Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/*
 * linux/fs/inode.c
 *
 * (C) 1997 Linus Torvalds
 */

#include <linux/fs.h>
#include <linux/string.h>
#include <linux/mm.h>

/*
 * New inode.c implementation.
 *
 * This implementation has the basic premise of trying
 * to be extremely low-overhead and SMP-safe, yet be
 * simple enough to be "obviously correct".
 *
 * Famous last words.
 */

/*
 * Inode lookup is no longer as critical as it used to be:
 * most of the lookups are going to be through the dcache.
 */
#define HASH_BITS	8
#define HASH_SIZE	(1UL << HASH_BITS)
#define HASH_MASK	(HASH_SIZE-1)

/*
 * Each inode can be on two separate lists. One is
 * the hash list of the inode, used for lookups. The
 * other linked list is the "type" list:
 *  "in_use" - valid inode, hashed
 *  "dirty" - valid inode, hashed, dirty.
 *  "unused" - ready to be re-used. Not hashed.
 *
 * The two first versions also have a dirty list, allowing
 * for low-overhead inode sync() operations.
 */

static LIST_HEAD(inode_in_use);
static LIST_HEAD(inode_dirty);
static LIST_HEAD(inode_unused);
static struct list_head inode_hashtable[HASH_SIZE];

/*
 * A simple spinlock to protect the list manipulations
 */
spinlock_t inode_lock = SPIN_LOCK_UNLOCKED;

/*
 * Statistics gathering.. Not actually done yet.
 */
struct {
	int nr_inodes;
	int nr_free_inodes;
	int dummy[10];
} inodes_stat;

int max_inodes = NR_INODE;

void __mark_inode_dirty(struct inode *inode)
{
	spin_lock(&inode_lock);
	list_del(&inode->i_list);
	list_add(&inode->i_list, &inode_dirty);
	spin_unlock(&inode_lock);
}

static inline void unlock_inode(struct inode *inode)
{
	clear_bit(I_LOCK, &inode->i_state);
	wake_up(&inode->i_wait);
}

static void __wait_on_inode(struct inode * inode)
{
	struct wait_queue wait = { current, NULL };

	add_wait_queue(&inode->i_wait, &wait);
repeat:
	current->state = TASK_UNINTERRUPTIBLE;
	if (test_bit(I_LOCK, &inode->i_state)) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&inode->i_wait, &wait);
	current->state = TASK_RUNNING;
}

static inline void wait_on_inode(struct inode *inode)
{
	if (test_bit(I_LOCK, &inode->i_state))
		__wait_on_inode(inode);
}

/*
 * These are initializations that only need to be done
 * once, because the fields are idempotent across use
 * of the inode..
 */
static inline void init_once(struct inode * inode)
{
	memset(inode, 0, sizeof(*inode));
	init_waitqueue(&inode->i_wait);
	INIT_LIST_HEAD(&inode->i_dentry);
	INIT_LIST_HEAD(&inode->i_hash);
	sema_init(&inode->i_sem, 1);
}


/*
 * Look out! This returns with the inode lock held if
 * it got an inode..
 */
static struct inode * grow_inodes(void)
{
	struct inode * inode = (struct inode *)__get_free_page(GFP_KERNEL);

	if (inode) {
		int size;
		struct inode * tmp;

		spin_lock(&inode_lock);
		size = PAGE_SIZE - 2*sizeof(struct inode);
		tmp = inode;
		do {
			tmp++;
			init_once(tmp);
			list_add(&tmp->i_list, &inode_unused);
			size -= sizeof(struct inode);
		} while (size >= 0);
		init_once(inode);
	}
	return inode;
}

static inline void write_inode(struct inode *inode)
{
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode)
		inode->i_sb->s_op->write_inode(inode);
}

static inline void sync_list(struct list_head *head, struct list_head *clean)
{
	struct list_head * tmp;

	while ((tmp = head->prev) != head) {
		struct inode *inode = list_entry(tmp, struct inode, i_list);
		list_del(tmp);

		/*
		 * If the inode is locked, it's already being written out.
		 * We have to wait for it, though.
		 */
		if (test_bit(I_LOCK, &inode->i_state)) {
			list_add(tmp, head);
			spin_unlock(&inode_lock);
			__wait_on_inode(inode);
		} else {
			list_add(tmp, clean);
			clear_bit(I_DIRTY, &inode->i_state);
			set_bit(I_LOCK, &inode->i_state);
			spin_unlock(&inode_lock);
			write_inode(inode);
			unlock_inode(inode);
		}
		spin_lock(&inode_lock);
	}	
}

