Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 | /* * linux/fs/inode.c * * (C) 1997 Linus Torvalds */ #include <linux/config.h> #include <linux/fs.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/dcache.h> #include <linux/init.h> #include <linux/quotaops.h> #include <linux/slab.h> #include <linux/cache.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/prefetch.h> #include <linux/locks.h> /* * New inode.c implementation. * * This implementation has the basic premise of trying * to be extremely low-overhead and SMP-safe, yet be * simple enough to be "obviously correct". * * Famous last words. */ /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ /* #define INODE_PARANOIA 1 */ /* #define INODE_DEBUG 1 */ /* * Inode lookup is no longer as critical as it used to be: * most of the lookups are going to be through the dcache. */ #define I_HASHBITS i_hash_shift #define I_HASHMASK i_hash_mask static unsigned int i_hash_mask; static unsigned int i_hash_shift; /* * Each inode can be on two separate lists. One is * the hash list of the inode, used for lookups. The * other linked list is the "type" list: * "in_use" - valid inode, i_count > 0, i_nlink > 0 * "dirty" - as "in_use" but also dirty * "unused" - valid inode, i_count = 0 * * A "dirty" list is maintained for each super block, * allowing for low-overhead inode sync() operations. */ static LIST_HEAD(inode_in_use); static LIST_HEAD(inode_unused); static struct list_head *inode_hashtable; static LIST_HEAD(anon_hash_chain); /* for inodes with NULL i_sb */ /* * A simple spinlock to protect the list manipulations. * * NOTE! You also have to own the lock if you change * the i_state of an inode while it is in use.. */ spinlock_t inode_lock = SPIN_LOCK_UNLOCKED; /* * Statistics gathering.. */ struct inodes_stat_t inodes_stat; static kmem_cache_t * inode_cachep; #define alloc_inode() \ ((struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL)) static void destroy_inode(struct inode *inode) { if (inode_has_buffers(inode)) BUG(); kmem_cache_free(inode_cachep, (inode)); } /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode, so let the slab aware of that. */ static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) { struct inode * inode = (struct inode *) foo; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { memset(inode, 0, sizeof(*inode)); init_waitqueue_head(&inode->i_wait); INIT_LIST_HEAD(&inode->i_hash); INIT_LIST_HEAD(&inode->i_data.clean_pages); INIT_LIST_HEAD(&inode->i_data.dirty_pages); INIT_LIST_HEAD(&inode->i_data.locked_pages); INIT_LIST_HEAD(&inode->i_dentry); INIT_LIST_HEAD(&inode->i_dirty_buffers); INIT_LIST_HEAD(&inode->i_dirty_data_buffers); INIT_LIST_HEAD(&inode->i_devices); sema_init(&inode->i_sem, 1); sema_init(&inode->i_zombie, 1); spin_lock_init(&inode->i_data.i_shared_lock); } } /* * Put the inode on the super block's dirty list. * * CAREFUL! We mark it dirty unconditionally, but * move it onto the dirty list only if it is hashed. * If it was not hashed, it will never be added to * the dirty list even if it is later hashed, as it * will have been marked dirty already. * * In short, make sure you hash any inodes _before_ * you start marking them dirty.. */ /** * __mark_inode_dirty - internal function * @inode: inode to mark * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) * Mark an inode as dirty. Callers should use mark_inode_dirty or * mark_inode_dirty_sync. */ void __mark_inode_dirty(struct inode *inode, int flags) { struct super_block * sb = inode->i_sb; if (!sb) return; /* Don't do this for I_DIRTY_PAGES - that doesn't actually dirty the inode itself */ if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { if (sb->s_op && sb->s_op->dirty_inode) sb->s_op->dirty_inode(inode); } /* avoid the locking if we can */ if ((inode->i_state & flags) == flags) return; spin_lock(&inode_lock); if ((inode->i_state & flags) != flags) { inode->i_state |= flags; /* Only add valid (ie hashed) inodes to the dirty list */ if (!