Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/* smp.c: Sparc64 SMP support.
 *
 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>

#include <asm/head.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>
#include <asm/uaccess.h>
#include <asm/timer.h>
#include <asm/starfire.h>

#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>

extern int linux_num_cpus;
extern void calibrate_delay(void);
extern unsigned prom_cpu_nodes[];

struct cpuinfo_sparc cpu_data[NR_CPUS]  __attribute__ ((aligned (64)));

volatile int __cpu_number_map[NR_CPUS]  __attribute__ ((aligned (64)));
volatile int __cpu_logical_map[NR_CPUS] __attribute__ ((aligned (64)));

/* Please don't make this stuff initdata!!!  --DaveM */
static unsigned char boot_cpu_id = 0;
static int smp_activated = 0;

/* Kernel spinlock */
spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED;

volatile int smp_processors_ready = 0;
unsigned long cpu_present_map = 0;
int smp_num_cpus = 1;
int smp_threads_ready = 0;

void __init smp_setup(char *str, int *ints)
{
	/* XXX implement me XXX */
}

int smp_info(char *buf)
{
	int len = 7, i;
	
	strcpy(buf, "State:\n");
	for (i = 0; i < NR_CPUS; i++)
		if(cpu_present_map & (1UL << i))
			len += sprintf(buf + len,
					"CPU%d:\t\tonline\n", i);
	return len;
}

int smp_bogo(char *buf)
{
	int len = 0, i;
	
	for (i = 0; i < NR_CPUS; i++)
		if(cpu_present_map & (1UL << i))
			len += sprintf(buf + len,
				       "Cpu%dBogo\t: %lu.%02lu\n",
				       i, cpu_data[i].udelay_val / (500000/HZ),
				       (cpu_data[i].udelay_val / (5000/HZ)) % 100);
	return len;
}

void __init smp_store_cpu_info(int id)
{
	int i;

	/* multiplier and counter set by
	   smp_setup_percpu_timer()  */
	cpu_data[id].udelay_val			= loops_per_jiffy;

	cpu_data[id].pgcache_size		= 0;
	cpu_data[id].pte_cache[0]		= NULL;
	cpu_data[id].pte_cache[1]		= NULL;
	cpu_data[id].pgdcache_size		= 0;
	cpu_data[id].pgd_cache			= NULL;
	cpu_data[id].idle_volume		= 1;

	for(i = 0; i < 16; i++)
		cpu_data[id].irq_worklists[i] = 0;
}

void __init smp_commence(void)
{
}

static void smp_setup_percpu_timer(void);
static void smp_tune_scheduling(void);

static volatile unsigned long callin_flag = 0;

extern void inherit_locked_prom_mappings(int save_p);
extern void cpu_probe(void);

void __init smp_callin(void)
{
	int cpuid = hard_smp_processor_id();
	unsigned long pstate;

	inherit_locked_prom_mappings(0);

	__flush_cache_all();
	__flush_tlb_all();

	cpu_probe();

	/* Guarentee that the following sequences execute
	 * uninterrupted.
	 */
	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
			     "wrpr	%0, %1, %%pstate"
			     : "=r" (pstate)
			     : "i" (PSTATE_IE));

	/* Set things up so user can access tick register for profiling
	 * purposes.  Also workaround BB_ERRATA_1 by doing a dummy
	 * read back of %tick after writing it.
	 */
	__asm__ __volatile__("
	sethi	%%hi(0x80000000), %%g1
	ba,pt	%%xcc, 1f
	 sllx	%%g1, 32, %%g1
	.align	64
1:	rd	%%tick, %%g2
	add	%%g2, 6, %%g2
	andn	%%g2, %%g1, %%g2
	wrpr	%%g2, 0, %%tick
	rdpr	%%tick, %%g0"
	: /* no outputs */
	: /* no inputs */
	: "g1", "g2");

	/* Restore PSTATE_IE. */
	__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
			     : /* no outputs */
			     : "r" (pstate));

	smp_setup_percpu_timer();

