Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
/* smp.c: Sparc64 SMP support.
 *
 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>

#include <asm/head.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>
#include <asm/uaccess.h>
#include <asm/timer.h>
#include <asm/starfire.h>

#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>

extern int linux_num_cpus;
extern void calibrate_delay(void);
extern unsigned prom_cpu_nodes[];

struct cpuinfo_sparc cpu_data[NR_CPUS]  __attribute__ ((aligned (64)));

volatile int __cpu_number_map[NR_CPUS]  __attribute__ ((aligned (64)));
volatile int __cpu_logical_map[NR_CPUS] __attribute__ ((aligned (64)));

/* Please don't make this stuff initdata!!!  --DaveM */
static unsigned char boot_cpu_id = 0;
static int smp_activated = 0;

/* Kernel spinlock */
spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED;

volatile int smp_processors_ready = 0;
unsigned long cpu_present_map = 0;
int smp_num_cpus = 1;
int smp_threads_ready = 0;

void __init smp_setup(char *str, int *ints)
{
	/* XXX implement me XXX */
}

int smp_info(char *buf)
{
	int len = 7, i;
	
	strcpy(buf, "State:\n");
	for (i = 0; i < NR_CPUS; i++)
		if (cpu_present_map & (1UL << i))
			len += sprintf(buf + len,
					"CPU%d:\t\tonline\n", i);
	return len;
}

int smp_bogo(char *buf)
{
	int len = 0, i;
	
	for (i = 0; i < NR_CPUS; i++)
		if (cpu_present_map & (1UL << i))
			len += sprintf(buf + len,
				       "Cpu%dBogo\t: %lu.%02lu\n"
				       "Cpu%dClkTck\t: %016lx\n",
				       i, cpu_data[i].udelay_val / (500000/HZ),
				       (cpu_data[i].udelay_val / (5000/HZ)) % 100,
				       i, cpu_data[i].clock_tick);
	return len;
}

void __init smp_store_cpu_info(int id)
{
	int i, no;

	/* multiplier and counter set by
	   smp_setup_percpu_timer()  */
	cpu_data[id].udelay_val			= loops_per_jiffy;

	for (no = 0; no < linux_num_cpus; no++)
		if (linux_cpus[no].mid == id)
			break;

	cpu_data[id].clock_tick = prom_getintdefault(linux_cpus[no].prom_node,
						     "clock-frequency", 0);

	cpu_data[id].pgcache_size		= 0;
	cpu_data[id].pte_cache[0]		= NULL;
	cpu_data[id].pte_cache[1]		= NULL;
	cpu_data[id].pgdcache_size		= 0;
	cpu_data[id].pgd_cache			= NULL;
	cpu_data[id].idle_volume		= 1;

	for (i = 0; i < 16; i++)
		cpu_data[id].irq_worklists[i] = 0;
}

void __init smp_commence(void)
{
}

static void smp_setup_percpu_timer(void);
static void smp_tune_scheduling(void);

static volatile unsigned long callin_flag = 0;

extern void inherit_locked_prom_mappings(int save_p);
extern void cpu_probe(void);

void __init smp_callin(void)
{
	int cpuid = hard_smp_processor_id();
	unsigned long pstate;

	inherit_locked_prom_mappings(0);

	__flush_cache_all();
	__flush_tlb_all();

	cpu_probe();

	/* Guarentee that the following sequences execute
	 * uninterrupted.
	 */
	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
			     "wrpr	%0, %1, %%pstate"
			     : "=r" (pstate)
			     : "i" (PSTATE_IE));

