Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 | /* smp.c: Sparc64 SMP support. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/spinlock.h> #include <asm/head.h> #include <asm/ptrace.h> #include <asm/atomic.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/hardirq.h> #include <asm/softirq.h> #include <asm/uaccess.h> #include <asm/timer.h> #include <asm/starfire.h> #define __KERNEL_SYSCALLS__ #include <linux/unistd.h> extern int linux_num_cpus; extern void calibrate_delay(void); extern unsigned prom_cpu_nodes[]; struct cpuinfo_sparc cpu_data[NR_CPUS] __attribute__ ((aligned (64))); volatile int __cpu_number_map[NR_CPUS] __attribute__ ((aligned (64))); volatile int __cpu_logical_map[NR_CPUS] __attribute__ ((aligned (64))); /* Please don't make this stuff initdata!!! --DaveM */ static unsigned char boot_cpu_id = 0; static int smp_activated = 0; /* Kernel spinlock */ spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED; volatile int smp_processors_ready = 0; unsigned long cpu_present_map = 0; int smp_num_cpus = 1; int smp_threads_ready = 0; void __init smp_setup(char *str, int *ints) { /* XXX implement me XXX */ } int smp_info(char *buf) { int len = 7, i; strcpy(buf, "State:\n"); for (i = 0; i < NR_CPUS; i++) if(cpu_present_map & (1UL << i)) len += sprintf(buf + len, "CPU%d:\t\tonline\n", i); return len; } int smp_bogo(char *buf) { int len = 0, i; for (i = 0; i < NR_CPUS; i++) if(cpu_present_map & (1UL << i)) len += sprintf(buf + len, "Cpu%dBogo\t: %lu.%02lu\n", i, cpu_data[i].udelay_val / (500000/HZ), (cpu_data[i].udelay_val / (5000/HZ)) % 100); return len; } void __init smp_store_cpu_info(int id) { int i; /* multiplier and counter set by smp_setup_percpu_timer() */ cpu_data[id].udelay_val = loops_per_jiffy; cpu_data[id].pgcache_size = 0; cpu_data[id].pte_cache[0] = NULL; cpu_data[id].pte_cache[1] = NULL; cpu_data[id].pgdcache_size = 0; cpu_data[id].pgd_cache = NULL; cpu_data[id].idle_volume = 1; for(i = 0; i < 16; i++) cpu_data[id].irq_worklists[i] = 0; } void __init smp_commence(void) { } static void smp_setup_percpu_timer(void); static void smp_tune_scheduling(void); static volatile unsigned long callin_flag = 0; extern void inherit_locked_prom_mappings(int save_p); extern void cpu_probe(void); void __init smp_callin(void) { int cpuid = hard_smp_processor_id(); unsigned long pstate; inherit_locked_prom_mappings(0); __flush_cache_all(); __flush_tlb_all(); cpu_probe(); /* Guarentee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); /* Set things up so user can access tick register for profiling * purposes. Also workaround BB_ERRATA_1 by doing a dummy * read back of %tick after writing it. */ __asm__ __volatile__(" sethi %%hi(0x80000000), %%g1 ba,pt %%xcc, 1f sllx %%g1, 32, %%g1 .align 64 1: rd %%tick, %%g2 add %%g2, 6, %%g2 andn %%g2, %%g1, %%g2 wrpr %%g2, 0, %%tick rdpr %%tick, %%g0" : /* no outputs */ : /* no inputs */ : "g1", "g2"); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); smp_setup_percpu_timer(); __sti(); calibrate_delay(); smp_store_cpu_info(cpuid); callin_flag = 1; __asm__ __volatile__("membar #Sync\n\t" "flush %%g6" : : : "memory"); /* Clear this or we will die instantly when we * schedule back to this idler... */ current->thread.flags &= ~(SPARC_FLAG_NEWCHILD); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while(!smp_processors_ready) membar("#LoadLoad"); } extern int cpu_idle(void); extern void init_IRQ(void); void initialize_secondary(void) { } int start_secondary(void *unused) { trap_init(); init_IRQ(); smp_callin(); return cpu_idle(); } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } extern struct prom_cpuinfo linux_cpus[64]; extern unsigned long sparc64_cpu_startup; /* The OBP cpu startup callback truncates the 3rd arg cookie to * 32-bits (I think) so to be safe we have it read the pointer * contained here so we work on >4GB machines. -DaveM */ static struct task_struct *cpu_new_task = NULL; void __init smp_boot_cpus(void) { int cpucount = 0, i; printk("Entering UltraSMPenguin Mode...