	__sti();

	calibrate_delay();
	smp_store_cpu_info(cpuid);
	callin_flag = 1;
	__asm__ __volatile__("membar #Sync\n\t"
			     "flush  %%g6" : : : "memory");

	/* Clear this or we will die instantly when we
	 * schedule back to this idler...
	 */
	current->thread.flags &= ~(SPARC_FLAG_NEWCHILD);

	/* Attach to the address space of init_task. */
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;

	while(!smp_processors_ready)
		membar("#LoadLoad");
}

extern int cpu_idle(void);
extern void init_IRQ(void);

void initialize_secondary(void)
{
}

int start_secondary(void *unused)
{
	trap_init();
	init_IRQ();
	smp_callin();
	return cpu_idle();
}

void cpu_panic(void)
{
	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
	panic("SMP bolixed\n");
}

extern struct prom_cpuinfo linux_cpus[64];

extern unsigned long sparc64_cpu_startup;

/* The OBP cpu startup callback truncates the 3rd arg cookie to
 * 32-bits (I think) so to be safe we have it read the pointer
 * contained here so we work on >4GB machines. -DaveM
 */
static struct task_struct *cpu_new_task = NULL;

void __init smp_boot_cpus(void)
{
	int cpucount = 0, i;

	printk("Entering UltraSMPenguin Mode...\n");
	__sti();
	smp_store_cpu_info(boot_cpu_id);
	smp_tune_scheduling();
	init_idle();

	if(linux_num_cpus == 1)
		return;

	for(i = 0; i < NR_CPUS; i++) {
		if(i == boot_cpu_id)
			continue;

		if(cpu_present_map & (1UL << i)) {
			unsigned long entry = (unsigned long)(&sparc64_cpu_startup);
			unsigned long cookie = (unsigned long)(&cpu_new_task);
			struct task_struct *p;
			int timeout;
			int no;

			prom_printf("Starting CPU %d... ", i);
			kernel_thread(start_secondary, NULL, CLONE_PID);
			cpucount++;

			p = init_task.prev_task;
			init_tasks[cpucount] = p;

			p->processor = i;
			p->has_cpu = 1; /* we schedule the first task manually */

			del_from_runqueue(p);
			unhash_process(p);

			callin_flag = 0;
			for (no = 0; no < linux_num_cpus; no++)
				if (linux_cpus[no].mid == i)
					break;
			cpu_new_task = p;
			prom_startcpu(linux_cpus[no].prom_node,
				      entry, cookie);
			for(timeout = 0; timeout < 5000000; timeout++) {
				if(callin_flag)
					break;
				udelay(100);
			}
			if(callin_flag) {
				__cpu_number_map[i] = cpucount;
				__cpu_logical_map[cpucount] = i;
				prom_cpu_nodes[i] = linux_cpus[no].prom_node;
				prom_printf("OK\n");
			} else {
				cpucount--;
				printk("Processor %d is stuck.\n", i);
				prom_printf("FAILED\n");
			}
		}
		if(!callin_flag) {
			cpu_present_map &= ~(1UL << i);
			__cpu_number_map[i] = -1;
		}
	}
	cpu_new_task = NULL;
	if(cpucount == 0) {
		printk("Error: only one processor found.\n");
		cpu_present_map = (1UL << smp_processor_id());
	} else {
		unsigned long bogosum = 0;

		for(i = 0; i < NR_CPUS; i++) {
			if(cpu_present_map & (1UL << i))
				bogosum += cpu_data[i].udelay_val;
		}
		printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
		       cpucount + 1,
		       bogosum/(500000/HZ),
		       (bogosum/(5000/HZ))%100);
		smp_activated = 1;
		smp_num_cpus = cpucount + 1;
	}
	smp_processors_ready = 1;
	membar("#StoreStore | #StoreLoad");
}

