Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | /* * linux/fs/inode.c * * (C) 1997 Linus Torvalds */ #include <linux/fs.h> #include <linux/string.h> #include <linux/mm.h> /* * New inode.c implementation. * * This implementation has the basic premise of trying * to be extremely low-overhead and SMP-safe, yet be * simple enough to be "obviously correct". * * Famous last words. */ /* * Inode lookup is no longer as critical as it used to be: * most of the lookups are going to be through the dcache. */ #define HASH_BITS 8 #define HASH_SIZE (1UL << HASH_BITS) #define HASH_MASK (HASH_SIZE-1) /* * Each inode can be on two separate lists. One is * the hash list of the inode, used for lookups. The * other linked list is the "type" list: * "in_use" - valid inode, hashed * "dirty" - valid inode, hashed, dirty. * "unused" - ready to be re-used. Not hashed. * * The two first versions also have a dirty list, allowing * for low-overhead inode sync() operations. */ static LIST_HEAD(inode_in_use); static LIST_HEAD(inode_dirty); static LIST_HEAD(inode_unused); static struct list_head inode_hashtable[HASH_SIZE]; /* * A simple spinlock to protect the list manipulations */ spinlock_t inode_lock = SPIN_LOCK_UNLOCKED; /* * Statistics gathering.. Not actually done yet. */ struct { int nr_inodes; int nr_free_inodes; int dummy[10]; } inodes_stat; int max_inodes = NR_INODE; void __mark_inode_dirty(struct inode *inode) { spin_lock(&inode_lock); list_del(&inode->i_list); list_add(&inode->i_list, &inode_dirty); spin_unlock(&inode_lock); } static inline void unlock_inode(struct inode *inode) { clear_bit(I_LOCK, &inode->i_state); wake_up(&inode->i_wait); } static void __wait_on_inode(struct inode * inode) { struct wait_queue wait = { current, NULL }; add_wait_queue(&inode->i_wait, &wait); repeat: current->state = TASK_UNINTERRUPTIBLE; if (test_bit(I_LOCK, &inode->i_state)) { schedule(); goto repeat; } remove_wait_queue(&inode->i_wait, &wait); current->state = TASK_RUNNING; } static inline void wait_on_inode(struct inode *inode) { if (test_bit(I_LOCK, &inode->i_state)) __wait_on_inode(inode); } /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode.. */ static inline void init_once(struct inode * inode) { memset(inode, 0, sizeof(*inode)); init_waitqueue(&inode->i_wait); INIT_LIST_HEAD(&inode->i_dentry); INIT_LIST_HEAD(&inode->i_hash); sema_init(&inode->i_sem, 1); } /* * Look out! This returns with the inode lock held if * it got an inode.. */ static struct inode * grow_inodes(void) { struct inode * inode = (struct inode *)__get_free_page(GFP_KERNEL); if (inode) { int size; struct inode * tmp; spin_lock(&inode_lock); size = PAGE_SIZE - 2*sizeof(struct inode); tmp = inode; do { tmp++; init_once(tmp); list_add(&tmp->i_list, &inode_unused); size -= sizeof(struct inode); } while (size >= 0); init_once(inode); } return inode; } static inline void write_inode(struct inode *inode) { if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode) inode->i_sb->s_op->write_inode(inode); } static inline void sync_list(struct list_head *head, struct list_head *clean) { struct list_head * tmp; while ((tmp = head->prev) != head) { struct inode *inode = list_entry(tmp, struct inode, i_list); list_del(tmp); /* * If the inode is locked, it's already being written out. * We have to wait for it, though. */ if (test_bit(I_LOCK, &inode->i_state)) { list_add(tmp, head); spin_unlock(&inode_lock); __wait_on_inode(inode); } else { list_add(tmp, clean); clear_bit(I_DIRTY, &inode->i_state); set_bit(I_LOCK, &inode->i_state); spin_unlock(&inode_lock); write_inode(inode); unlock_inode(inode); } spin_lock(&inode_lock); } } /* * "sync_inodes()" goes through the dirty list * and writes them out and puts them back on * the normal list. */ void sync_inodes(kdev_t dev) { spin_lock(&inode_lock); sync_list(&inode_dirty, &inode_in_use); spin_unlock(&inode_lock); } /* * This is called by the filesystem to tell us * that the inode is no longer useful. We just * terminate it with extreme predjudice. */ void clear_inode(struct inode *inode) { truncate_inode_pages(inode, 0); wait_on_inode(inode); if (IS_WRITABLE(inode) && inode->i_sb && inode->i_sb->dq_op) inode->i_sb->dq_op->drop(inode); inode->i_state = 0; } #define CAN_UNUSE(inode) \ (((inode)->i_count == 0) && \ ((inode)->i_nrpages == 0) && \ (!