\n"); __sti(); smp_store_cpu_info(boot_cpu_id); smp_tune_scheduling(); init_idle(); if(linux_num_cpus == 1) return; for(i = 0; i < NR_CPUS; i++) { if(i == boot_cpu_id) continue; if(cpu_present_map & (1UL << i)) { unsigned long entry = (unsigned long)(&sparc64_cpu_startup); unsigned long cookie = (unsigned long)(&cpu_new_task); struct task_struct *p; int timeout; int no; prom_printf("Starting CPU %d... ", i); kernel_thread(start_secondary, NULL, CLONE_PID); cpucount++; p = init_task.prev_task; init_tasks[cpucount] = p; p->processor = i; p->has_cpu = 1; /* we schedule the first task manually */ del_from_runqueue(p); unhash_process(p); callin_flag = 0; for (no = 0; no < linux_num_cpus; no++) if (linux_cpus[no].mid == i) break; cpu_new_task = p; prom_startcpu(linux_cpus[no].prom_node, entry, cookie); for(timeout = 0; timeout < 5000000; timeout++) { if(callin_flag) break; udelay(100); } if(callin_flag) { __cpu_number_map[i] = cpucount; __cpu_logical_map[cpucount] = i; prom_cpu_nodes[i] = linux_cpus[no].prom_node; prom_printf("OK\n"); } else { cpucount--; printk("Processor %d is stuck.\n", i); prom_printf("FAILED\n"); } } if(!callin_flag) { cpu_present_map &= ~(1UL << i); __cpu_number_map[i] = -1; } } cpu_new_task = NULL; if(cpucount == 0) { printk("Error: only one processor found.\n"); cpu_present_map = (1UL << smp_processor_id()); } else { unsigned long bogosum = 0; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1UL << i)) bogosum += cpu_data[i].udelay_val; } printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); smp_activated = 1; smp_num_cpus = cpucount + 1; } smp_processors_ready = 1; membar("#StoreStore | #StoreLoad"); } /* #define XCALL_DEBUG */ static inline void xcall_deliver(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) { u64 result, target; int stuck, tmp; if (this_is_starfire) { /* map to real upaid */ cpu = (((cpu & 0x3c) << 1) | ((cpu & 0x40) >> 4) | (cpu & 0x3)); } target = (cpu << 14) | 0x70; #ifdef XCALL_DEBUG printk("CPU[%d]: xcall(data[%016lx:%016lx:%016lx],tgt[%016lx])\n", smp_processor_id(), data0, data1, data2, target); #endif again: /* Ok, this is the real Spitfire Errata #54. * One must read back from a UDB internal register * after writes to the UDB interrupt dispatch, but * before the membar Sync for that write. * So we use the high UDB control register (ASI 0x7f, * ADDR 0x20) for the dummy read. -DaveM */ tmp = 0x40; __asm__ __volatile__(" wrpr %1, %2, %%pstate stxa %4, [%0] %3 stxa %5, [%0+%8] %3 add %0, %8, %0 stxa %6, [%0+%8] %3 membar #Sync stxa %%g0, [%7] %3 membar #Sync mov 0x20, %%g1 ldxa [%%g1] 0x7f, %%g0 membar #Sync" : "=r" (tmp) : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_UDB_INTR_W), "r" (data0), "r" (data1), "r" (data2), "r" (target), "r" (0x10), "0" (tmp) : "g1"); /* NOTE: PSTATE_IE is still clear. */ stuck = 100000; do { __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (result) : "i" (ASI_INTR_DISPATCH_STAT)); if(result == 0) { __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); return; } stuck -= 1; if(stuck == 0) break; } while(result & 0x1); __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); if(stuck == 0) { #ifdef XCALL_DEBUG printk("CPU[%d]: mondo stuckage result[%016lx]\n", smp_processor_id(), result); #endif } else { #ifdef XCALL_DEBUG printk("CPU[%d]: Penguin %d NACK's master.