/* #define XCALL_DEBUG */

static inline void xcall_deliver(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
{
	u64 result, target;
	int stuck, tmp;

	if (this_is_starfire) {
		/* map to real upaid */
		cpu = (((cpu & 0x3c) << 1) |
			((cpu & 0x40) >> 4) |
			(cpu & 0x3));
	}

	target = (cpu << 14) | 0x70;
#ifdef XCALL_DEBUG
	printk("CPU[%d]: xcall(data[%016lx:%016lx:%016lx],tgt[%016lx])\n",
	       smp_processor_id(), data0, data1, data2, target);
#endif
again:
	/* Ok, this is the real Spitfire Errata #54.
	 * One must read back from a UDB internal register
	 * after writes to the UDB interrupt dispatch, but
	 * before the membar Sync for that write.
	 * So we use the high UDB control register (ASI 0x7f,
	 * ADDR 0x20) for the dummy read. -DaveM
	 */
	tmp = 0x40;
	__asm__ __volatile__("
	wrpr	%1, %2, %%pstate
	stxa	%4, [%0] %3
	stxa	%5, [%0+%8] %3
	add	%0, %8, %0
	stxa	%6, [%0+%8] %3
	membar	#Sync
	stxa	%%g0, [%7] %3
	membar	#Sync
	mov	0x20, %%g1
	ldxa	[%%g1] 0x7f, %%g0
	membar	#Sync"
	: "=r" (tmp)
	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_UDB_INTR_W),
	  "r" (data0), "r" (data1), "r" (data2), "r" (target), "r" (0x10), "0" (tmp)
       : "g1");

	/* NOTE: PSTATE_IE is still clear. */
	stuck = 100000;
	do {
		__asm__ __volatile__("ldxa [%%g0] %1, %0"
			: "=r" (result)
			: "i" (ASI_INTR_DISPATCH_STAT));
		if(result == 0) {
			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
					     : : "r" (pstate));
			return;
		}
		stuck -= 1;
		if(stuck == 0)
			break;
	} while(result & 0x1);
	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
			     : : "r" (pstate));
	if(stuck == 0) {
#ifdef XCALL_DEBUG
		printk("CPU[%d]: mondo stuckage result[%016lx]\n",
		       smp_processor_id(), result);
#endif
	} else {
#ifdef XCALL_DEBUG
		printk("CPU[%d]: Penguin %d NACK's master.\n", smp_processor_id(), cpu);
#endif
		udelay(2);
		goto again;
	}
}

void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
{
	if(smp_processors_ready) {
		unsigned long mask = (cpu_present_map & ~(1UL<<smp_processor_id()));
		u64 pstate, data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
		int i, ncpus = smp_num_cpus - 1;

		__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
		for(i = 0; i < NR_CPUS; i++) {
			if(mask & (1UL << i)) {
				xcall_deliver(data0, data1, data2, pstate, i);
				ncpus--;
			}
			if (!ncpus) break;
		}
		/* NOTE: Caller runs local copy on master. */
	}
}

struct call_data_struct {
	void (*func) (void *info);
	void *info;
	atomic_t finished;
	int wait;
};

extern unsigned long xcall_call_function;

int smp_call_function(void (*func)(void *info), void *info,
		      int nonatomic, int wait)
{
	struct call_data_struct data;
	int cpus = smp_num_cpus - 1;

	if (!cpus)
		return 0;

	data.func = func;
	data.info = info;
	atomic_set(&data.finished, 0);
	data.wait = wait;

	smp_cross_call(&xcall_call_function,
		       0, (u64) &data, 0);
	if (wait) {
		while (atomic_read(&data.finished) != cpus)
			barrier();
	}

	return 0;
}

void smp_call_function_client(struct call_data_struct *call_data)
{
	call_data->func(call_data->info);
	if (call_data->wait)
		atomic_inc(&call_data->finished);
}

extern unsigned long xcall_flush_tlb_page;
extern unsigned long xcall_flush_tlb_mm;
extern unsigned long xcall_flush_tlb_range;
extern unsigned long xcall_flush_tlb_all;
extern unsigned long xcall_tlbcachesync;
extern unsigned long xcall_flush_cache_all;
extern unsigned long xcall_report_regs;
extern unsigned long xcall_receive_signal;