	/* Set things up so user can access tick register for profiling
	 * purposes.  Also workaround BB_ERRATA_1 by doing a dummy
	 * read back of %tick after writing it.
	 */
	__asm__ __volatile__("
	sethi	%%hi(0x80000000), %%g1
	ba,pt	%%xcc, 1f
	 sllx	%%g1, 32, %%g1
	.align	64
1:	rd	%%tick, %%g2
	add	%%g2, 6, %%g2
	andn	%%g2, %%g1, %%g2
	wrpr	%%g2, 0, %%tick
	rdpr	%%tick, %%g0"
	: /* no outputs */
	: /* no inputs */
	: "g1", "g2");

	if (SPARC64_USE_STICK) {
		/* Let the user get at STICK too. */
		__asm__ __volatile__("
			sethi	%%hi(0x80000000), %%g1
			sllx	%%g1, 32, %%g1
			rd	%%asr24, %%g2
			andn	%%g2, %%g1, %%g2
			wr	%%g2, 0, %%asr24"
		: /* no outputs */
		: /* no inputs */
		: "g1", "g2");
	}

	/* Restore PSTATE_IE. */
	__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
			     : /* no outputs */
			     : "r" (pstate));

	smp_setup_percpu_timer();

	__sti();

	calibrate_delay();
	smp_store_cpu_info(cpuid);
	callin_flag = 1;
	__asm__ __volatile__("membar #Sync\n\t"
			     "flush  %%g6" : : : "memory");

	/* Clear this or we will die instantly when we
	 * schedule back to this idler...
	 */
	current->thread.flags &= ~(SPARC_FLAG_NEWCHILD);

	/* Attach to the address space of init_task. */
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;

	while (!smp_processors_ready)
		membar("#LoadLoad");
}

extern int cpu_idle(void);
extern void init_IRQ(void);

void initialize_secondary(void)
{
}

int start_secondary(void *unused)
{
	trap_init();
	init_IRQ();
	smp_callin();
	return cpu_idle();
}

void cpu_panic(void)
{
	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
	panic("SMP bolixed\n");
}

extern struct prom_cpuinfo linux_cpus[64];

extern unsigned long sparc64_cpu_startup;

/* The OBP cpu startup callback truncates the 3rd arg cookie to
 * 32-bits (I think) so to be safe we have it read the pointer
 * contained here so we work on >4GB machines. -DaveM
 */
static struct task_struct *cpu_new_task = NULL;

void __init smp_boot_cpus(void)
{
	int cpucount = 0, i;

	printk("Entering UltraSMPenguin Mode...\n");
	__sti();
	smp_store_cpu_info(boot_cpu_id);
	smp_tune_scheduling();
	init_idle();

	if (linux_num_cpus == 1)
		return;

	for (i = 0; i < NR_CPUS; i++) {
		if (i == boot_cpu_id)
			continue;

		if (cpu_present_map & (1UL << i)) {
			unsigned long entry = (unsigned long)(&sparc64_cpu_startup);
			unsigned long cookie = (unsigned long)(&cpu_new_task);
			struct task_struct *p;
			int timeout;
			int no;

			prom_printf("Starting CPU %d... ", i);
			kernel_thread(start_secondary, NULL, CLONE_PID);
			cpucount++;

			p = init_task.prev_task;
			init_tasks[cpucount] = p;

			p->processor = i;
			p->has_cpu = 1; /* we schedule the first task manually */

			del_from_runqueue(p);
			unhash_process(p);

			callin_flag = 0;
			for (no = 0; no < linux_num_cpus; no++)
				if (linux_cpus[no].mid == i)
					break;
			cpu_new_task = p;
			prom_startcpu(linux_cpus[no].prom_node,
				      entry, cookie);
			for (timeout = 0; timeout < 5000000; timeout++) {
				if (callin_flag)
					break;
				udelay(100);
			}
			if (callin_flag) {
				__cpu_number_map[i] = cpucount;
				__cpu_logical_map[cpucount] = i;
				prom_cpu_nodes[i] = linux_cpus[no].prom_node;
				prom_printf("OK\n");
			} else {
				cpucount--;
				printk("Processor %d is stuck.\n", i);
				prom_printf("FAILED\n");
			}
		}
		if (!callin_flag) {
			cpu_present_map &= ~(1UL << i);
			__cpu_number_map[i] = -1;
		}
	}
	cpu_new_task = NULL;
	if (cpucount == 0) {
		printk("Error: only one processor found.\n");
		cpu_present_map = (1UL << smp_processor_id());
	} else {
		unsigned long bogosum = 0;