(inode->i_state & I_LOCK) && !list_empty(&inode->i_hash)) { list_del(&inode->i_list); list_add(&inode->i_list, &sb->s_dirty); } } spin_unlock(&inode_lock); } static void __wait_on_inode(struct inode * inode) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&inode->i_wait, &wait); repeat: set_current_state(TASK_UNINTERRUPTIBLE); if (inode->i_state & I_LOCK) { schedule(); goto repeat; } remove_wait_queue(&inode->i_wait, &wait); current->state = TASK_RUNNING; } static inline void wait_on_inode(struct inode *inode) { if (inode->i_state & I_LOCK) __wait_on_inode(inode); } static inline void write_inode(struct inode *inode, int sync) { if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) inode->i_sb->s_op->write_inode(inode, sync); } static inline void __iget(struct inode * inode) { if (atomic_read(&inode->i_count)) { atomic_inc(&inode->i_count); return; } atomic_inc(&inode->i_count); if (!(inode->i_state & (I_DIRTY|I_LOCK))) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_in_use); } inodes_stat.nr_unused--; } static inline void __sync_one(struct inode *inode, int sync) { unsigned dirty; list_del(&inode->i_list); list_add(&inode->i_list, &inode->i_sb->s_locked_inodes); if (inode->i_state & I_LOCK) BUG(); /* Set I_LOCK, reset I_DIRTY */ dirty = inode->i_state & I_DIRTY; inode->i_state |= I_LOCK; inode->i_state &= ~I_DIRTY; spin_unlock(&inode_lock); filemap_fdatasync(inode->i_mapping); /* Don't write the inode if only I_DIRTY_PAGES was set */ if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) write_inode(inode, sync); filemap_fdatawait(inode->i_mapping); spin_lock(&inode_lock); inode->i_state &= ~I_LOCK; if (!(inode->i_state & I_FREEING)) { struct list_head *to; if (inode->i_state & I_DIRTY) to = &inode->i_sb->s_dirty; else if (atomic_read(&inode->i_count)) to = &inode_in_use; else to = &inode_unused; list_del(&inode->i_list); list_add(&inode->i_list, to); } wake_up(&inode->i_wait); } static inline void sync_one(struct inode *inode, int sync) { if (inode->i_state & I_LOCK) { __iget(inode); spin_unlock(&inode_lock); __wait_on_inode(inode); iput(inode); spin_lock(&inode_lock); } else { __sync_one(inode, sync); } } static inline void sync_list(struct list_head *head) { struct list_head * tmp; while ((tmp = head->prev) != head) __sync_one(list_entry(tmp, struct inode, i_list), 0); } static inline void wait_on_locked(struct list_head *head) { struct list_head * tmp; while ((tmp = head->prev) != head) { struct inode *inode = list_entry(tmp, struct inode, i_list); __iget(inode); spin_unlock(&inode_lock); __wait_on_inode(inode); iput(inode); spin_lock(&inode_lock); } } static inline int try_to_sync_unused_list(struct list_head *head, int nr_inodes) { struct list_head *tmp = head; struct inode *inode; while (nr_inodes && (tmp = tmp->prev) != head) { inode = list_entry(tmp, struct inode, i_list); if (!atomic_read(&inode->i_count)) { __sync_one(inode, 0); nr_inodes--; /* * __sync_one moved the inode to another list, * so we have to start looking from the list head. */ tmp = head; } } return nr_inodes; } void sync_inodes_sb(struct super_block *sb) { spin_lock(&inode_lock); while (!list_empty(&sb->s_dirty)||!list_empty(&sb->s_locked_inodes)) { sync_list(&sb->s_dirty); wait_on_locked(&sb->s_locked_inodes); } spin_unlock(&inode_lock); } /* * Note: * We don't need to grab a reference to superblock here. If it has non-empty * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed * past sync_inodes_sb() until both ->s_dirty and ->s_locked_inodes are * empty. Since __sync_one() regains inode_lock before it finally moves * inode from superblock lists we are OK. */ void sync_unlocked_inodes(void) { struct super_block * sb; spin_lock(&inode_lock); spin_lock(&sb_lock); sb = sb_entry(super_blocks.next); for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) { if (!list_empty(&sb->s_dirty)) { spin_unlock(&sb_lock); sync_list(&sb->s_dirty); spin_lock(&sb_lock); } } spin_unlock(&sb_lock); spin_unlock(&inode_lock); } /* * Find a superblock with inodes that need to be synced */ static struct super_block *get_super_to_sync(void) { struct