it.
 *
 * The concept of a buddy system is to maintain direct-mapped tables
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep one bit for each pair of blocks, which
 * is set to 1 iff only one of the pair is allocated.  So when we
 * are allocating or freeing one, we can derive the state of the
 * other.  That is, if we allocate a small block, and both were   
 * free, the remainder of the region must be split into blocks.   
 * If a block is freed, and its buddy is also free, then this
 * triggers coalescing into a block of larger size.            
 *
 * -- wli
 */

static void fastcall __free_pages_ok (struct page *page, unsigned int order)
{
	unsigned long index, page_idx, mask, flags;
	free_area_t *area;
	struct page *base;
	zone_t *zone;

	/*
	 * Yes, think what happens when other parts of the kernel take 
	 * a reference to a page in order to pin it for io. -ben
	 */
	if (PageLRU(page)) {
		if (unlikely(in_interrupt())) {
			unsigned long flags;

			spin_lock_irqsave(&free_pages_ok_no_irq_lock, flags);
			page->next_hash = free_pages_ok_no_irq_head;
			free_pages_ok_no_irq_head = page;
			page->index = order;
	
			spin_unlock_irqrestore(&free_pages_ok_no_irq_lock, flags);
	
			schedule_task(&free_pages_ok_no_irq_task);
			return;
		}
		
		lru_cache_del(page);
	}

	if (page->buffers)
		BUG();
	if (page->mapping)
		BUG();
	if (!VALID_PAGE(page))
		BUG();
	if (PageLocked(page))
		BUG();
	if (PageActive(page))
		BUG();
	ClearPageReferenced(page);
	ClearPageDirty(page);

	if (current->flags & PF_FREE_PAGES)
		goto local_freelist;
 back_local_freelist:

	zone = page_zone(page);

	mask = (~0UL) << order;
	base = zone->zone_mem_map;
	page_idx = page - base;
	if (page_idx & ~mask)
		BUG();
	index = page_idx >> (1 + order);

	area = zone->free_area + order;

	spin_lock_irqsave(&zone->lock, flags);

	zone->free_pages -= mask;

	while (mask + (1 << (MAX_ORDER-1))) {
		struct page *buddy1, *buddy2;

		if (area >= zone->free_area + MAX_ORDER)
			BUG();
		if (!__test_and_change_bit(index, area->map))
			/*
			 * the buddy page is still allocated.
			 */
			break;
		/*
		 * Move the buddy up one level.
		 * This code is taking advantage of the identity:
		 * 	-mask = 1+~mask
		 */
		buddy1 = base + (page_idx ^ -mask);
		buddy2 = base + page_idx;
		if (BAD_RANGE(zone,buddy1))
			BUG();
		if (BAD_RANGE(zone,buddy2))
			BUG();

		list_del(&buddy1->list);
		mask <<= 1;
		area++;
		index >>= 1;
		page_idx &= mask;
	}
	list_add(&(base + page_idx)->list, &area->free_list);

	spin_unlock_irqrestore(&zone->lock, flags);
	return;

 local_freelist:
	if (current->nr_local_pages)
		goto back_local_freelist;
	if (in_interrupt())
		goto back_local_freelist;		

	list_add(&page->list, &current->local_pages);
	page->index = order;
	current->nr_local_pages++;
}

#define MARK_USED(index, order, area) \
	__change_bit((index) >> (1+(order)), (area)->map)

static inline struct page * expand (zone_t *zone, struct page *page,
	 unsigned long index, int low, int high, free_area_t * area)
{
	unsigned long size = 1 << high;

	while (high > low) {
		if (BAD_RANGE(zone,page))
			BUG();
		area--;
		high--;
		size >>= 1;
		list_add(&(page)->list, &(area)->free_list);
		MARK_USED(index, high, area);
		index += size;
		page += size;
	}
	if (BAD_RANGE(zone,page))
		BUG();
	return page;
}

static FASTCALL(struct page * rmqueue(zone_t *zone, unsigned int order));
static struct page * fastcall rmqueue(zone_t *zone, unsigned int order)
{
	free_area_t * area = zone->free_area + order;
	unsigned int curr_order = order;
	struct list_head *head, *curr;
	unsigned long flags;
	struct page *page;