		for (i = 0; i < NR_CPUS; i++) {
			if (cpu_present_map & (1UL << i))
				bogosum += cpu_data[i].udelay_val;
		}
		printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
		       cpucount + 1,
		       bogosum/(500000/HZ),
		       (bogosum/(5000/HZ))%100);
		smp_activated = 1;
		smp_num_cpus = cpucount + 1;
	}
	smp_processors_ready = 1;
	membar("#StoreStore | #StoreLoad");
}

static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
{
	u64 result, target;
	int stuck, tmp;

	if (this_is_starfire) {
		/* map to real upaid */
		cpu = (((cpu & 0x3c) << 1) |
			((cpu & 0x40) >> 4) |
			(cpu & 0x3));
	}

	target = (cpu << 14) | 0x70;
again:
	/* Ok, this is the real Spitfire Errata #54.
	 * One must read back from a UDB internal register
	 * after writes to the UDB interrupt dispatch, but
	 * before the membar Sync for that write.
	 * So we use the high UDB control register (ASI 0x7f,
	 * ADDR 0x20) for the dummy read. -DaveM
	 */
	tmp = 0x40;
	__asm__ __volatile__("
	wrpr	%1, %2, %%pstate
	stxa	%4, [%0] %3
	stxa	%5, [%0+%8] %3
	add	%0, %8, %0
	stxa	%6, [%0+%8] %3
	membar	#Sync
	stxa	%%g0, [%7] %3
	membar	#Sync
	mov	0x20, %%g1
	ldxa	[%%g1] 0x7f, %%g0
	membar	#Sync"
	: "=r" (tmp)
	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
	  "r" (data0), "r" (data1), "r" (data2), "r" (target), "r" (0x10), "0" (tmp)
       : "g1");

	/* NOTE: PSTATE_IE is still clear. */
	stuck = 100000;
	do {
		__asm__ __volatile__("ldxa [%%g0] %1, %0"
			: "=r" (result)
			: "i" (ASI_INTR_DISPATCH_STAT));
		if (result == 0) {
			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
					     : : "r" (pstate));
			return;
		}
		stuck -= 1;
		if (stuck == 0)
			break;
	} while (result & 0x1);
	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
			     : : "r" (pstate));
	if (stuck == 0) {
		printk("CPU[%d]: mondo stuckage result[%016lx]\n",
		       smp_processor_id(), result);
	} else {
		udelay(2);
		goto again;
	}
}

static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, unsigned long mask)
{
	int ncpus = smp_num_cpus - 1;
	int i;
	u64 pstate;

	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
	for (i = 0; (i < NR_CPUS) && ncpus; i++) {
		if (mask & (1UL << i)) {
			spitfire_xcall_helper(data0, data1, data2, pstate, i);
			ncpus--;
		}
	}
}

/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 * packet, but we have no use for that.  However we do take advantage of
 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 */
#if NR_CPUS > 32
#error Fixup cheetah_xcall_deliver Dave...
#endif
static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, unsigned long mask)
{
	u64 pstate;
	int nack_busy_id;

	if (!mask)
		return;

	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));

retry:
	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
			     : : "r" (pstate), "i" (PSTATE_IE));

	/* Setup the dispatch data registers. */
	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
			     "stxa	%1, [%4] %6\n\t"
			     "stxa	%2, [%5] %6\n\t"
			     "membar	#Sync\n\t"
			     : /* no outputs */
			     : "r" (data0), "r" (data1), "r" (data2),
			       "r" (0x40), "r" (0x50), "r" (0x60),
			       "i" (ASI_INTR_W));

	nack_busy_id = 0;
	{
		int i, ncpus = smp_num_cpus - 1;

		for (i = 0; (i < NR_CPUS) && ncpus; i++) {
			if (mask & (1UL << i)) {
				u64 target = (i << 14) | 0x70;

				target |= (nack_busy_id++ << 24);
				__asm__ __volatile__("stxa	%%g0, [%0] %1\n\t"
						     "membar	#Sync\n\t"
						     : /* no outputs */
						     : "r" (target), "i" (ASI_INTR_W));
				ncpus--;
			}
		}
	}

