Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/* smp.c: Sparc64 SMP support.
 *
 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/tasks.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>

#include <asm/head.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/spinlock.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>
#include <asm/uaccess.h>

#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>

extern int linux_num_cpus;
extern void calibrate_delay(void);

volatile int smp_processors_ready = 0;
unsigned long cpu_present_map = 0;
int smp_num_cpus = 1;
int smp_threads_ready = 0;

struct cpuinfo_sparc cpu_data[NR_CPUS] __attribute__ ((aligned (64)));

static unsigned char boot_cpu_id = 0;
static int smp_activated = 0;

volatile int cpu_number_map[NR_CPUS];
volatile int cpu_logical_map[NR_CPUS];

struct klock_info klock_info = { KLOCK_CLEAR, 0 };

void smp_setup(char *str, int *ints)
{
	/* XXX implement me XXX */
}

static char smp_buf[512];

char *smp_info(void)
{
	/* XXX not SMP safe and need to support up to 64 penguins */
	sprintf(smp_buf,
"        CPU0\t\tCPU1\t\tCPU2\t\tCPU3\n"
"State:  %s\t\t%s\t\t%s\t\t%s\n",
(cpu_present_map & 1) ? ((klock_info.akp == 0) ? "akp" : "online") : "offline",
(cpu_present_map & 2) ? ((klock_info.akp == 1) ? "akp" : "online") : "offline",
(cpu_present_map & 4) ? ((klock_info.akp == 2) ? "akp" : "online") : "offline",
(cpu_present_map & 8) ? ((klock_info.akp == 3) ? "akp" : "online") : "offline");
	return smp_buf;
}

void smp_store_cpu_info(int id)
{
	cpu_data[id].udelay_val			= loops_per_sec;
	cpu_data[id].irq_count			= 0;
	cpu_data[id].last_tlbversion_seen	= tlb_context_cache & CTX_VERSION_MASK;
	cpu_data[id].pgcache_size		= 0;
	cpu_data[id].pgd_cache			= NULL;
	cpu_data[id].pmd_cache			= NULL;
	cpu_data[id].pte_cache			= NULL;
}

extern void distribute_irqs(void);

void smp_commence(void)
{
	distribute_irqs();
}

static void smp_setup_percpu_timer(void);

static volatile unsigned long callin_flag = 0;

extern void inherit_locked_prom_mappings(int save_p);
extern void cpu_probe(void);

void smp_callin(void)
{
	int cpuid = hard_smp_processor_id();

	inherit_locked_prom_mappings(0);

	__flush_cache_all();
	__flush_tlb_all();

	cpu_probe();

	/* Master did this already, now is the time for us to do it. */
	__asm__ __volatile__("
	sethi	%%hi(0x80000000), %%g1
	sllx	%%g1, 32, %%g1
	rd	%%tick, %%g2
	add	%%g2, 6, %%g2
	andn	%%g2, %%g1, %%g2
	wrpr	%%g2, 0, %%tick
"	: /* no outputs */
	: /* no inputs */
	: "g1", "g2");

	smp_setup_percpu_timer();

	__sti();

	calibrate_delay();
	smp_store_cpu_info(cpuid);
	callin_flag = 1;
	__asm__ __volatile__("membar #Sync\n\t"
			     "flush  %%g6" : : : "memory");

	while(!smp_processors_ready)
		membar("#LoadLoad");
}

extern int cpu_idle(void *unused);
extern void init_IRQ(void);

void initialize_secondary(void)
{
}

int start_secondary(void *unused)
{
	trap_init();
	init_IRQ();
	smp_callin();
	return cpu_idle(NULL);
}

void cpu_panic(void)
{
	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
	panic("SMP bolixed\n");
}

static void smp_tickoffset_init(void);

extern struct prom_cpuinfo linux_cpus[NR_CPUS];

extern unsigned long smp_trampoline;

void smp_boot_cpus(void)
{
	int cpucount = 0, i;

	printk("Entering UltraSMPenguin Mode...\n");
	smp_tickoffset_init();
	__sti();
	cpu_present_map = 0;
	for(i = 0; i < linux_num_cpus; i++)
		cpu_present_map |= (1UL << i);
	for(i = 0; i < NR_CPUS; i++) {
		cpu_number_map[i] = -1;
		cpu_logical_map[i] = -1;
	}
	cpu_number_map[boot_cpu_id] = 0;
	cpu_logical_map[0] = boot_cpu_id;
	klock_info.akp = boot_cpu_id;
	current->processor = boot_cpu_id;
	smp_store_cpu_info(boot_cpu_id);
	smp_setup_percpu_timer();