	spin_lock_irqsave(&zone->lock, flags);
	do {
		head = &area->free_list;
		curr = head->next;

		if (curr != head) {
			unsigned int index;

			page = list_entry(curr, struct page, list);
			if (BAD_RANGE(zone,page))
				BUG();
			list_del(curr);
			index = page - zone->zone_mem_map;
			if (curr_order != MAX_ORDER-1)
				MARK_USED(index, curr_order, area);
			zone->free_pages -= 1UL << order;

			page = expand(zone, page, index, order, curr_order, area);
			spin_unlock_irqrestore(&zone->lock, flags);

			set_page_count(page, 1);
			if (BAD_RANGE(zone,page))
				BUG();
			if (PageLRU(page))
				BUG();
			if (PageActive(page))
				BUG();
			return page;	
		}
		curr_order++;
		area++;
	} while (curr_order < MAX_ORDER);
	spin_unlock_irqrestore(&zone->lock, flags);

	return NULL;
}

#ifndef CONFIG_DISCONTIGMEM
struct page * fastcall _alloc_pages(unsigned int gfp_mask, unsigned int order)
{
	return __alloc_pages(gfp_mask, order,
		contig_page_data.node_zonelists+(gfp_mask & GFP_ZONEMASK));
}
#endif

static struct page * FASTCALL(balance_classzone(zone_t *, unsigned int, unsigned int, int *));
static struct page * fastcall balance_classzone(zone_t * classzone, unsigned int gfp_mask, unsigned int order, int * freed)
{
	struct page * page = NULL;
	int __freed;

	if (in_interrupt())
		BUG();

	current->allocation_order = order;
	current->flags |= PF_MEMALLOC | PF_FREE_PAGES;

	__freed = try_to_free_pages_zone(classzone, gfp_mask);

	current->flags &= ~(PF_MEMALLOC | PF_FREE_PAGES);

	if (current->nr_local_pages) {
		struct list_head * entry, * local_pages;
		struct page * tmp;
		int nr_pages;

		local_pages = &current->local_pages;

		if (likely(__freed)) {
			/* pick from the last inserted so we're lifo */
			entry = local_pages->next;
			do {
				tmp = list_entry(entry, struct page, list);
				if (tmp->index == order && memclass(page_zone(tmp), classzone)) {
					list_del(entry);
					current->nr_local_pages--;
					set_page_count(tmp, 1);
					page = tmp;

					if (page->buffers)
						BUG();
					if (page->mapping)
						BUG();
					if (!VALID_PAGE(page))
						BUG();
					if (PageLocked(page))
						BUG();
					if (PageLRU(page))
						BUG();
					if (PageActive(page))
						BUG();
					if (PageDirty(page))
						BUG();

					break;
				}
			} while ((entry = entry->next) != local_pages);
		}

		nr_pages = current->nr_local_pages;
		/* free in reverse order so that the global order will be lifo */
		while ((entry = local_pages->prev) != local_pages) {
			list_del(entry);
			tmp = list_entry(entry, struct page, list);
			__free_pages_ok(tmp, tmp->index);
			if (!nr_pages--)
				BUG();
		}
		current->nr_local_pages = 0;
	}

	*freed = __freed;
	return page;
}

static inline unsigned long zone_free_pages(zone_t * zone, unsigned int order)
{
	long free = zone->free_pages - (1UL << order);
	return free >= 0 ? free : 0;
}

/*
 * This is the 'heart' of the zoned buddy allocator:
 */
struct page * fastcall __alloc_pages(unsigned int gfp_mask, unsigned int order, zonelist_t *zonelist)
{
	zone_t **zone, * classzone;
	struct page * page;
	int freed, class_idx;

	zone = zonelist->zones;
	classzone = *zone;
	class_idx = zone_idx(classzone);

	for (;;) {
		zone_t *z = *(zone++);
		if (!z)
			break;

		if (zone_free_pages(z, order) > z->watermarks[class_idx].low) {
			page = rmqueue(z, order);
			if (page)
				return page;
		}
	}

	classzone->need_balance = 1;
	mb();
	if (waitqueue_active(&kswapd_wait))
		wake_up_interruptible(&kswapd_wait);

	zone = zonelist->zones;
	for (;;) {
		unsigned long min;
		zone_t *z = *(zone++);
		if (!z)
			break;

		min = z->watermarks[class_idx].min;
		if (!(gfp_mask & __GFP_WAIT))
			min >>= 2;
		if (zone_free_pages(z, order) > min) {
			page = rmqueue(z, order);
			if (page)
				return page;
		}
	}