list_head *p; restart: spin_lock(&inode_lock); spin_lock(&sb_lock); list_for_each(p, &super_blocks) { struct super_block *s = list_entry(p,struct super_block,s_list); if (list_empty(&s->s_dirty) && list_empty(&s->s_locked_inodes)) continue; s->s_count++; spin_unlock(&sb_lock); spin_unlock(&inode_lock); down_read(&s->s_umount); if (!s->s_root) { drop_super(s); goto restart; } return s; } spin_unlock(&sb_lock); spin_unlock(&inode_lock); return NULL; } /** * sync_inodes * @dev: device to sync the inodes from. * * sync_inodes goes through the super block's dirty list, * writes them out, and puts them back on the normal list. */ void sync_inodes(kdev_t dev) { struct super_block * s; /* * Search the super_blocks array for the device(s) to sync. */ if (dev) { if ((s = get_super(dev)) != NULL) { sync_inodes_sb(s); drop_super(s); } } else { while ((s = get_super_to_sync()) != NULL) { sync_inodes_sb(s); drop_super(s); } } } static void try_to_sync_unused_inodes(void * arg) { struct super_block * sb; int nr_inodes = inodes_stat.nr_unused; spin_lock(&inode_lock); spin_lock(&sb_lock); sb = sb_entry(super_blocks.next); for (; nr_inodes && sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) { spin_unlock(&sb_lock); nr_inodes = try_to_sync_unused_list(&sb->s_dirty, nr_inodes); spin_lock(&sb_lock); } spin_unlock(&sb_lock); spin_unlock(&inode_lock); } static struct tq_struct unused_inodes_flush_task; /** * write_inode_now - write an inode to disk * @inode: inode to write to disk * @sync: whether the write should be synchronous or not * * This function commits an inode to disk immediately if it is * dirty. This is primarily needed by knfsd. */ void write_inode_now(struct inode *inode, int sync) { struct super_block * sb = inode->i_sb; if (sb) { spin_lock(&inode_lock); while (inode->i_state & I_DIRTY) sync_one(inode, sync); spin_unlock(&inode_lock); if (sync) wait_on_inode(inode); } else printk(KERN_ERR "write_inode_now: no super block\n"); } /** * generic_osync_inode - flush all dirty data for a given inode to disk * @inode: inode to write * @datasync: if set, don't bother flushing timestamps * * This can be called by file_write functions for files which have the * O_SYNC flag set, to flush dirty writes to disk. */ int generic_osync_inode(struct inode *inode, int what) { int err = 0, err2 = 0, need_write_inode_now = 0; /* * WARNING * * Currently, the filesystem write path does not pass the * filp down to the low-level write functions. Therefore it * is impossible for (say) __block_commit_write to know if * the operation is O_SYNC or not. * * Ideally, O_SYNC writes would have the filesystem call * ll_rw_block as it went to kick-start the writes, and we * could call osync_inode_buffers() here to wait only for * those IOs which have already been submitted to the device * driver layer. As it stands, if we did this we'd not write * anything to disk since our writes have not been queued by * this point: they are still on the dirty LRU. * * So, currently we will call fsync_inode_buffers() instead, * to flush _all_ dirty buffers for this inode to disk on * every O_SYNC write, not just the synchronous I/Os. --sct */ if (what & OSYNC_METADATA) err = fsync_inode_buffers(inode); if (what & OSYNC_DATA) err2 = fsync_inode_data_buffers(inode); if (!err) err = err2; spin_lock(&inode_lock); if ((inode->i_state & I_DIRTY) && ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) need_write_inode_now = 1; spin_unlock(&inode_lock); if (need_write_inode_now) write_inode_now(inode, 1); else wait_on_inode(inode); return err; } /** * clear_inode - clear an inode * @inode: inode to clear * * This is called by the filesystem to tell us * that the inode is no longer useful. We just * terminate it with extreme prejudice. */ void clear_inode(struct inode *inode) { invalidate_inode_buffers(inode); if (inode->i_data.nrpages) BUG(); if (!