	if(linux_num_cpus == 1)
		return;

	for(i = 0; i < NR_CPUS; i++) {
		if(i == boot_cpu_id)
			continue;

		if(cpu_present_map & (1UL << i)) {
			unsigned long entry = (unsigned long)(&smp_trampoline);
			struct task_struct *p;
			int timeout;

			entry -= KERNBASE;
			kernel_thread(start_secondary, NULL, CLONE_PID);
			p = task[++cpucount];
			p->processor = i;
			callin_flag = 0;
			prom_startcpu(linux_cpus[i].prom_node,
				      entry, ((unsigned long)p));
			for(timeout = 0; timeout < 5000000; timeout++) {
				if(callin_flag)
					break;
				udelay(100);
			}
			if(callin_flag) {
				cpu_number_map[i] = i;
				cpu_logical_map[i] = i;
			} else {
				cpucount--;
				printk("Processor %d is stuck.\n", i);
			}
		}
		if(!callin_flag) {
			cpu_present_map &= ~(1UL << i);
			cpu_number_map[i] = -1;
		}
	}
	if(cpucount == 0) {
		printk("Error: only one processor found.\n");
		cpu_present_map = (1UL << smp_processor_id());
	} else {
		unsigned long bogosum = 0;

		for(i = 0; i < NR_CPUS; i++) {
			if(cpu_present_map & (1UL << i))
				bogosum += cpu_data[i].udelay_val;
		}
		printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
		       cpucount + 1,
		       (bogosum + 2500)/500000,
		       ((bogosum + 2500)/5000)%100);
		smp_activated = 1;
		smp_num_cpus = cpucount + 1;
	}
	smp_processors_ready = 1;
	membar("#StoreStore | #StoreLoad");
}

/* We don't even need to do anything, the only generic message pass done
 * anymore is to stop all cpus during a panic().  When the user drops to
 * the PROM prompt, the firmware will send the other cpu's it's MONDO
 * vector anyways, so doing anything special here is pointless.
 *
 * This whole thing should go away anyways...
 */
void smp_message_pass(int target, int msg, unsigned long data, int wait)
{
}

/* #define XCALL_DEBUG */

static inline void xcall_deliver(u64 data0, u64 data1, u64 data2, u64 pstate, int cpu)
{
	u64 result, target = (((unsigned long)linux_cpus[cpu].mid) << 14) | 0x70;
	int stuck;

#ifdef XCALL_DEBUG
	printk("CPU[%d]: xcall(data[%016lx:%016lx:%016lx],tgt[%016lx])\n",
	       smp_processor_id(), data0, data1, data2, target);
#endif
again:
	__asm__ __volatile__("
	wrpr	%0, %1, %%pstate
	wr	%%g0, %2, %%asi
	stxa	%3, [0x40] %%asi
	stxa	%4, [0x50] %%asi
	stxa	%5, [0x60] %%asi
	membar	#Sync
	stxa	%%g0, [%6] %%asi
	membar	#Sync"
	: /* No outputs */
	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_UDB_INTR_W),
	  "r" (data0), "r" (data1), "r" (data2), "r" (target));

	/* NOTE: PSTATE_IE is still clear. */
	stuck = 100000;
	do {
		__asm__ __volatile__("ldxa [%%g0] %1, %0"
			: "=r" (result)
			: "i" (ASI_INTR_DISPATCH_STAT));
		if(result == 0) {
			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
					     : : "r" (pstate));
			return;
		}
		stuck -= 1;
		if(stuck == 0)
			break;
	} while(result & 0x1);
	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
			     : : "r" (pstate));
	if(stuck == 0) {
#ifdef XCALL_DEBUG
		printk("CPU[%d]: mondo stuckage result[%016lx]\n",
		       smp_processor_id(), result);
#endif
	} else {
#ifdef XCALL_DEBUG
		printk("CPU[%d]: Penguin %d NACK's master.\n", smp_processor_id(), cpu);
#endif
		udelay(2);
		goto again;
	}
}

void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
{
	if(smp_processors_ready) {
		unsigned long mask = (cpu_present_map & ~(1UL<<smp_processor_id()));
		u64 pstate, data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
		int i, ncpus = smp_num_cpus;