	/* here we're in the low on memory slow path */

	if ((current->flags & PF_MEMALLOC) && 
			(!in_interrupt() || (current->flags & PF_MEMDIE))) {
		zone = zonelist->zones;
		for (;;) {
			zone_t *z = *(zone++);
			if (!z)
				break;

			page = rmqueue(z, order);
			if (page)
				return page;
		}
		return NULL;
	}

	/* Atomic allocations - we can't balance anything */
	if (!(gfp_mask & __GFP_WAIT))
		goto out;

 rebalance:
	page = balance_classzone(classzone, gfp_mask, order, &freed);
	if (page)
		return page;

	zone = zonelist->zones;
	if (likely(freed)) {
		for (;;) {
			zone_t *z = *(zone++);
			if (!z)
				break;

			if (zone_free_pages(z, order) > z->watermarks[class_idx].min) {
				page = rmqueue(z, order);
				if (page)
					return page;
			}
		}
		goto rebalance;
	} else {
		/* 
		 * Check that no other task is been killed meanwhile,
		 * in such a case we can succeed the allocation.
		 */
		for (;;) {
			zone_t *z = *(zone++);
			if (!z)
				break;

			if (zone_free_pages(z, order) > z->watermarks[class_idx].high) {
				page = rmqueue(z, order);
				if (page)
					return page;
			}
		}
	}

 out:
	printk(KERN_NOTICE "__alloc_pages: %u-order allocation failed (gfp=0x%x/%i)\n",
	       order, gfp_mask, !!(current->flags & PF_MEMALLOC));
	if (unlikely(vm_gfp_debug))
		dump_stack();
	return NULL;
}

/*
 * Common helper functions.
 */
fastcall unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)
{
	struct page * page;

	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}

fastcall unsigned long get_zeroed_page(unsigned int gfp_mask)
{
	struct page * page;

	page = alloc_pages(gfp_mask, 0);
	if (page) {
		void *address = page_address(page);
		clear_page(address);
		return (unsigned long) address;
	}
	return 0;
}

fastcall void __free_pages(struct page *page, unsigned int order)
{
	if (!PageReserved(page) && put_page_testzero(page))
		__free_pages_ok(page, order);
}

fastcall void free_pages(unsigned long addr, unsigned int order)
{
	if (addr != 0)
		__free_pages(virt_to_page(addr), order);
}

/*
 * Total amount of free (allocatable) RAM:
 */
unsigned int nr_free_pages (void)
{
	unsigned int sum = 0;
	zone_t *zone;

	for_each_zone(zone)
		sum += zone->free_pages;

	return sum;
}

/*
 * Amount of free RAM allocatable as buffer memory:
 */
unsigned int nr_free_buffer_pages (void)
{
	pg_data_t *pgdat;
	unsigned int sum = 0;
	zonelist_t *zonelist;
	zone_t **zonep, *zone;

	for_each_pgdat(pgdat) {
		int class_idx;
		zonelist = pgdat->node_zonelists + (GFP_USER & GFP_ZONEMASK);
		zonep = zonelist->zones;
		zone = *zonep;
		class_idx = zone_idx(zone);

		sum += zone->nr_cache_pages;
		for (; zone; zone = *zonep++) {
			int free = zone->free_pages - zone->watermarks[class_idx].high;
			if (free <= 0)
				continue;
			sum += free;
		}
	}

	return sum;
}

#if CONFIG_HIGHMEM
unsigned int nr_free_highpages (void)
{
	pg_data_t *pgdat;
	unsigned int pages = 0;

	for_each_pgdat(pgdat)
		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;

	return pages;
}

unsigned int freeable_lowmem(void)
{
	unsigned int pages = 0;
	pg_data_t *pgdat;

	for_each_pgdat(pgdat) {
		pages += pgdat->node_zones[ZONE_DMA].free_pages;
		pages += pgdat->node_zones[ZONE_DMA].nr_active_pages;
		pages += pgdat->node_zones[ZONE_DMA].nr_inactive_pages;
		pages += pgdat->node_zones[ZONE_NORMAL].free_pages;
		pages += pgdat->node_zones[ZONE_NORMAL].nr_active_pages;
		pages += pgdat->node_zones[ZONE_NORMAL].nr_inactive_pages;
	}

	return pages;
}
#endif

#define K(x) ((x) << (PAGE_SHIFT-10))