/*
 * "sync_inodes()" goes through the dirty list 
 * and writes them out and puts them back on
 * the normal list.
 */
void sync_inodes(kdev_t dev)
{
	spin_lock(&inode_lock);
	sync_list(&inode_dirty, &inode_in_use);
	spin_unlock(&inode_lock);
}

/*
 * This is called by the filesystem to tell us
 * that the inode is no longer useful. We just
 * terminate it with extreme predjudice.
 */
void clear_inode(struct inode *inode)
{
	truncate_inode_pages(inode, 0);
	wait_on_inode(inode);
	if (IS_WRITABLE(inode) && inode->i_sb && inode->i_sb->dq_op)
		inode->i_sb->dq_op->drop(inode);

	inode->i_state = 0;
}

#define CAN_UNUSE(inode) \
	(((inode)->i_count == 0) && \
	 ((inode)->i_nrpages == 0) && \
	 (!(inode)->i_state))

static void invalidate_list(struct list_head *head, kdev_t dev)
{
	struct list_head *next;

	next = head->next;
	for (;;) {
		struct list_head * tmp = next;
		struct inode * inode;

		next = next->next;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_list);
		if (inode->i_dev != dev)
			continue;		
		if (!CAN_UNUSE(inode))
			continue;
		list_del(&inode->i_hash);
		INIT_LIST_HEAD(&inode->i_hash);
		list_del(&inode->i_list);
		list_add(&inode->i_list, &inode_unused);
	}
}

void invalidate_inodes(kdev_t dev)
{
	spin_lock(&inode_lock);
	invalidate_list(&inode_in_use, dev);
	invalidate_list(&inode_dirty, dev);
	spin_unlock(&inode_lock);
}

/*
 * This is called with the inode lock held. It just looks at the last
 * inode on the in-use list, and if the inode is trivially freeable
 * we just move it to the unused list.
 *
 * Otherwise we just move the inode to be the first inode and expect to
 * get back to the problem later..
 */
static void try_to_free_inodes(void)
{
	struct list_head * tmp;
	struct list_head *head = &inode_in_use;

	tmp = head->prev;
	if (tmp != head) {
		struct inode * inode;

		list_del(tmp);
		inode = list_entry(tmp, struct inode, i_list);
		if (CAN_UNUSE(inode)) {
			list_del(&inode->i_hash);
			INIT_LIST_HEAD(&inode->i_hash);
			head = &inode_unused;
		}
		list_add(tmp, head);
	}
}
		

static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head)
{
	struct list_head *tmp;
	struct inode * inode;

	tmp = head;
	for (;;) {
		tmp = tmp->next;
		inode = NULL;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_hash);
		if (inode->i_sb != sb)
			continue;
		if (inode->i_ino != ino)
			continue;
		inode->i_count++;
		break;
	}
	return inode;
}

/*
 * This just initializes the inode fields
 * to known values before returning the inode..
 *
 * i_sb, i_ino, i_count, i_state and the lists have
 * been initialized elsewhere..
 */
void clean_inode(struct inode *inode)
{
	memset(&inode->u, 0, sizeof(inode->u));
	inode->i_sock = 0;
	inode->i_op = NULL;
	inode->i_nlink = 0;
	inode->i_writecount = 0;
	inode->i_size = 0;
	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
	sema_init(&inode->i_sem, 1);
}

/*
 * This gets called with I_LOCK held: it needs
 * to read the inode and then unlock it
 */
static inline void read_inode(struct inode *inode, struct super_block *sb)
{
	sb->s_op->read_inode(inode);
	unlock_inode(inode);
}

struct inode * get_empty_inode(void)
{
	static unsigned long last_ino = 0;
	struct inode * inode;
	struct list_head * tmp;

	spin_lock(&inode_lock);
	try_to_free_inodes();
	tmp = inode_unused.next;
	if (tmp != &inode_unused) {
		list_del(tmp);
		inode = list_entry(tmp, struct inode, i_list);
add_new_inode:
		inode->i_sb = NULL;
		inode->i_ino = ++last_ino;
		inode->i_count = 1;
		list_add(&inode->i_list, &inode_in_use);
		inode->i_state = 0;
		spin_unlock(&inode_lock);
		clean_inode(inode);
		return inode;
	}