	/* Now, poll for completion. */
	{
		u64 dispatch_stat;
		long stuck;

		stuck = 100000 * nack_busy_id;
		do {
			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
					     : "=r" (dispatch_stat)
					     : "i" (ASI_INTR_DISPATCH_STAT));
			if (dispatch_stat == 0UL) {
				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
						     : : "r" (pstate));
				return;
			}
			if (!--stuck)
				break;
		} while (dispatch_stat & 0x5555555555555555UL);

		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
				     : : "r" (pstate));

		if ((stuck & ~(0x5555555555555555UL)) == 0) {
			/* Busy bits will not clear, continue instead
			 * of freezing up on this cpu.
			 */
			printk("CPU[%d]: mondo stuckage result[%016lx]\n",
			       smp_processor_id(), dispatch_stat);
		} else {
			int i, this_busy_nack = 0;

			/* Delay some random time with interrupts enabled
			 * to prevent deadlock.
			 */
			udelay(2 * nack_busy_id);

			/* Clear out the mask bits for cpus which did not
			 * NACK us.
			 */
			for (i = 0; i < NR_CPUS; i++) {
				if (mask & (1UL << i)) {
					if ((dispatch_stat & (0x2 << this_busy_nack)) == 0)
						mask &= ~(1UL << i);
					this_busy_nack += 2;
				}
			}

			goto retry;
		}
	}
}

void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
{
	if (smp_processors_ready) {
		unsigned long mask = (cpu_present_map & ~(1UL<<smp_processor_id()));
		u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));

		if (tlb_type == spitfire)
			spitfire_xcall_deliver(data0, data1, data2, mask);
		else
			cheetah_xcall_deliver(data0, data1, data2, mask);

		/* NOTE: Caller runs local copy on master. */
	}
}

struct call_data_struct {
	void (*func) (void *info);
	void *info;
	atomic_t finished;
	int wait;
};

extern unsigned long xcall_call_function;

int smp_call_function(void (*func)(void *info), void *info,
		      int nonatomic, int wait)
{
	struct call_data_struct data;
	int cpus = smp_num_cpus - 1;

	if (!cpus)
		return 0;

	data.func = func;
	data.info = info;
	atomic_set(&data.finished, 0);
	data.wait = wait;

	smp_cross_call(&xcall_call_function,
		       0, (u64) &data, 0);
	if (wait) {
		while (atomic_read(&data.finished) != cpus)
			barrier();
	}

	return 0;
}

void smp_call_function_client(struct call_data_struct *call_data)
{
	call_data->func(call_data->info);
	if (call_data->wait)
		atomic_inc(&call_data->finished);
}

extern unsigned long xcall_flush_tlb_page;
extern unsigned long xcall_flush_tlb_mm;
extern unsigned long xcall_flush_tlb_range;
extern unsigned long xcall_flush_tlb_all;
extern unsigned long xcall_tlbcachesync;
extern unsigned long xcall_flush_cache_all;
extern unsigned long xcall_report_regs;
extern unsigned long xcall_receive_signal;

void smp_receive_signal(int cpu)
{
	if (smp_processors_ready) {
		unsigned long mask = 1UL << cpu;

		if ((cpu_present_map & mask) != 0) {
			u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);

			if (tlb_type == spitfire)
				spitfire_xcall_deliver(data0, 0, 0, mask);
			else
				cheetah_xcall_deliver(data0, 0, 0, mask);
		}
	}
}

void smp_report_regs(void)
{
	smp_cross_call(&xcall_report_regs, 0, 0, 0);
}

void smp_flush_cache_all(void)
{
	smp_cross_call(&xcall_flush_cache_all, 0, 0, 0);
	__flush_cache_all();
}

void smp_flush_tlb_all(void)
{
	smp_cross_call(&xcall_flush_tlb_all, 0, 0, 0);
	__flush_tlb_all();
}