void smp_receive_signal(int cpu)
{
	if(smp_processors_ready &&
	   (cpu_present_map & (1UL<<cpu)) != 0) {
		u64 pstate, data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
		__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
		xcall_deliver(data0, 0, 0, pstate, cpu);
	}
}

void smp_report_regs(void)
{
	smp_cross_call(&xcall_report_regs, 0, 0, 0);
}

void smp_flush_cache_all(void)
{
	smp_cross_call(&xcall_flush_cache_all, 0, 0, 0);
	__flush_cache_all();
}

void smp_flush_tlb_all(void)
{
	smp_cross_call(&xcall_flush_tlb_all, 0, 0, 0);
	__flush_tlb_all();
}

/* We know that the window frames of the user have been flushed
 * to the stack before we get here because all callers of us
 * are flush_tlb_*() routines, and these run after flush_cache_*()
 * which performs the flushw.
 *
 * XXX I diked out the fancy flush avoidance code for the
 * XXX swapping cases for now until the new MM code stabilizes. -DaveM
 *
 * The SMP TLB coherency scheme we use works as follows:
 *
 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
 *    space has (potentially) executed on, this is the heuristic
 *    we use to avoid doing cross calls.
 *
 * 2) TLB context numbers are shared globally across all processors
 *    in the system, this allows us to play several games to avoid
 *    cross calls.
 *
 *    One invariant is that when a cpu switches to a process, and
 *    that processes tsk->active_mm->cpu_vm_mask does not have the
 *    current cpu's bit set, that tlb context is flushed locally.
 *
 *    If the address space is non-shared (ie. mm->count == 1) we avoid
 *    cross calls when we want to flush the currently running process's
 *    tlb state.  This is done by clearing all cpu bits except the current
 *    processor's in current->active_mm->cpu_vm_mask and performing the
 *    flush locally only.  This will force any subsequent cpus which run
 *    this task to flush the context from the local tlb if the process
 *    migrates to another cpu (again).
 *
 * 3) For shared address spaces (threads) and swapping we bite the
 *    bullet for most cases and perform the cross call.
 *
 *    The performance gain from "optimizing" away the cross call for threads is
 *    questionable (in theory the big win for threads is the massive sharing of
 *    address space state across processors).
 *
 *    For the swapping case the locking is difficult to get right, we'd have to
 *    enforce strict ordered access to mm->cpu_vm_mask via a spinlock for example.
 *    Then again one could argue that when you are swapping, the cost of a cross
 *    call won't even show up on the performance radar.  But in any case we do get
 *    rid of the cross-call when the task has a dead context or the task has only
 *    ever run on the local cpu.
 */
void smp_flush_tlb_mm(struct mm_struct *mm)
{
	if (CTX_VALID(mm->context)) {
		u32 ctx = CTX_HWBITS(mm->context);
		int cpu = smp_processor_id();

		if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
			/* See smp_flush_tlb_page for info about this. */
			mm->cpu_vm_mask = (1UL << cpu);
			goto local_flush_and_out;
		}

		smp_cross_call(&xcall_flush_tlb_mm, ctx, 0, 0);

	local_flush_and_out:
		__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
	}
}

void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
			 unsigned long end)
{
	if (CTX_VALID(mm->context)) {
		u32 ctx = CTX_HWBITS(mm->context);
		int cpu = smp_processor_id();

		start &= PAGE_MASK;
		end   &= PAGE_MASK;

		if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
			mm->cpu_vm_mask = (1UL << cpu);
			goto local_flush_and_out;
		}

		smp_cross_call(&xcall_flush_tlb_range, ctx, start, end);

	local_flush_and_out:
		__flush_tlb_range(ctx, start, SECONDARY_CONTEXT, end, PAGE_SIZE, (end-start));
	}
}

void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page)
{
	if (CTX_VALID(mm->context)) {
		u32 ctx = CTX_HWBITS(mm->context);
		int cpu = smp_processor_id();