(inode->i_state & I_FREEING)) BUG(); if (inode->i_state & I_CLEAR) BUG(); wait_on_inode(inode); DQUOT_DROP(inode); if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode) inode->i_sb->s_op->clear_inode(inode); if (inode->i_bdev) bd_forget(inode); else if (inode->i_cdev) { cdput(inode->i_cdev); inode->i_cdev = NULL; } inode->i_state = I_CLEAR; } /* * Dispose-list gets a local list with local inodes in it, so it doesn't * need to worry about list corruption and SMP locks. */ static void dispose_list(struct list_head * head) { struct list_head * inode_entry; struct inode * inode; while ((inode_entry = head->next) != head) { list_del(inode_entry); inode = list_entry(inode_entry, struct inode, i_list); if (inode->i_data.nrpages) truncate_inode_pages(&inode->i_data, 0); clear_inode(inode); destroy_inode(inode); inodes_stat.nr_inodes--; } } /* * Invalidate all inodes for a device. */ static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose) { struct list_head *next; int busy = 0, count = 0; next = head->next; for (;;) { struct list_head * tmp = next; struct inode * inode; next = next->next; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_list); if (inode->i_sb != sb) continue; invalidate_inode_buffers(inode); if (!atomic_read(&inode->i_count)) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); list_add(&inode->i_list, dispose); inode->i_state |= I_FREEING; count++; continue; } busy = 1; } /* only unused inodes may be cached with i_count zero */ inodes_stat.nr_unused -= count; return busy; } /* * This is a two-stage process. First we collect all * offending inodes onto the throw-away list, and in * the second stage we actually dispose of them. This * is because we don't want to sleep while messing * with the global lists.. */ /** * invalidate_inodes - discard the inodes on a device * @sb: superblock * * Discard all of the inodes for a given superblock. If the discard * fails because there are busy inodes then a non zero value is returned. * If the discard is successful all the inodes have been discarded. */ int invalidate_inodes(struct super_block * sb) { int busy; LIST_HEAD(throw_away); spin_lock(&inode_lock); busy = invalidate_list(&inode_in_use, sb, &throw_away); busy |= invalidate_list(&inode_unused, sb, &throw_away); busy |= invalidate_list(&sb->s_dirty, sb, &throw_away); busy |= invalidate_list(&sb->s_locked_inodes, sb, &throw_away); spin_unlock(&inode_lock); dispose_list(&throw_away); return busy; } int invalidate_device(kdev_t dev, int do_sync) { struct super_block *sb; int res; if (do_sync) fsync_dev(dev); res = 0; sb = get_super(dev); if (sb) { /* * no need to lock the super, get_super holds the * read semaphore so the filesystem cannot go away * under us (->put_super runs with the write lock * hold). */ shrink_dcache_sb(sb); res = invalidate_inodes(sb); drop_super(sb); } invalidate_buffers(dev); return res; } /* * This is called with the inode lock held. It searches * the in-use for freeable inodes, which are moved to a * temporary list and then placed on the unused list by * dispose_list. * * We don't expect to have to call this very often. * * N.B. The spinlock is released during the call to * dispose_list. */ #define CAN_UNUSE(inode) \ ((((inode)->i_state | (inode)->i_data.nrpages) == 0) && \ !inode_has_buffers(inode)) #define INODE(entry) (list_entry(entry, struct inode, i_list)) void prune_icache(int goal) { LIST_HEAD(list); struct list_head *entry, *freeable = &list; int count; struct inode * inode; spin_lock(&inode_lock); count = 0; entry = inode_unused.prev; while (entry != &inode_unused) { struct list_head *tmp = entry; entry = entry->prev; inode = INODE(tmp); if (inode->i_state & (I_FREEING|I_CLEAR|I_LOCK)) BUG(); if (!CAN_UNUSE(inode)) continue; if (atomic_read(&inode->i_count)) BUG(); list_del(tmp); list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_add(tmp, freeable); inode->i_state |= I_FREEING; count++; if (!--goal) break; } inodes_stat.nr_unused -= count; spin_unlock(&inode_lock); dispose_list(freeable); /* * If we didn't freed enough clean inodes schedule * a sync of the dirty inodes, we cannot do it * from here or we're either synchronously dogslow * or we deadlock with oom. */ if (goal) schedule_task(&unused_inodes_flush_task); } int shrink_icache_memory(int priority, int gfp_mask) { int count = 0; /* * Nasty deadlock avoidance.. * * We may hold various FS locks, and we don't * want to recurse into the FS that called us * in clear_inode() and friends.. */ if (!