/* We know that the window frames of the user have been flushed
 * to the stack before we get here because all callers of us
 * are flush_tlb_*() routines, and these run after flush_cache_*()
 * which performs the flushw.
 *
 * XXX I diked out the fancy flush avoidance code for the
 * XXX swapping cases for now until the new MM code stabilizes. -DaveM
 *
 * The SMP TLB coherency scheme we use works as follows:
 *
 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
 *    space has (potentially) executed on, this is the heuristic
 *    we use to avoid doing cross calls.
 *
 * 2) TLB context numbers are shared globally across all processors
 *    in the system, this allows us to play several games to avoid
 *    cross calls.
 *
 *    One invariant is that when a cpu switches to a process, and
 *    that processes tsk->active_mm->cpu_vm_mask does not have the
 *    current cpu's bit set, that tlb context is flushed locally.
 *
 *    If the address space is non-shared (ie. mm->count == 1) we avoid
 *    cross calls when we want to flush the currently running process's
 *    tlb state.  This is done by clearing all cpu bits except the current
 *    processor's in current->active_mm->cpu_vm_mask and performing the
 *    flush locally only.  This will force any subsequent cpus which run
 *    this task to flush the context from the local tlb if the process
 *    migrates to another cpu (again).
 *
 * 3) For shared address spaces (threads) and swapping we bite the
 *    bullet for most cases and perform the cross call.
 *
 *    The performance gain from "optimizing" away the cross call for threads is
 *    questionable (in theory the big win for threads is the massive sharing of
 *    address space state across processors).
 *
 *    For the swapping case the locking is difficult to get right, we'd have to
 *    enforce strict ordered access to mm->cpu_vm_mask via a spinlock for example.
 *    Then again one could argue that when you are swapping, the cost of a cross
 *    call won't even show up on the performance radar.  But in any case we do get
 *    rid of the cross-call when the task has a dead context or the task has only
 *    ever run on the local cpu.
 */
void smp_flush_tlb_mm(struct mm_struct *mm)
{
	if (CTX_VALID(mm->context)) {
		u32 ctx = CTX_HWBITS(mm->context);
		int cpu = smp_processor_id();

		if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
			/* See smp_flush_tlb_page for info about this. */
			mm->cpu_vm_mask = (1UL << cpu);
			goto local_flush_and_out;
		}

		smp_cross_call(&xcall_flush_tlb_mm, ctx, 0, 0);

	local_flush_and_out:
		__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
	}
}

void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
			 unsigned long end)
{
	if (CTX_VALID(mm->context)) {
		u32 ctx = CTX_HWBITS(mm->context);
		int cpu = smp_processor_id();

		start &= PAGE_MASK;
		end   &= PAGE_MASK;

		if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
			mm->cpu_vm_mask = (1UL << cpu);
			goto local_flush_and_out;
		}

		smp_cross_call(&xcall_flush_tlb_range, ctx, start, end);

	local_flush_and_out:
		__flush_tlb_range(ctx, start, SECONDARY_CONTEXT, end, PAGE_SIZE, (end-start));
	}
}

void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page)
{
	if (CTX_VALID(mm->context)) {
		u32 ctx = CTX_HWBITS(mm->context);
		int cpu = smp_processor_id();

		page &= PAGE_MASK;
		if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
			/* By virtue of being the current address space, and
			 * having the only reference to it, the following operation
			 * is safe.
			 *
			 * It would not be a win to perform the xcall tlb flush in
			 * this case, because even if we switch back to one of the
			 * other processors in cpu_vm_mask it is almost certain that
			 * all TLB entries for this context will be replaced by the
			 * time that happens.
			 */
			mm->cpu_vm_mask = (1UL << cpu);
			goto local_flush_and_out;
		} else {
			/* By virtue of running under the mm->page_table_lock,
			 * and mmu_context.h:switch_mm doing the same, the following
			 * operation is safe.
			 */
			if (mm->cpu_vm_mask == (1UL << cpu))
				goto local_flush_and_out;
		}