\n", smp_processor_id(), cpu); #endif udelay(2); goto again; } } void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) { if(smp_processors_ready) { unsigned long mask = (cpu_present_map & ~(1UL<<smp_processor_id())); u64 pstate, data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); int i, ncpus = smp_num_cpus - 1; __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); for(i = 0; i < NR_CPUS; i++) { if(mask & (1UL << i)) { xcall_deliver(data0, data1, data2, pstate, i); ncpus--; } if (!ncpus) break; } /* NOTE: Caller runs local copy on master. */ } } struct call_data_struct { void (*func) (void *info); void *info; atomic_t finished; int wait; }; extern unsigned long xcall_call_function; int smp_call_function(void (*func)(void *info), void *info, int nonatomic, int wait) { struct call_data_struct data; int cpus = smp_num_cpus - 1; if (!cpus) return 0; data.func = func; data.info = info; atomic_set(&data.finished, 0); data.wait = wait; smp_cross_call(&xcall_call_function, 0, (u64) &data, 0); if (wait) { while (atomic_read(&data.finished) != cpus) barrier(); } return 0; } void smp_call_function_client(struct call_data_struct *call_data) { call_data->func(call_data->info); if (call_data->wait) atomic_inc(&call_data->finished); } extern unsigned long xcall_flush_tlb_page; extern unsigned long xcall_flush_tlb_mm; extern unsigned long xcall_flush_tlb_range; extern unsigned long xcall_flush_tlb_all; extern unsigned long xcall_tlbcachesync; extern unsigned long xcall_flush_cache_all; extern unsigned long xcall_report_regs; extern unsigned long xcall_receive_signal; void smp_receive_signal(int cpu) { if(smp_processors_ready && (cpu_present_map & (1UL<<cpu)) != 0) { u64 pstate, data0 = (((u64)&xcall_receive_signal) & 0xffffffff); __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); xcall_deliver(data0, 0, 0, pstate, cpu); } } void smp_report_regs(void) { smp_cross_call(&xcall_report_regs, 0, 0, 0); } void smp_flush_cache_all(void) { smp_cross_call(&xcall_flush_cache_all, 0, 0, 0); __flush_cache_all(); } void smp_flush_tlb_all(void) { smp_cross_call(&xcall_flush_tlb_all, 0, 0, 0); __flush_tlb_all(); } /* We know that the window frames of the user have been flushed * to the stack before we get here because all callers of us * are flush_tlb_*() routines, and these run after flush_cache_*() * which performs the flushw. * * XXX I diked out the fancy flush avoidance code for the * XXX swapping cases for now until the new MM code stabilizes. -DaveM * * The SMP TLB coherency scheme we use works as follows: * * 1) mm->cpu_vm_mask is a bit mask of which cpus an address * space has (potentially) executed on, this is the heuristic * we use to avoid doing cross calls. * * 2) TLB context numbers are shared globally across all processors * in the system, this allows us to play several games to avoid * cross calls. * * One invariant is that when a cpu switches to a process, and * that processes tsk->active_mm->cpu_vm_mask does not have the * current cpu's bit set, that tlb context is flushed locally. * * If the address space is non-shared (ie. mm->count == 1) we avoid * cross calls when we want to flush the currently running process's * tlb state. This is done by clearing all cpu bits except the current * processor's in current->active_mm->cpu_vm_mask and performing the * flush locally only. This will force any subsequent cpus which run * this task to flush the context from