(gfp_mask & __GFP_FS)) return 0; count = inodes_stat.nr_unused / priority; prune_icache(count); kmem_cache_shrink(inode_cachep); return 0; } /* * Called with the inode lock held. * NOTE: we are not increasing the inode-refcount, you must call __iget() * by hand after calling find_inode now! This simplifies iunique and won't * add any additional branch in the common code. */ static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque) { struct list_head *tmp; struct inode * inode; tmp = head; for (;;) { tmp = tmp->next; inode = NULL; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_hash); if (inode->i_ino != ino) continue; if (inode->i_sb != sb) continue; if (find_actor && !find_actor(inode, ino, opaque)) continue; break; } return inode; } /* * This just initializes the inode fields * to known values before returning the inode.. * * i_sb, i_ino, i_count, i_state and the lists have * been initialized elsewhere.. */ static void clean_inode(struct inode *inode) { static struct address_space_operations empty_aops; static struct inode_operations empty_iops; static struct file_operations empty_fops; memset(&inode->u, 0, sizeof(inode->u)); inode->i_sock = 0; inode->i_op = &empty_iops; inode->i_fop = &empty_fops; inode->i_nlink = 1; atomic_set(&inode->i_writecount, 0); inode->i_size = 0; inode->i_blocks = 0; inode->i_generation = 0; memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); inode->i_pipe = NULL; inode->i_bdev = NULL; inode->i_cdev = NULL; inode->i_data.a_ops = &empty_aops; inode->i_data.host = inode; inode->i_data.gfp_mask = GFP_HIGHUSER; inode->i_mapping = &inode->i_data; } /** * get_empty_inode - obtain an inode * * This is called by things like the networking layer * etc that want to get an inode without any inode * number, or filesystems that allocate new inodes with * no pre-existing information. * * On a successful return the inode pointer is returned. On a failure * a %NULL pointer is returned. The returned inode is not on any superblock * lists. */ struct inode * get_empty_inode(void) { static unsigned long last_ino; struct inode * inode; spin_lock_prefetch(&inode_lock); inode = alloc_inode(); if (inode) { spin_lock(&inode_lock); inodes_stat.nr_inodes++; list_add(&inode->i_list, &inode_in_use); inode->i_sb = NULL; inode->i_dev = 0; inode->i_ino = ++last_ino; inode->i_flags = 0; atomic_set(&inode->i_count, 1); inode->i_state = 0; spin_unlock(&inode_lock); clean_inode(inode); } return inode; } /* * This is called without the inode lock held.. Be careful. * * We no longer cache the sb_flags in i_flags - see fs.h * -- rmk@arm.uk.linux.org */ static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque) { struct inode * inode; inode = alloc_inode(); if (inode) { struct inode * old; spin_lock(&inode_lock); /* We released the lock, so.. */ old = find_inode(sb, ino, head, find_actor, opaque); if (!old) { inodes_stat.nr_inodes++; list_add(&inode->i_list, &inode_in_use); list_add(&inode->i_hash, head); inode->i_sb = sb; inode->i_dev = sb->s_dev; inode->i_ino = ino; inode->i_flags = 0; atomic_set(&inode->i_count, 1); inode->i_state = I_LOCK; spin_unlock(&inode_lock); clean_inode(inode); /* reiserfs specific hack right here. We don't ** want this to last, and are looking for VFS changes ** that will allow us to get rid of it. ** -- mason@suse.com */ if (sb->s_op->read_inode2) { sb->s_op->read_inode2(inode, opaque) ; } else { sb->s_op->read_inode(inode); } /* * This is special! We do not need the spinlock * when clearing I_LOCK, because we're guaranteed * that nobody else tries to do anything about the * state of the inode when it is locked, as we * just created it (so there can be no old holders * that haven't tested I_LOCK). */ inode->i_state &= ~I_LOCK; wake_up(&inode->i_wait); return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ __iget(old); spin_unlock(&inode_lock); destroy_inode(inode); inode = old; wait_on_inode(inode); } return inode; } static inline unsigned long hash(struct super_block *sb, unsigned long i_ino) { unsigned long tmp = i_ino + ((unsigned long) sb / L1_CACHE_BYTES); tmp = tmp + (tmp >> I_HASHBITS); return tmp & I_HASHMASK; } /* Yeah, I know about quadratic hash. Maybe, later. */ /** * iunique - get a unique inode number * @sb: superblock * @max_reserved: highest reserved inode number * * Obtain an inode number that is unique on the system for a given * superblock. This is used by file systems that have no natural * permanent inode numbering system. An inode number is returned that * is higher than the reserved limit but unique. * * BUGS: * With a large number of inodes live on the file system this function * currently becomes quite slow. */ ino_t iunique(struct super_block *sb, ino_t max_reserved) { static ino_t counter = 0; struct inode *inode; struct list_head * head; ino_t res; spin_lock(&inode_lock); retry: if (counter > max_reserved) { head = inode_hashtable + hash(sb,counter); inode = find_inode(sb, res = counter++, head, NULL, NULL); if (!inode) { spin_unlock(&inode_lock); return res; } } else { counter = max_reserved + 1; } goto retry; } struct inode *igrab(struct inode *inode) { spin_lock(&inode_lock); if (!(inode->i_state & I_FREEING)) __iget(inode); else /* * Handle the case where s_op->clear_inode is not been * called yet, and somebody is calling igrab * while the inode is getting freed. */ inode = NULL; spin_unlock(&inode_lock); if (inode) wait_on_inode(inode); return inode; } struct inode *iget4(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque) { struct list_head * head = inode_hashtable + hash(sb,ino); struct inode * inode; spin_lock(&inode_lock); inode = find_inode(sb, ino, head, find_actor, opaque); if (inode) { __iget(inode); spin_unlock(&inode_lock); wait_on_inode(inode); return inode; } spin_unlock(&inode_lock); /* * get_new_inode() will do the right thing, re-trying the search * in case it had to block at any point. */ return get_new_inode(sb, ino, head, find_actor, opaque); } /** * insert_inode_hash - hash an inode * @inode: unhashed inode * * Add an inode to the inode hash for this superblock. If the inode * has no superblock it is added to a separate anonymous chain. */ void insert_inode_hash(struct inode *inode) { struct list_head *head = &anon_hash_chain; if (inode->i_sb) head = inode_hashtable + hash(inode->i_sb, inode->i_ino); spin_lock(&inode_lock); list_add(&inode->i_hash, head); spin_unlock(&inode_lock); } /** * remove_inode_hash - remove an inode from the hash * @inode: inode to unhash * * Remove an inode from the superblock or anonymous hash. */ void remove_inode_hash(struct inode *inode) { spin_lock(&inode_lock); list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); spin_unlock(&inode_lock); } /** * iput - put an inode * @inode: inode to put * * Puts an inode, dropping its usage count. If the inode use count hits * zero the inode is also then freed and may be destroyed. */ void iput(struct inode *inode) { if (inode) { struct super_operations *op = NULL; if (inode->i_state == I_CLEAR) BUG(); if (inode->i_sb && inode->i_sb->s_op) op = inode->i_sb->s_op; if (op && op->put_inode) op->put_inode(inode); if (!atomic_dec_and_lock(&inode->i_count, &inode_lock)) return; if (!inode->i_nlink) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); INIT_LIST_HEAD(&inode->i_list); inode->i_state|=I_FREEING; inodes_stat.nr_inodes--; spin_unlock(&inode_lock); if (inode->i_data.nrpages) truncate_inode_pages(&inode->i_data, 0); if (op && op->delete_inode) { void (*delete)(struct inode *) = op->delete_inode; if (!is_bad_inode(inode)) DQUOT_INIT(inode); /* s_op->delete_inode internally recalls clear_inode() */ delete(inode); } else clear_inode(inode); if (inode->i_state != I_CLEAR) BUG(); } else { if (!list_empty(&inode->i_hash)) { if (!