		/* OK, we have to actually perform the cross call.  Most likely
		 * this is a cloned mm or kswapd is kicking out pages for a task
		 * which has run recently on another cpu.
		 */
		smp_cross_call(&xcall_flush_tlb_page, ctx, page, 0);

	local_flush_and_out:
		__flush_tlb_page(ctx, page, SECONDARY_CONTEXT);
	}
}

/* CPU capture. */
/* #define CAPTURE_DEBUG */
extern unsigned long xcall_capture;

static atomic_t smp_capture_depth = ATOMIC_INIT(0);
static atomic_t smp_capture_registry = ATOMIC_INIT(0);
static unsigned long penguins_are_doing_time = 0;

void smp_capture(void)
{
	if (smp_processors_ready) {
		int result = __atomic_add(1, &smp_capture_depth);

		membar("#StoreStore | #LoadStore");
		if (result == 1) {
			int ncpus = smp_num_cpus;

#ifdef CAPTURE_DEBUG
			printk("CPU[%d]: Sending penguins to jail...",
			       smp_processor_id());
#endif
			penguins_are_doing_time = 1;
			membar("#StoreStore | #LoadStore");
			atomic_inc(&smp_capture_registry);
			smp_cross_call(&xcall_capture, 0, 0, 0);
			while (atomic_read(&smp_capture_registry) != ncpus)
				membar("#LoadLoad");
#ifdef CAPTURE_DEBUG
			printk("done\n");
#endif
		}
	}
}

void smp_release(void)
{
	if (smp_processors_ready) {
		if (atomic_dec_and_test(&smp_capture_depth)) {
#ifdef CAPTURE_DEBUG
			printk("CPU[%d]: Giving pardon to imprisoned penguins\n",
			       smp_processor_id());
#endif
			penguins_are_doing_time = 0;
			membar("#StoreStore | #StoreLoad");
			atomic_dec(&smp_capture_registry);
		}
	}
}

/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
 * can service tlb flush xcalls...
 */
extern void prom_world(int);
extern void save_alternate_globals(unsigned long *);
extern void restore_alternate_globals(unsigned long *);
void smp_penguin_jailcell(void)
{
	unsigned long global_save[24];

	__asm__ __volatile__("flushw");
	save_alternate_globals(global_save);
	prom_world(1);
	atomic_inc(&smp_capture_registry);
	membar("#StoreLoad | #StoreStore");
	while (penguins_are_doing_time)
		membar("#LoadLoad");
	restore_alternate_globals(global_save);
	atomic_dec(&smp_capture_registry);
	prom_world(0);
}

extern unsigned long xcall_promstop;

void smp_promstop_others(void)
{
	if (smp_processors_ready)
		smp_cross_call(&xcall_promstop, 0, 0, 0);
}

extern void sparc64_do_profile(unsigned long pc, unsigned long o7);

static unsigned long current_tick_offset;

#define prof_multiplier(__cpu)		cpu_data[(__cpu)].multiplier
#define prof_counter(__cpu)		cpu_data[(__cpu)].counter

void smp_percpu_timer_interrupt(struct pt_regs *regs)
{
	unsigned long compare, tick, pstate;
	int cpu = smp_processor_id();
	int user = user_mode(regs);

	/*
	 * Check for level 14 softint.
	 */
	{
		unsigned long tick_mask;

		if (SPARC64_USE_STICK)
			tick_mask = (1UL << 16);
		else
			tick_mask = (1UL << 0);

		if (!(get_softint() & tick_mask)) {
			extern void handler_irq(int, struct pt_regs *);

			handler_irq(14, regs);
			return;
		}
		clear_softint(tick_mask);
	}

	do {
		if (!user)
			sparc64_do_profile(regs->tpc, regs->u_regs[UREG_RETPC]);
		if (!--prof_counter(cpu)) {
			if (cpu == boot_cpu_id) {
				irq_enter(cpu, 0);

				kstat.irqs[cpu][0]++;
				timer_tick_interrupt(regs);

				irq_exit(cpu, 0);
			}

			update_process_times(user);

			prof_counter(cpu) = prof_multiplier(cpu);
		}

		/* Guarentee that the following sequences execute
		 * uninterrupted.
		 */
		__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
				     "wrpr	%0, %1, %%pstate"
				     : "=r" (pstate)
				     : "i" (PSTATE_IE));