	/*
	 * Warning: if this succeeded, we will now
	 * return with the inode lock.
	 */
	spin_unlock(&inode_lock);
	inode = grow_inodes();
	if (inode)
		goto add_new_inode;

	return inode;
}

/*
 * This is called with the inode lock held.. Be careful.
 */
static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head)
{
	struct inode * inode;
	struct list_head * tmp = inode_unused.next;

	if (tmp != &inode_unused) {
		list_del(tmp);
		inode = list_entry(tmp, struct inode, i_list);
add_new_inode:
		list_add(&inode->i_list, &inode_in_use);
		list_add(&inode->i_hash, head);
		inode->i_sb = sb;
		inode->i_dev = sb->s_dev;
		inode->i_ino = ino;
		inode->i_flags = sb->s_flags;
		inode->i_count = 1;
		inode->i_state = 1 << I_LOCK;
		spin_unlock(&inode_lock);
		clean_inode(inode);
		read_inode(inode, sb);
		return inode;
	}

	/*
	 * Uhhuh.. We need to expand.  Unlock for the allocation,
	 * but note that "grow_inodes()" will return with the
	 * lock held again if the allocation succeeded.
	 */
	spin_unlock(&inode_lock);
	inode = grow_inodes();
	if (inode) {
		/* We released the lock, so.. */
		struct inode * old = find_inode(sb, ino, head);
		if (!old)
			goto add_new_inode;
		list_add(&inode->i_list, &inode_unused);
		spin_unlock(&inode_lock);
		wait_on_inode(old);
		return old;
	}
	return inode;
}

static inline unsigned long hash(struct super_block *sb, unsigned long i_ino)
{
	unsigned long tmp = i_ino | (unsigned long) sb;
	tmp = tmp + (tmp >> HASH_BITS) + (tmp >> HASH_BITS*2);
	return tmp & HASH_MASK;
}

struct inode *iget(struct super_block *sb, unsigned long ino)
{
	struct list_head * head = inode_hashtable + hash(sb,ino);
	struct inode * inode;

	spin_lock(&inode_lock);
	inode = find_inode(sb, ino, head);
	if (!inode) {
		try_to_free_inodes();
		return get_new_inode(sb, ino, head);
	}
	spin_unlock(&inode_lock);
	wait_on_inode(inode);
	return inode;
}

void insert_inode_hash(struct inode *inode)
{
	struct list_head *head = inode_hashtable + hash(inode->i_sb, inode->i_ino);
	list_add(&inode->i_hash, head);
}

void iput(struct inode *inode)
{
	if (inode) {
		struct super_operations *op = NULL;

		if (inode->i_sb && inode->i_sb->s_op)
			op = inode->i_sb->s_op;
		if (op && op->put_inode)
			op->put_inode(inode);

		spin_lock(&inode_lock);
		if (!--inode->i_count) {
			if (!inode->i_nlink) {
				list_del(&inode->i_hash);
				INIT_LIST_HEAD(&inode->i_hash);
				if (op && op->delete_inode) {
					void (*delete)(struct inode *) = op->delete_inode;
					spin_unlock(&inode_lock);
					delete(inode);
					spin_lock(&inode_lock);
				}
			}
			if (list_empty(&inode->i_hash)) {
				list_del(&inode->i_list);
				list_add(&inode->i_list, &inode_unused);
			}
		}
		spin_unlock(&inode_lock);
	}
}

int bmap(struct inode * inode, int block)
{
	if (inode->i_op && inode->i_op->bmap)
		return inode->i_op->bmap(inode, block);
	return 0;
}

/*
 * Initialize the hash tables
 */
void inode_init(void)
{
	int i;
	struct list_head *head = inode_hashtable;

	i = HASH_SIZE;
	do {
		INIT_LIST_HEAD(head);
		head++;
		i--;
	} while (i);
}

/*
 * FIXME! These need to go through the in-use inodes to
 * check whether we can mount/umount/remount.
 */
int fs_may_mount(kdev_t dev)
{
	return 1;
}

int fs_may_umount(struct super_block *sb, struct dentry * root)
{
	shrink_dcache();
	return root->d_count == 1;
}

int fs_may_remount_ro(struct super_block *sb)
{
	return 1;
}