(inode->i_state & (I_DIRTY|I_LOCK))) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_unused); } inodes_stat.nr_unused++; spin_unlock(&inode_lock); return; } else { /* magic nfs path */ list_del(&inode->i_list); INIT_LIST_HEAD(&inode->i_list); inode->i_state|=I_FREEING; inodes_stat.nr_inodes--; spin_unlock(&inode_lock); if (inode->i_data.nrpages) truncate_inode_pages(&inode->i_data, 0); clear_inode(inode); } } destroy_inode(inode); } } void force_delete(struct inode *inode) { /* * Kill off unused inodes ... iput() will unhash and * delete the inode if we set i_nlink to zero. */ if (atomic_read(&inode->i_count) == 1) inode->i_nlink = 0; } /** * bmap - find a block number in a file * @inode: inode of file * @block: block to find * * Returns the block number on the device holding the inode that * is the disk block number for the block of the file requested. * That is, asked for block 4 of inode 1 the function will return the * disk block relative to the disk start that holds that block of the * file. */ int bmap(struct inode * inode, int block) { int res = 0; if (inode->i_mapping->a_ops->bmap) res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); return res; } /* * Initialize the hash tables. */ void __init inode_init(unsigned long mempages) { struct list_head *head; unsigned long order; unsigned int nr_hash; int i; mempages >>= (14 - PAGE_SHIFT); mempages *= sizeof(struct list_head); for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++) ; do { unsigned long tmp; nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct list_head); i_hash_mask = (nr_hash - 1); tmp = nr_hash; i_hash_shift = 0; while ((tmp >>= 1UL) != 0UL) i_hash_shift++; inode_hashtable = (struct list_head *) __get_free_pages(GFP_ATOMIC, order); } while (inode_hashtable == NULL && --order >= 0); printk("Inode-cache hash table entries: %d (order: %ld, %ld bytes)\n", nr_hash, order, (PAGE_SIZE << order)); if (!inode_hashtable) panic("Failed to allocate inode hash table\n"); head = inode_hashtable; i = nr_hash; do { INIT_LIST_HEAD(head); head++; i--; } while (i); /* inode slab cache */ inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 0, SLAB_HWCACHE_ALIGN, init_once, NULL); if (!inode_cachep) panic("cannot create inode slab cache"); unused_inodes_flush_task.routine = try_to_sync_unused_inodes; } /** * update_atime - update the access time * @inode: inode accessed * * Update the accessed time on an inode and mark it for writeback. * This function automatically handles read only file systems and media, * as well as the "noatime" flag and inode specific "noatime" markers. */ void update_atime (struct inode *inode) { if ( IS_NOATIME (inode) ) return; if ( IS_NODIRATIME (inode) && S_ISDIR (inode->i_mode) ) return; if ( IS_RDONLY (inode) ) return; inode->i_atime = CURRENT_TIME; mark_inode_dirty_sync (inode); } /* End Function update_atime */ /* * Quota functions that want to walk the inode lists.. */ #ifdef CONFIG_QUOTA /* Functions back in dquot.c */ void put_dquot_list(struct list_head *); int remove_inode_dquot_ref(struct inode *, short, struct list_head *); void remove_dquot_ref(struct super_block *sb, short type) { struct inode *inode; struct list_head *act_head; LIST_HEAD(tofree_head); if (!sb->dq_op) return; /* nothing to do */ /* We have to be protected against other CPUs */ spin_lock(&inode_lock); list_for_each(act_head, &inode_in_use) { inode = list_entry(act_head, struct inode, i_list); if (inode->i_sb == sb && IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } list_for_each(act_head, &inode_unused) { inode = list_entry(act_head, struct inode, i_list); if (inode->i_sb == sb && IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } list_for_each(act_head, &sb->s_dirty) { inode = list_entry(act_head, struct inode, i_list); if (IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } list_for_each(act_head, &sb->s_locked_inodes) { inode = list_entry(act_head, struct inode, i_list); if (IS_QUOTAINIT(inode)) remove_inode_dquot_ref(inode, type, &tofree_head); } spin_unlock(&inode_lock); put_dquot_list(&tofree_head); } #endif |