/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
 */
void show_free_areas_core(pg_data_t *pgdat)
{
 	unsigned int order;
	unsigned type;
	pg_data_t *tmpdat = pgdat;

	printk("Free pages:      %6dkB (%6dkB HighMem)\n",
		K(nr_free_pages()),
		K(nr_free_highpages()));

	while (tmpdat) {
		zone_t *zone;
		for (zone = tmpdat->node_zones;
			       	zone < tmpdat->node_zones + MAX_NR_ZONES; zone++)
			printk("Zone:%s freepages:%6lukB\n", 
					zone->name,
					K(zone->free_pages));
			
		tmpdat = tmpdat->node_next;
	}

	printk("( Active: %d, inactive: %d, free: %d )\n",
	       nr_active_pages,
	       nr_inactive_pages,
	       nr_free_pages());

	for (type = 0; type < MAX_NR_ZONES; type++) {
		struct list_head *head, *curr;
		zone_t *zone = pgdat->node_zones + type;
 		unsigned long nr, total, flags;

		total = 0;
		if (zone->size) {
			spin_lock_irqsave(&zone->lock, flags);
		 	for (order = 0; order < MAX_ORDER; order++) {
				head = &(zone->free_area + order)->free_list;
				curr = head;
				nr = 0;
				for (;;) {
					if ((curr = curr->next) == head)
						break;
					nr++;
				}
				total += nr * (1 << order);
				printk("%lu*%lukB ", nr, K(1UL) << order);
			}
			spin_unlock_irqrestore(&zone->lock, flags);
		}
		printk("= %lukB)\n", K(total));
	}

#ifdef SWAP_CACHE_INFO
	show_swap_cache_info();
#endif	
}

void show_free_areas(void)
{
	show_free_areas_core(pgdat_list);
}

/*
 * Builds allocation fallback zone lists.
 */
static inline void build_zonelists(pg_data_t *pgdat)
{
	int i, j, k;

	for (i = 0; i <= GFP_ZONEMASK; i++) {
		zonelist_t *zonelist;
		zone_t *zone;

		zonelist = pgdat->node_zonelists + i;
		memset(zonelist, 0, sizeof(*zonelist));

		j = 0;
		k = ZONE_NORMAL;
		if (i & __GFP_HIGHMEM)
			k = ZONE_HIGHMEM;
		if (i & __GFP_DMA)
			k = ZONE_DMA;

		switch (k) {
			default:
				BUG();
			/*
			 * fallthrough:
			 */
			case ZONE_HIGHMEM:
				zone = pgdat->node_zones + ZONE_HIGHMEM;
				if (zone->size) {
#ifndef CONFIG_HIGHMEM
					BUG();
#endif
					zonelist->zones[j++] = zone;
				}
			case ZONE_NORMAL:
				zone = pgdat->node_zones + ZONE_NORMAL;
				if (zone->size)
					zonelist->zones[j++] = zone;
			case ZONE_DMA:
				zone = pgdat->node_zones + ZONE_DMA;
				if (zone->size)
					zonelist->zones[j++] = zone;
		}
		zonelist->zones[j++] = NULL;
	} 
}

/*
 * Helper functions to size the waitqueue hash table.
 * Essentially these want to choose hash table sizes sufficiently
 * large so that collisions trying to wait on pages are rare.
 * But in fact, the number of active page waitqueues on typical
 * systems is ridiculously low, less than 200. So this is even
 * conservative, even though it seems large.
 *
 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 * waitqueues, i.e. the size of the waitq table given the number of pages.
 */
#define PAGES_PER_WAITQUEUE	256

static inline unsigned long wait_table_size(unsigned long pages)
{
	unsigned long size = 1;

	pages /= PAGES_PER_WAITQUEUE;

	while (size < pages)
		size <<= 1;