		__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
		for(i = 0; i < ncpus; i++) {
			if(mask & (1UL << i))
				xcall_deliver(data0, data1, data2, pstate, i);
		}
		/* NOTE: Caller runs local copy on master. */
	}
}

extern unsigned long xcall_flush_tlb_page;
extern unsigned long xcall_flush_tlb_mm;
extern unsigned long xcall_flush_tlb_range;
extern unsigned long xcall_flush_tlb_all;
extern unsigned long xcall_tlbcachesync;
extern unsigned long xcall_flush_cache_all;
extern unsigned long xcall_report_regs;

void smp_report_regs(void)
{
	smp_cross_call(&xcall_report_regs, 0, 0, 0);
}

void smp_flush_cache_all(void)
{
	smp_cross_call(&xcall_flush_cache_all, 0, 0, 0);
	__flush_cache_all();
}

void smp_flush_tlb_all(void)
{
	smp_cross_call(&xcall_flush_tlb_all, 0, 0, 0);
	__flush_tlb_all();
}

static void smp_cross_call_avoidance(struct mm_struct *mm)
{
	spin_lock(&scheduler_lock);
	get_new_mmu_context(mm, &tlb_context_cache);
	mm->cpu_vm_mask = (1UL << smp_processor_id());
	if(segment_eq(current->tss.current_ds,USER_DS)) {
		u32 ctx = mm->context & 0x1fff;

		current->tss.ctx = ctx;
		spitfire_set_secondary_context(ctx);
		__asm__ __volatile__("flush %g6");
	}
	spin_unlock(&scheduler_lock);
}

void smp_flush_tlb_mm(struct mm_struct *mm)
{
	u32 ctx = mm->context & 0x1fff;

	if(mm == current->mm && mm->count == 1) {
		if(mm->cpu_vm_mask == (1UL << smp_processor_id()))
			goto local_flush_and_out;
		return smp_cross_call_avoidance(mm);
	}
	smp_cross_call(&xcall_flush_tlb_mm, ctx, 0, 0);

local_flush_and_out:
	__flush_tlb_mm(ctx);
}

void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
			 unsigned long end)
{
	u32 ctx = mm->context & 0x1fff;

	if(mm == current->mm && mm->count == 1) {
		if(mm->cpu_vm_mask == (1UL << smp_processor_id()))
			goto local_flush_and_out;
		return smp_cross_call_avoidance(mm);
	}
	smp_cross_call(&xcall_flush_tlb_range, ctx, start, end);

local_flush_and_out:
	__flush_tlb_range(ctx, start, end);
}

void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page)
{
	u32 ctx = mm->context & 0x1fff;

	if(mm == current->mm && mm->count == 1) {
		if(mm->cpu_vm_mask == (1UL << smp_processor_id()))
			goto local_flush_and_out;
		return smp_cross_call_avoidance(mm);
	}
#if 0 /* XXX Disabled until further notice... */
	else if(mm != current->mm && mm->count == 1) {
		/* Try to handle two special cases to avoid cross calls
		 * in common scenerios where we are swapping process
		 * pages out.
		 */
		if((mm->context ^ tlb_context_cache) & CTX_VERSION_MASK)
			return; /* It's dead, nothing to do. */
		if(mm->cpu_vm_mask == (1UL << smp_processor_id()))
			goto local_flush_and_out;
	}
#endif
	smp_cross_call(&xcall_flush_tlb_page, ctx, page, 0);

local_flush_and_out:
	__flush_tlb_page(ctx, page);
}

/* CPU capture. */
#define CAPTURE_DEBUG
extern unsigned long xcall_capture;

static atomic_t smp_capture_depth = ATOMIC_INIT(0);
static atomic_t smp_capture_registry = ATOMIC_INIT(0);
static unsigned long penguins_are_doing_time = 0;

void smp_capture(void)
{
	int result = atomic_add_return(1, &smp_capture_depth);

	membar("#StoreStore | #LoadStore");
	if(result == 1) {
		int ncpus = smp_num_cpus;