		/* Workaround for Spitfire Errata (#54 I think??), I discovered
		 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
		 * number 103640.
		 *
		 * On Blackbird writes to %tick_cmpr can fail, the
		 * workaround seems to be to execute the wr instruction
		 * at the start of an I-cache line, and perform a dummy
		 * read back from %tick_cmpr right after writing to it. -DaveM
		 *
		 * Just to be anal we add a workaround for Spitfire
		 * Errata 50 by preventing pipeline bypasses on the
		 * final read of the %tick register into a compare
		 * instruction.  The Errata 50 description states
		 * that %tick is not prone to this bug, but I am not
		 * taking any chances.
		 */
		if (!SPARC64_USE_STICK) {
		__asm__ __volatile__("rd	%%tick_cmpr, %0\n\t"
				     "ba,pt	%%xcc, 1f\n\t"
				     " add	%0, %2, %0\n\t"
				     ".align	64\n"
				  "1: wr	%0, 0x0, %%tick_cmpr\n\t"
				     "rd	%%tick_cmpr, %%g0\n\t"
				     "rd	%%tick, %1\n\t"
				     "mov	%1, %1"
				     : "=&r" (compare), "=r" (tick)
				     : "r" (current_tick_offset));
		} else {
		__asm__ __volatile__("rd	%%asr25, %0\n\t"
				     "add	%0, %2, %0\n\t"
				     "wr	%0, 0x0, %%asr25\n\t"
				     "rd	%%asr24, %1\n\t"
				     : "=&r" (compare), "=r" (tick)
				     : "r" (current_tick_offset));
		}

		/* Restore PSTATE_IE. */
		__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
				     : /* no outputs */
				     : "r" (pstate));
	} while (tick >= compare);
}

static void __init smp_setup_percpu_timer(void)
{
	int cpu = smp_processor_id();
	unsigned long pstate;

	prof_counter(cpu) = prof_multiplier(cpu) = 1;

	/* Guarentee that the following sequences execute
	 * uninterrupted.
	 */
	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
			     "wrpr	%0, %1, %%pstate"
			     : "=r" (pstate)
			     : "i" (PSTATE_IE));

	/* Workaround for Spitfire Errata (#54 I think??), I discovered
	 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
	 * number 103640.
	 *
	 * On Blackbird writes to %tick_cmpr can fail, the
	 * workaround seems to be to execute the wr instruction
	 * at the start of an I-cache line, and perform a dummy
	 * read back from %tick_cmpr right after writing to it. -DaveM
	 */
	if (!SPARC64_USE_STICK) {
	__asm__ __volatile__("
		rd	%%tick, %%g1
		ba,pt	%%xcc, 1f
		 add	%%g1, %0, %%g1
		.align	64
	1:	wr	%%g1, 0x0, %%tick_cmpr
		rd	%%tick_cmpr, %%g0"
	: /* no outputs */
	: "r" (current_tick_offset)
	: "g1");
	} else {
	__asm__ __volatile__("
		rd	%%asr24, %%g1
		add	%%g1, %0, %%g1
		wr	%%g1, 0x0, %%asr25"
	: /* no outputs */
	: "r" (current_tick_offset)
	: "g1");
	}

	/* Restore PSTATE_IE. */
	__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
			     : /* no outputs */
			     : "r" (pstate));
}

void __init smp_tick_init(void)
{
	int i;
	
	boot_cpu_id = hard_smp_processor_id();
	current_tick_offset = timer_tick_offset;
	cpu_present_map = 0;
	for (i = 0; i < linux_num_cpus; i++)
		cpu_present_map |= (1UL << linux_cpus[i].mid);
	for (i = 0; i < NR_CPUS; i++) {
		__cpu_number_map[i] = -1;
		__cpu_logical_map[i] = -1;
	}
	__cpu_number_map[boot_cpu_id] = 0;
	prom_cpu_nodes[boot_cpu_id] = linux_cpus[0].prom_node;
	__cpu_logical_map[0] = boot_cpu_id;
	current->processor = boot_cpu_id;
	prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
}