		page &= PAGE_MASK;
		if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
			/* By virtue of being the current address space, and
			 * having the only reference to it, the following operation
			 * is safe.
			 *
			 * It would not be a win to perform the xcall tlb flush in
			 * this case, because even if we switch back to one of the
			 * other processors in cpu_vm_mask it is almost certain that
			 * all TLB entries for this context will be replaced by the
			 * time that happens.
			 */
			mm->cpu_vm_mask = (1UL << cpu);
			goto local_flush_and_out;
		} else {
			/* By virtue of running under the mm->page_table_lock,
			 * and mmu_context.h:switch_mm doing the same, the following
			 * operation is safe.
			 */
			if (mm->cpu_vm_mask == (1UL << cpu))
				goto local_flush_and_out;
		}

		/* OK, we have to actually perform the cross call.  Most likely
		 * this is a cloned mm or kswapd is kicking out pages for a task
		 * which has run recently on another cpu.
		 */
		smp_cross_call(&xcall_flush_tlb_page, ctx, page, 0);

	local_flush_and_out:
		__flush_tlb_page(ctx, page, SECONDARY_CONTEXT);
	}
}

/* CPU capture. */
/* #define CAPTURE_DEBUG */
extern unsigned long xcall_capture;

static atomic_t smp_capture_depth = ATOMIC_INIT(0);
static atomic_t smp_capture_registry = ATOMIC_INIT(0);
static unsigned long penguins_are_doing_time = 0;

void smp_capture(void)
{
	if (smp_processors_ready) {
		int result = __atomic_add(1, &smp_capture_depth);

		membar("#StoreStore | #LoadStore");
		if(result == 1) {
			int ncpus = smp_num_cpus;

#ifdef CAPTURE_DEBUG
			printk("CPU[%d]: Sending penguins to jail...",
			       smp_processor_id());
#endif
			penguins_are_doing_time = 1;
			membar("#StoreStore | #LoadStore");
			atomic_inc(&smp_capture_registry);
			smp_cross_call(&xcall_capture, 0, 0, 0);
			while(atomic_read(&smp_capture_registry) != ncpus)
				membar("#LoadLoad");
#ifdef CAPTURE_DEBUG
			printk("done\n");
#endif
		}
	}
}

void smp_release(void)
{
	if(smp_processors_ready) {
		if(atomic_dec_and_test(&smp_capture_depth)) {
#ifdef CAPTURE_DEBUG
			printk("CPU[%d]: Giving pardon to imprisoned penguins\n",
			       smp_processor_id());
#endif
			penguins_are_doing_time = 0;
			membar("#StoreStore | #StoreLoad");
			atomic_dec(&smp_capture_registry);
		}
	}
}

/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
 * can service tlb flush xcalls...
 */
extern void prom_world(int);
extern void save_alternate_globals(unsigned long *);
extern void restore_alternate_globals(unsigned long *);
void smp_penguin_jailcell(void)
{
	unsigned long global_save[24];

	__asm__ __volatile__("flushw");
	save_alternate_globals(global_save);
	prom_world(1);
	atomic_inc(&smp_capture_registry);
	membar("#StoreLoad | #StoreStore");
	while(penguins_are_doing_time)
		membar("#LoadLoad");
	restore_alternate_globals(global_save);
	atomic_dec(&smp_capture_registry);
	prom_world(0);
}

extern unsigned long xcall_promstop;

void smp_promstop_others(void)
{
	if (smp_processors_ready)
		smp_cross_call(&xcall_promstop, 0, 0, 0);
}

extern void sparc64_do_profile(unsigned long pc, unsigned long o7);

static unsigned long current_tick_offset;

#define prof_multiplier(__cpu)		cpu_data[(__cpu)].multiplier
#define prof_counter(__cpu)		cpu_data[(__cpu)].counter

void smp_percpu_timer_interrupt(struct pt_regs *regs)
{
	unsigned long compare, tick, pstate;
	int cpu = smp_processor_id();
	int user = user_mode(regs);