the local tlb if the process * migrates to another cpu (again). * * 3) For shared address spaces (threads) and swapping we bite the * bullet for most cases and perform the cross call. * * The performance gain from "optimizing" away the cross call for threads is * questionable (in theory the big win for threads is the massive sharing of * address space state across processors). * * For the swapping case the locking is difficult to get right, we'd have to * enforce strict ordered access to mm->cpu_vm_mask via a spinlock for example. * Then again one could argue that when you are swapping, the cost of a cross * call won't even show up on the performance radar. But in any case we do get * rid of the cross-call when the task has a dead context or the task has only * ever run on the local cpu. */ void smp_flush_tlb_mm(struct mm_struct *mm) { if (CTX_VALID(mm->context)) { u32 ctx = CTX_HWBITS(mm->context); int cpu = smp_processor_id(); if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { /* See smp_flush_tlb_page for info about this. */ mm->cpu_vm_mask = (1UL << cpu); goto local_flush_and_out; } smp_cross_call(&xcall_flush_tlb_mm, ctx, 0, 0); local_flush_and_out: __flush_tlb_mm(ctx, SECONDARY_CONTEXT); } } void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (CTX_VALID(mm->context)) { u32 ctx = CTX_HWBITS(mm->context); int cpu = smp_processor_id(); start &= PAGE_MASK; end &= PAGE_MASK; if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { mm->cpu_vm_mask = (1UL << cpu); goto local_flush_and_out; } smp_cross_call(&xcall_flush_tlb_range, ctx, start, end); local_flush_and_out: __flush_tlb_range(ctx, start, SECONDARY_CONTEXT, end, PAGE_SIZE, (end-start)); } } void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page) { if (CTX_VALID(mm->context)) { u32 ctx = CTX_HWBITS(mm->context); int cpu = smp_processor_id(); page &= PAGE_MASK; if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { /* By virtue of being the current address space, and * having the only reference to it, the following operation * is safe. * * It would not be a win to perform the xcall tlb flush in * this case, because even if we switch back to one of the * other processors in cpu_vm_mask it is almost certain that * all TLB entries for this context will be replaced by the * time that happens. */ mm->cpu_vm_mask = (1UL << cpu); goto local_flush_and_out; } else { /* By virtue of running under the mm->page_table_lock, * and mmu_context.h:switch_mm doing the same, the following * operation is safe. */ if (mm->cpu_vm_mask == (1UL << cpu)) goto local_flush_and_out; } /* OK, we have to actually perform the cross call. Most likely * this is a cloned mm or kswapd is kicking out pages for a task * which has run recently on another cpu. */ smp_cross_call(&xcall_flush_tlb_page, ctx, page, 0); local_flush_and_out: __flush_tlb_page(ctx, page, SECONDARY_CONTEXT); } } /* CPU capture. */ /* #define CAPTURE_DEBUG */ extern unsigned long xcall_capture; static atomic_t smp_capture_depth = ATOMIC_INIT(0); static atomic_t smp_capture_registry = ATOMIC_INIT(0); static unsigned long penguins_are_doing_time = 0; void smp_capture(void) { if (smp_processors_ready) { int result = __atomic_add(1, &smp_capture_depth); membar("#StoreStore | #LoadStore"); if(result == 1) { int ncpus = smp_num_cpus; #ifdef CAPTURE_DEBUG printk("CPU[%d]: Sending penguins to jail...", smp_processor_id()); #endif penguins_are_doing_time = 1; membar("#StoreStore | #LoadStore"); atomic_inc(&smp_capture_registry); smp_cross_call(&xcall_capture, 0, 0, 0); while(atomic_read(&smp_capture_registry) != ncpus) membar("#LoadLoad"); #ifdef