	/*
	 * Once we have dozens or even hundreds of threads sleeping
	 * on IO we've got bigger problems than wait queue collision.
	 * Limit the size of the wait table to a reasonable size.
	 */
	size = min(size, 4096UL);

	return size;
}

/*
 * This is an integer logarithm so that shifts can be used later
 * to extract the more random high bits from the multiplicative
 * hash function before the remainder is taken.
 */
static inline unsigned long wait_table_bits(unsigned long size)
{
	return ffz(~size);
}

#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 */
void __init free_area_init_core(int nid, pg_data_t *pgdat, struct page **gmap,
	unsigned long *zones_size, unsigned long zone_start_paddr, 
	unsigned long *zholes_size, struct page *lmem_map)
{
	unsigned long i, j;
	unsigned long map_size;
	unsigned long totalpages, offset, realtotalpages;
	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);

	if (zone_start_paddr & ~PAGE_MASK)
		BUG();

	totalpages = 0;
	for (i = 0; i < MAX_NR_ZONES; i++) {
		unsigned long size = zones_size[i];
		totalpages += size;
	}
	realtotalpages = totalpages;
	if (zholes_size)
		for (i = 0; i < MAX_NR_ZONES; i++)
			realtotalpages -= zholes_size[i];
			
	printk("On node %d totalpages: %lu\n", nid, realtotalpages);

	/*
	 * Some architectures (with lots of mem and discontinous memory
	 * maps) have to search for a good mem_map area:
	 * For discontigmem, the conceptual mem map array starts from 
	 * PAGE_OFFSET, we need to align the actual array onto a mem map 
	 * boundary, so that MAP_NR works.
	 */
	map_size = (totalpages + 1)*sizeof(struct page);
	if (lmem_map == (struct page *)0) {
		lmem_map = (struct page *) alloc_bootmem_node(pgdat, map_size);
		lmem_map = (struct page *)(PAGE_OFFSET + 
			MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET));
	}
	*gmap = pgdat->node_mem_map = lmem_map;
	pgdat->node_size = totalpages;
	pgdat->node_start_paddr = zone_start_paddr;
	pgdat->node_start_mapnr = (lmem_map - mem_map);
	pgdat->nr_zones = 0;

	offset = lmem_map - mem_map;	
	for (j = 0; j < MAX_NR_ZONES; j++) {
		zone_t *zone = pgdat->node_zones + j;
		unsigned long mask;
		unsigned long size, realsize;
		int idx;

		zone_table[nid * MAX_NR_ZONES + j] = zone;
		realsize = size = zones_size[j];
		if (zholes_size)
			realsize -= zholes_size[j];

		printk("zone(%lu): %lu pages.\n", j, size);
		zone->size = size;
		zone->realsize = realsize;
		zone->name = zone_names[j];
		zone->lock = SPIN_LOCK_UNLOCKED;
		zone->zone_pgdat = pgdat;
		zone->free_pages = 0;
		zone->need_balance = 0;
		 zone->nr_active_pages = zone->nr_inactive_pages = 0;


		if (!size)
			continue;

		/*
		 * The per-page waitqueue mechanism uses hashed waitqueues
		 * per zone.
		 */
		zone->wait_table_size = wait_table_size(size);
		zone->wait_table_shift =
			BITS_PER_LONG - wait_table_bits(zone->wait_table_size);
		zone->wait_table = (wait_queue_head_t *)
			alloc_bootmem_node(pgdat, zone->wait_table_size
						* sizeof(wait_queue_head_t));

		for(i = 0; i < zone->wait_table_size; ++i)
			init_waitqueue_head(zone->wait_table + i);

		pgdat->nr_zones = j+1;

		mask = (realsize / zone_balance_ratio[j]);
		if (mask < zone_balance_min[j])
			mask = zone_balance_min[j];
		else if (mask > zone_balance_max[j])
			mask = zone_balance_max[j];
		zone->watermarks[j].min = mask;
		zone->watermarks[j].low = mask*2;
		zone->watermarks[j].high = mask*3;
		/* now set the watermarks of the lower zones in the "j" classzone */
		for (idx = j-1; idx >= 0; idx--) {
			zone_t * lower_zone = pgdat->node_zones + idx;
			unsigned long lower_zone_reserve;
			if (!lower_zone->size)
				continue;

			mask = lower_zone->watermarks[idx].min;
			lower_zone->watermarks[j].min = mask;
			lower_zone->watermarks[j].low = mask*2;
			lower_zone->watermarks[j].high = mask*3;