	/*
	 * Check for level 14 softint.
	 */
	if (!(get_softint() & (1UL << 0))) {
		extern void handler_irq(int, struct pt_regs *);

		handler_irq(14, regs);
		return;
	}

	clear_softint((1UL << 0));
	do {
		if (!user)
			sparc64_do_profile(regs->tpc, regs->u_regs[UREG_RETPC]);
		if (!--prof_counter(cpu)) {
			if (cpu == boot_cpu_id) {
				irq_enter(cpu, 0);

				kstat.irqs[cpu][0]++;
				timer_tick_interrupt(regs);

				irq_exit(cpu, 0);
			}

			update_process_times(user);

			prof_counter(cpu) = prof_multiplier(cpu);
		}

		/* Guarentee that the following sequences execute
		 * uninterrupted.
		 */
		__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
				     "wrpr	%0, %1, %%pstate"
				     : "=r" (pstate)
				     : "i" (PSTATE_IE));

		/* Workaround for Spitfire Errata (#54 I think??), I discovered
		 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
		 * number 103640.
		 *
		 * On Blackbird writes to %tick_cmpr can fail, the
		 * workaround seems to be to execute the wr instruction
		 * at the start of an I-cache line, and perform a dummy
		 * read back from %tick_cmpr right after writing to it. -DaveM
		 *
		 * Just to be anal we add a workaround for Spitfire
		 * Errata 50 by preventing pipeline bypasses on the
		 * final read of the %tick register into a compare
		 * instruction.  The Errata 50 description states
		 * that %tick is not prone to this bug, but I am not
		 * taking any chances.
		 */
		__asm__ __volatile__("rd	%%tick_cmpr, %0\n\t"
				     "ba,pt	%%xcc, 1f\n\t"
				     " add	%0, %2, %0\n\t"
				     ".align	64\n"
				  "1: wr	%0, 0x0, %%tick_cmpr\n\t"
				     "rd	%%tick_cmpr, %%g0\n\t"
				     "rd	%%tick, %1\n\t"
				     "mov	%1, %1"
				     : "=&r" (compare), "=r" (tick)
				     : "r" (current_tick_offset));

		/* Restore PSTATE_IE. */
		__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
				     : /* no outputs */
				     : "r" (pstate));
	} while (tick >= compare);
}

static void __init smp_setup_percpu_timer(void)
{
	int cpu = smp_processor_id();
	unsigned long pstate;

	prof_counter(cpu) = prof_multiplier(cpu) = 1;

	/* Guarentee that the following sequences execute
	 * uninterrupted.
	 */
	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
			     "wrpr	%0, %1, %%pstate"
			     : "=r" (pstate)
			     : "i" (PSTATE_IE));

	/* Workaround for Spitfire Errata (#54 I think??), I discovered
	 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
	 * number 103640.
	 *
	 * On Blackbird writes to %tick_cmpr can fail, the
	 * workaround seems to be to execute the wr instruction
	 * at the start of an I-cache line, and perform a dummy
	 * read back from %tick_cmpr right after writing to it. -DaveM
	 */
	__asm__ __volatile__("
		rd	%%tick, %%g1
		ba,pt	%%xcc, 1f
		 add	%%g1, %0, %%g1
		.align	64
	1:	wr	%%g1, 0x0, %%tick_cmpr
		rd	%%tick_cmpr, %%g0"
	: /* no outputs */
	: "r" (current_tick_offset)
	: "g1");

	/* Restore PSTATE_IE. */
	__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
			     : /* no outputs */
			     : "r" (pstate));
}

void __init smp_tick_init(void)
{
	int i;
	
	boot_cpu_id = hard_smp_processor_id();
	current_tick_offset = timer_tick_offset;
	cpu_present_map = 0;
	for(i = 0; i < linux_num_cpus; i++)
		cpu_present_map |= (1UL << linux_cpus[i].mid);
	for(i = 0; i < NR_CPUS; i++) {
		__cpu_number_map[i] = -1;
		__cpu_logical_map[i] = -1;
	}
	__cpu_number_map[boot_cpu_id] = 0;
	prom_cpu_nodes[boot_cpu_id] = linux_cpus[0].prom_node;
	__cpu_logical_map[0] = boot_cpu_id;
	current->processor = boot_cpu_id;
	prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
}