static inline unsigned long find_flush_base(unsigned long size)
{
	struct page *p = mem_map;
	unsigned long found, base;

	size = PAGE_ALIGN(size);
	found = size;
	base = (unsigned long) page_address(p);
	while (found != 0) {
		/* Failure. */
		if (p >= (mem_map + max_mapnr))
			return 0UL;
		if (PageReserved(p)) {
			found = size;
			base = (unsigned long) page_address(p);
		} else {
			found -= PAGE_SIZE;
		}
		p++;
	}
	return base;
}

cycles_t cacheflush_time;

extern unsigned long cheetah_tune_scheduling(void);

static void __init smp_tune_scheduling (void)
{
	unsigned long orig_flush_base, flush_base, flags, *p;
	unsigned int ecache_size, order;
	cycles_t tick1, tick2, raw;

	/* Approximate heuristic for SMP scheduling.  It is an
	 * estimation of the time it takes to flush the L2 cache
	 * on the local processor.
	 *
	 * The ia32 chooses to use the L1 cache flush time instead,
	 * and I consider this complete nonsense.  The Ultra can service
	 * a miss to the L1 with a hit to the L2 in 7 or 8 cycles, and
	 * L2 misses are what create extra bus traffic (ie. the "cost"
	 * of moving a process from one cpu to another).
	 */
	printk("SMP: Calibrating ecache flush... ");
	if (tlb_type == cheetah) {
		cacheflush_time = cheetah_tune_scheduling();
		goto report;
	}

	ecache_size = prom_getintdefault(linux_cpus[0].prom_node,
					 "ecache-size", (512 * 1024));
	if (ecache_size > (4 * 1024 * 1024))
		ecache_size = (4 * 1024 * 1024);
	orig_flush_base = flush_base =
		__get_free_pages(GFP_KERNEL, order = get_order(ecache_size));

	if (flush_base != 0UL) {
		__save_and_cli(flags);

		/* Scan twice the size once just to get the TLB entries
		 * loaded and make sure the second scan measures pure misses.
		 */
		for (p = (unsigned long *)flush_base;
		     ((unsigned long)p) < (flush_base + (ecache_size<<1));
		     p += (64 / sizeof(unsigned long)))
			*((volatile unsigned long *)p);

		/* Now the real measurement. */
		__asm__ __volatile__("
		b,pt	%%xcc, 1f
		 rd	%%tick, %0

		.align	64
1:		ldx	[%2 + 0x000], %%g1
		ldx	[%2 + 0x040], %%g2
		ldx	[%2 + 0x080], %%g3
		ldx	[%2 + 0x0c0], %%g5
		add	%2, 0x100, %2
		cmp	%2, %4
		bne,pt	%%xcc, 1b
		 nop
	
		rd	%%tick, %1"
		: "=&r" (tick1), "=&r" (tick2), "=&r" (flush_base)
		: "2" (flush_base), "r" (flush_base + ecache_size)
		: "g1", "g2", "g3", "g5");

		__restore_flags(flags);

		raw = (tick2 - tick1);

		/* Dampen it a little, considering two processes
		 * sharing the cache and fitting.
		 */
		cacheflush_time = (raw - (raw >> 2));

		free_pages(orig_flush_base, order);
	} else {
		cacheflush_time = ((ecache_size << 2) +
				   (ecache_size << 1));
	}
report:
	printk("Using heuristic of %d cycles.\n",
	       (int) cacheflush_time);
}

/* /proc/profile writes can call this, don't __init it please. */
int setup_profiling_timer(unsigned int multiplier)
{
	unsigned long flags;
	int i;

	if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
		return -EINVAL;

	save_and_cli(flags);
	for (i = 0; i < NR_CPUS; i++) {
		if (cpu_present_map & (1UL << i))
			prof_multiplier(i) = multiplier;
	}
	current_tick_offset = (timer_tick_offset / multiplier);
	restore_flags(flags);

	return 0;
}