CAPTURE_DEBUG printk("done\n"); #endif } } } void smp_release(void) { if(smp_processors_ready) { if(atomic_dec_and_test(&smp_capture_depth)) { #ifdef CAPTURE_DEBUG printk("CPU[%d]: Giving pardon to imprisoned penguins\n", smp_processor_id()); #endif penguins_are_doing_time = 0; membar("#StoreStore | #StoreLoad"); atomic_dec(&smp_capture_registry); } } } /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they * can service tlb flush xcalls... */ extern void prom_world(int); extern void save_alternate_globals(unsigned long *); extern void restore_alternate_globals(unsigned long *); void smp_penguin_jailcell(void) { unsigned long global_save[24]; __asm__ __volatile__("flushw"); save_alternate_globals(global_save); prom_world(1); atomic_inc(&smp_capture_registry); membar("#StoreLoad | #StoreStore"); while(penguins_are_doing_time) membar("#LoadLoad"); restore_alternate_globals(global_save); atomic_dec(&smp_capture_registry); prom_world(0); } extern unsigned long xcall_promstop; void smp_promstop_others(void) { if (smp_processors_ready) smp_cross_call(&xcall_promstop, 0, 0, 0); } extern void sparc64_do_profile(unsigned long pc, unsigned long o7); static unsigned long current_tick_offset; #define prof_multiplier(__cpu) cpu_data[(__cpu)].multiplier #define prof_counter(__cpu) cpu_data[(__cpu)].counter void smp_percpu_timer_interrupt(struct pt_regs *regs) { unsigned long compare, tick, pstate; int cpu = smp_processor_id(); int user = user_mode(regs); /* * Check for level 14 softint. */ if (!(get_softint() & (1UL << 0))) { extern void handler_irq(int, struct pt_regs *); handler_irq(14, regs); return; } clear_softint((1UL << 0)); do { if (!user) sparc64_do_profile(regs->tpc, regs->u_regs[UREG_RETPC]); if (!--prof_counter(cpu)) { if (cpu == boot_cpu_id) { irq_enter(cpu, 0); kstat.irqs[cpu][0]++; timer_tick_interrupt(regs); irq_exit(cpu, 0); } update_process_times(user); prof_counter(cpu) = prof_multiplier(cpu); } /* Guarentee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); /* Workaround for Spitfire Errata (#54 I think??), I discovered * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch * number 103640. * * On Blackbird writes to %tick_cmpr can fail, the * workaround seems to be to execute the wr instruction * at the start of an I-cache line, and perform a dummy * read back from %tick_cmpr right after writing to it. -DaveM * * Just to be anal we add a workaround for Spitfire * Errata 50 by preventing pipeline bypasses on the * final read of the %tick register into a compare * instruction. The Errata 50 description states * that %tick is not prone to this bug, but I am not * taking any chances. */ __asm__ __volatile__("rd %%tick_cmpr, %0\n\t" "ba,pt %%xcc, 1f\n\t" " add %0, %2, %0\n\t" ".align 64\n" "1: wr %0, 0x0, %%tick_cmpr\n\t" "rd %%tick_cmpr, %%g0\n\t" "rd %%tick, %1\n\t" "mov %1, %1" : "=&r" (compare), "=r" (tick) : "r" (current_tick_offset)); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } while (tick >= compare); } static void __init smp_setup_percpu_timer(void) { int cpu = smp_processor_id(); unsigned long pstate; prof_counter(cpu) = prof_multiplier(cpu) = 1; /* Guarentee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); /* Workaround for Spitfire Errata (#54 I think??), I discovered * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch * number 103640. * * On Blackbird writes to %tick_cmpr can fail, the * workaround seems to be to execute the wr instruction * at the start of an I-cache line, and perform a dummy * read back from %tick_cmpr right after writing to it. -DaveM */ __asm__ __volatile__(" rd %%tick, %%g1 ba,pt %%xcc, 1f add %%g1, %0, %%g1 .align 64 1: wr %%g1, 0x0, %%tick_cmpr rd %%tick_cmpr, %%g0" : /* no outputs */ : "r" (current_tick_offset) : "g1"); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } void __init smp_tick_init(void) { int i; boot_cpu_id = hard_smp_processor_id(); current_tick_offset = timer_tick_offset; cpu_present_map = 0; for(i = 0; i < linux_num_cpus; i++) cpu_present_map |= (1UL << linux_cpus[i].mid); for(i = 0; i < NR_CPUS; i++) { __cpu_number_map[i] = -1; __cpu_logical_map[i] = -1; } __cpu_number_map[boot_cpu_id] = 0; prom_cpu_nodes[boot_cpu_id] = linux_cpus[0].prom_node; __cpu_logical_map[0] = boot_cpu_id; current->processor = boot_cpu_id; prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1; } static inline unsigned long find_flush_base(unsigned long size) { struct page *p = mem_map; unsigned long found, base; size = PAGE_ALIGN(size); found = size; base = (unsigned long) page_address(p); while(found != 0) { /* Failure. */ if(p >= (mem_map + max_mapnr)) return 0UL; if(PageReserved(p)) { found = size; base = (unsigned long) page_address(p); } else { found -= PAGE_SIZE; } p++; } return base; } cycles_t cacheflush_time; static void __init smp_tune_scheduling (void) { unsigned long orig_flush_base, flush_base, flags, *p; unsigned int ecache_size, order; cycles_t tick1, tick2, raw; /* Approximate heuristic for SMP scheduling. It is an * estimation of the time it takes to flush the L2 cache * on the local processor. * * The ia32 chooses to use the L1 cache flush time instead, * and I consider this complete nonsense. The Ultra can service * a miss to the L1 with a hit to the L2 in 7 or 8 cycles, and * L2 misses are what create extra bus traffic (ie. the "cost" * of moving a process from one cpu to another). */ printk("SMP: Calibrating ecache flush... "); ecache_size = prom_getintdefault(linux_cpus[0].prom_node, "ecache-size", (512 * 1024)); if (ecache_size > (4 * 1024 * 1024)) ecache_size = (4 * 1024 * 1024); orig_flush_base = flush_base = __get_free_pages(GFP_KERNEL, order = get_order(ecache_size)); if (flush_base != 0UL) { __save_and_cli(flags); /* Scan twice the size once just to get the TLB entries * loaded and make sure the second scan measures pure misses. */ for (p = (unsigned long *)flush_base; ((unsigned long)p) < (flush_base + (ecache_size<<1)); p += (64 / sizeof(unsigned long))) *((volatile unsigned long *)p); /* Now the real measurement. */ __asm__ __volatile__(" b,pt %%xcc, 1f rd %%tick, %0 .align 64 1: ldx [%2 + 0x000], %%g1 ldx [%2 + 0x040], %%g2 ldx [%2 + 0x080], %%g3 ldx [%2 + 0x0c0], %%g5 add %2, 0x100, %2 cmp %2, %4 bne,pt %%xcc, 1b nop rd %%tick, %1" : "=&r" (tick1), "=&r" (tick2), "=&r" (flush_base) : "2" (flush_base), "r" (flush_base + ecache_size) : "g1", "g2", "g3", "g5"); __restore_flags(flags); raw = (tick2 - tick1); /* Dampen it a little, considering two processes * sharing the cache and fitting. */ cacheflush_time = (raw - (raw >> 2)); free_pages(orig_flush_base, order); } else { cacheflush_time = ((ecache_size << 2) + (ecache_size << 1)); } printk("Using heuristic of %d cycles.\n", (int) cacheflush_time); } /* /proc/profile writes can call this, don't __init it please. */ int setup_profiling_timer(unsigned int multiplier) { unsigned long flags; int i; if((!multiplier) || (timer_tick_offset / multiplier) < 1000) return -EINVAL; save_and_cli(flags); for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1UL << i)) prof_multiplier(i) = multiplier; } current_tick_offset = (timer_tick_offset / multiplier); restore_flags(flags); return 0; } |