static inline unsigned long find_flush_base(unsigned long size)
{
	struct page *p = mem_map;
	unsigned long found, base;

	size = PAGE_ALIGN(size);
	found = size;
	base = (unsigned long) page_address(p);
	while(found != 0) {
		/* Failure. */
		if(p >= (mem_map + max_mapnr))
			return 0UL;
		if(PageReserved(p)) {
			found = size;
			base = (unsigned long) page_address(p);
		} else {
			found -= PAGE_SIZE;
		}
		p++;
	}
	return base;
}

cycles_t cacheflush_time;

static void __init smp_tune_scheduling (void)
{
	unsigned long orig_flush_base, flush_base, flags, *p;
	unsigned int ecache_size, order;
	cycles_t tick1, tick2, raw;

	/* Approximate heuristic for SMP scheduling.  It is an
	 * estimation of the time it takes to flush the L2 cache
	 * on the local processor.
	 *
	 * The ia32 chooses to use the L1 cache flush time instead,
	 * and I consider this complete nonsense.  The Ultra can service
	 * a miss to the L1 with a hit to the L2 in 7 or 8 cycles, and
	 * L2 misses are what create extra bus traffic (ie. the "cost"
	 * of moving a process from one cpu to another).
	 */
	printk("SMP: Calibrating ecache flush... ");
	ecache_size = prom_getintdefault(linux_cpus[0].prom_node,
					 "ecache-size", (512 * 1024));
	if (ecache_size > (4 * 1024 * 1024))
		ecache_size = (4 * 1024 * 1024);
	orig_flush_base = flush_base =
		__get_free_pages(GFP_KERNEL, order = get_order(ecache_size));

	if (flush_base != 0UL) {
		__save_and_cli(flags);

		/* Scan twice the size once just to get the TLB entries
		 * loaded and make sure the second scan measures pure misses.
		 */
		for (p = (unsigned long *)flush_base;
		     ((unsigned long)p) < (flush_base + (ecache_size<<1));
		     p += (64 / sizeof(unsigned long)))
			*((volatile unsigned long *)p);

		/* Now the real measurement. */
		__asm__ __volatile__("
		b,pt	%%xcc, 1f
		 rd	%%tick, %0

		.align	64
1:		ldx	[%2 + 0x000], %%g1
		ldx	[%2 + 0x040], %%g2
		ldx	[%2 + 0x080], %%g3
		ldx	[%2 + 0x0c0], %%g5
		add	%2, 0x100, %2
		cmp	%2, %4
		bne,pt	%%xcc, 1b
		 nop
	
		rd	%%tick, %1"
		: "=&r" (tick1), "=&r" (tick2), "=&r" (flush_base)
		: "2" (flush_base), "r" (flush_base + ecache_size)
		: "g1", "g2", "g3", "g5");

		__restore_flags(flags);

		raw = (tick2 - tick1);

		/* Dampen it a little, considering two processes
		 * sharing the cache and fitting.
		 */
		cacheflush_time = (raw - (raw >> 2));

		free_pages(orig_flush_base, order);
	} else {
		cacheflush_time = ((ecache_size << 2) +
				   (ecache_size << 1));
	}

	printk("Using heuristic of %d cycles.\n",
	       (int) cacheflush_time);
}

/* /proc/profile writes can call this, don't __init it please. */
int setup_profiling_timer(unsigned int multiplier)
{
	unsigned long flags;
	int i;

	if((!multiplier) || (timer_tick_offset / multiplier) < 1000)
		return -EINVAL;

	save_and_cli(flags);
	for(i = 0; i < NR_CPUS; i++) {
		if(cpu_present_map & (1UL << i))
			prof_multiplier(i) = multiplier;
	}
	current_tick_offset = (timer_tick_offset / multiplier);
	restore_flags(flags);

	return 0;
}