#ifdef CAPTURE_DEBUG
		printk("CPU[%d]: Sending penguins to jail...", smp_processor_id());
#endif
		penguins_are_doing_time = 1;
		membar("#StoreStore | #LoadStore");
		atomic_inc(&smp_capture_registry);
		smp_cross_call(&xcall_capture, 0, 0, 0);
		while(atomic_read(&smp_capture_registry) != ncpus)
			membar("#LoadLoad");
#ifdef CAPTURE_DEBUG
		printk("done\n");
#endif
	}
}

void smp_release(void)
{
	if(atomic_dec_and_test(&smp_capture_depth)) {
#ifdef CAPTURE_DEBUG
		printk("CPU[%d]: Giving pardon to imprisoned penguins\n",
		       smp_processor_id());
#endif
		penguins_are_doing_time = 0;
		membar("#StoreStore | #StoreLoad");
		atomic_dec(&smp_capture_registry);
	}
}

/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
 * can service tlb flush xcalls...
 */
void smp_penguin_jailcell(void)
{
	flushw_user();
	atomic_inc(&smp_capture_registry);
	membar("#StoreLoad | #StoreStore");
	while(penguins_are_doing_time)
		membar("#LoadLoad");
	atomic_dec(&smp_capture_registry);
}

static inline void sparc64_do_profile(unsigned long pc)
{
#ifdef CONFIG_PROFILE
	if(prof_buffer && current->pid) {
		extern int _stext;

		pc -= (unsigned long) &_stext;
		pc >>= prof_shift;

		if(pc >= prof_len)
			pc = prof_len - 1;
		atomic_inc((atomic_t *)&prof_buffer[pc]);
	}
#endif
}

static unsigned long real_tick_offset, current_tick_offset;

#define prof_multiplier(__cpu)		cpu_data[(__cpu)].multiplier
#define prof_counter(__cpu)		cpu_data[(__cpu)].counter

extern void update_one_process(struct task_struct *p, unsigned long ticks,
			       unsigned long user, unsigned long system);

void smp_percpu_timer_interrupt(struct pt_regs *regs)
{
	unsigned long compare, tick;
	int cpu = smp_processor_id();
	int user = user_mode(regs);

	clear_softint((1UL << 0));
	do {
		if(!user)
			sparc64_do_profile(regs->tpc);
		if(!--prof_counter(cpu)) {
			if(current->pid) {
				unsigned int *inc_me;

				update_one_process(current, 1, user, !user);
				if(--current->counter < 0) {
					current->counter = 0;
					need_resched = 1;
				}

				if(user) {
					if(current->priority < DEF_PRIORITY)
						inc_me = &kstat.cpu_nice;
					else
						inc_me = &kstat.cpu_user;
				} else {
					inc_me = &kstat.cpu_system;
				}
				atomic_inc((atomic_t *)inc_me);
			}
			prof_counter(cpu) = prof_multiplier(cpu);
		}
		__asm__ __volatile__("rd	%%tick_cmpr, %0\n\t"
				     "add	%0, %2, %0\n\t"
				     "wr	%0, 0x0, %%tick_cmpr\n\t"
				     "rd	%%tick, %1"
				     : "=&r" (compare), "=r" (tick)
				     : "r" (current_tick_offset));
	} while (tick >= compare);
}

static void smp_setup_percpu_timer(void)
{
	int cpu = smp_processor_id();

	prof_counter(cpu) = prof_multiplier(cpu) = 1;

	__asm__ __volatile__("rd	%%tick, %%g1\n\t"
			     "add	%%g1, %0, %%g1\n\t"
			     "wr	%%g1, 0x0, %%tick_cmpr"
			     : /* no outputs */
			     : "r" (current_tick_offset)
			     : "g1");
}

static void smp_tickoffset_init(void)
{
	int node;

	node = linux_cpus[0].prom_node;
	real_tick_offset = prom_getint(node, "clock-frequency");
	real_tick_offset = real_tick_offset / HZ;
	current_tick_offset = real_tick_offset;
}

int setup_profiling_timer(unsigned int multiplier)
{
	unsigned long flags;
	int i;

	if((!multiplier) || (real_tick_offset / multiplier) < 1000)
		return -EINVAL;

	save_and_cli(flags);
	for(i = 0; i < NR_CPUS; i++) {
		if(cpu_present_map & (1UL << i))
			prof_multiplier(i) = multiplier;
	}
	current_tick_offset = (real_tick_offset / multiplier);
	restore_flags(flags);

	return 0;
}