			/* now the brainer part */
			lower_zone_reserve = realsize / lower_zone_reserve_ratio[idx];
			lower_zone->watermarks[j].min += lower_zone_reserve;
			lower_zone->watermarks[j].low += lower_zone_reserve;
			lower_zone->watermarks[j].high += lower_zone_reserve;

			realsize += lower_zone->realsize;
		}

		zone->zone_mem_map = mem_map + offset;
		zone->zone_start_mapnr = offset;
		zone->zone_start_paddr = zone_start_paddr;

		if ((zone_start_paddr >> PAGE_SHIFT) & (zone_required_alignment-1))
			printk("BUG: wrong zone alignment, it will crash\n");

		/*
		 * Initially all pages are reserved - free ones are freed
		 * up by free_all_bootmem() once the early boot process is
		 * done. Non-atomic initialization, single-pass.
		 */
		for (i = 0; i < size; i++) {
			struct page *page = mem_map + offset + i;
			set_page_zone(page, nid * MAX_NR_ZONES + j);
			set_page_count(page, 0);
			SetPageReserved(page);
			INIT_LIST_HEAD(&page->list);
			if (j != ZONE_HIGHMEM)
				set_page_address(page, __va(zone_start_paddr));
			zone_start_paddr += PAGE_SIZE;
		}

		offset += size;
		for (i = 0; ; i++) {
			unsigned long bitmap_size;

			INIT_LIST_HEAD(&zone->free_area[i].free_list);
			if (i == MAX_ORDER-1) {
				zone->free_area[i].map = NULL;
				break;
			}

			/*
			 * Page buddy system uses "index >> (i+1)",
			 * where "index" is at most "size-1".
			 *
			 * The extra "+3" is to round down to byte
			 * size (8 bits per byte assumption). Thus
			 * we get "(size-1) >> (i+4)" as the last byte
			 * we can access.
			 *
			 * The "+1" is because we want to round the
			 * byte allocation up rather than down. So
			 * we should have had a "+7" before we shifted
			 * down by three. Also, we have to add one as
			 * we actually _use_ the last bit (it's [0,n]
			 * inclusive, not [0,n[).
			 *
			 * So we actually had +7+1 before we shift
			 * down by 3. But (n+8) >> 3 == (n >> 3) + 1
			 * (modulo overflows, which we do not have).
			 *
			 * Finally, we LONG_ALIGN because all bitmap
			 * operations are on longs.
			 */
			bitmap_size = (size-1) >> (i+4);
			bitmap_size = LONG_ALIGN(bitmap_size+1);
			zone->free_area[i].map = 
			  (unsigned long *) alloc_bootmem_node(pgdat, bitmap_size);
		}
	}
	build_zonelists(pgdat);
}

void __init free_area_init(unsigned long *zones_size)
{
	free_area_init_core(0, &contig_page_data, &mem_map, zones_size, 0, 0, 0);
}

static int __init setup_mem_frac(char *str)
{
	int j = 0;

	while (get_option(&str, &zone_balance_ratio[j++]) == 2);
	printk("setup_mem_frac: ");
	for (j = 0; j < MAX_NR_ZONES; j++) printk("%d  ", zone_balance_ratio[j]);
	printk("\n");
	return 1;
}

__setup("memfrac=", setup_mem_frac);

static int __init setup_lower_zone_reserve(char *str)
{
	int j = 0;

	while (get_option(&str, &lower_zone_reserve_ratio[j++]) == 2);
	printk("setup_lower_zone_reserve: ");
	for (j = 0; j < MAX_NR_ZONES-1; j++) printk("%d  ", lower_zone_reserve_ratio[j]);
	printk("\n");
	return 1;
}

__setup("lower_zone_reserve=", setup_lower_zone_reserve);