(inode)->i_state)) static void invalidate_list(struct list_head *head, kdev_t dev) { struct list_head *next; next = head->next; for (;;) { struct list_head * tmp = next; struct inode * inode; next = next->next; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_list); if (inode->i_dev != dev) continue; if (!CAN_UNUSE(inode)) continue; list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); list_add(&inode->i_list, &inode_unused); } } void invalidate_inodes(kdev_t dev) { spin_lock(&inode_lock); invalidate_list(&inode_in_use, dev); invalidate_list(&inode_dirty, dev); spin_unlock(&inode_lock); } /* * This is called with the inode lock held. It just looks at the last * inode on the in-use list, and if the inode is trivially freeable * we just move it to the unused list. * * Otherwise we just move the inode to be the first inode and expect to * get back to the problem later.. */ static void try_to_free_inodes(void) { struct list_head * tmp; struct list_head *head = &inode_in_use; tmp = head->prev; if (tmp != head) { struct inode * inode; list_del(tmp); inode = list_entry(tmp, struct inode, i_list); if (CAN_UNUSE(inode)) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); head = &inode_unused; } list_add(tmp, head); } } static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head) { struct list_head *tmp; struct inode * inode; tmp = head; for (;;) { tmp = tmp->next; inode = NULL; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_hash); if (inode->i_sb != sb) continue; if (inode->i_ino != ino) continue; inode->i_count++; break; } return inode; } /* * This just initializes the inode fields * to known values before returning the inode.. * * i_sb, i_ino, i_count, i_state and the lists have * been initialized elsewhere.. */ void clean_inode(struct inode *inode) { memset(&inode->u, 0, sizeof(inode->u)); inode->i_sock = 0; inode->i_op = NULL; inode->i_nlink = 0; inode->i_writecount = 0; inode->i_size = 0; memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); sema_init(&inode->i_sem, 1); } /* * This gets called with I_LOCK held: it needs * to read the inode and then unlock it */ static inline void read_inode(struct inode *inode, struct super_block *sb) { sb->s_op->read_inode(inode); unlock_inode(inode); } struct inode * get_empty_inode(void) { static unsigned long last_ino = 0; struct inode * inode; struct list_head * tmp; spin_lock(&inode_lock); try_to_free_inodes(); tmp = inode_unused.next; if (tmp != &inode_unused) { list_del(tmp); inode = list_entry(tmp, struct inode, i_list); add_new_inode: inode->i_sb = NULL; inode->i_ino = ++last_ino; inode->i_count = 1; list_add(&inode->i_list, &inode_in_use); inode->i_state = 0; spin_unlock(&inode_lock); clean_inode(inode); return inode; } /* * Warning: if this succeeded, we will now * return with the inode lock. */ spin_unlock(&inode_lock); inode = grow_inodes(); if (inode) goto add_new_inode; return inode; } /* * This is called with the inode lock held.. Be careful. */ static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head) { struct inode * inode; struct list_head * tmp = inode_unused.next; if (tmp != &inode_unused) { list_del(tmp); inode = list_entry(tmp, struct inode, i_list); add_new_inode: list_add(&inode->i_list, &inode_in_use); list_add(&inode->i_hash, head); inode->i_sb = sb; inode->i_dev = sb->s_dev; inode->i_ino = ino; inode->i_flags = sb->s_flags; inode->i_count = 1; inode->i_state = 1 << I_LOCK; spin_unlock(&inode_lock); clean_inode(inode); read_inode(inode, sb); return inode; } /* * Uhhuh.. We need to expand. Unlock for the allocation, * but note that "grow_inodes()" will return with the * lock held again if the allocation succeeded. */ spin_unlock(&inode_lock); inode = grow_inodes(); if (inode) { /* We released the lock, so.. */ struct inode * old = find_inode(sb, ino, head); if (!old) goto add_new_inode; list_add(&inode->i_list, &inode_unused); spin_unlock(&inode_lock); wait_on_inode(old); return old; } return inode; } static inline unsigned long hash(struct super_block *sb, unsigned long i_ino) { unsigned long tmp = i_ino | (unsigned long) sb; tmp = tmp + (tmp >> HASH_BITS) + (tmp >> HASH_BITS*2); return tmp & HASH_MASK; } struct inode *iget(struct super_block *sb, unsigned long ino) { struct list_head * head = inode_hashtable + hash(sb,ino); struct inode * inode; spin_lock(&inode_lock); inode = find_inode(sb, ino, head); if (!inode) { try_to_free_inodes(); return get_new_inode(sb, ino, head); } spin_unlock(&inode_lock); wait_on_inode(inode); return inode; } void insert_inode_hash(struct inode *inode) { struct list_head *head = inode_hashtable + hash(inode->i_sb, inode->i_ino); list_add(&inode->i_hash, head); } void iput(struct inode *inode) { if (inode) { struct super_operations *op = NULL; if (inode->i_sb && inode->i_sb->s_op) op = inode->i_sb->s_op; if (op && op->put_inode) op->put_inode(inode); spin_lock(&inode_lock); if (!--inode->i_count) { if (!inode->i_nlink) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); if (op && op->delete_inode) { void (*delete)(struct inode *) = op->delete_inode; spin_unlock(&inode_lock); delete(inode); spin_lock(&inode_lock); } } if (list_empty(&inode->i_hash)) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_unused); } } spin_unlock(&inode_lock); } } int bmap(struct inode * inode, int block) { if (inode->i_op && inode->i_op->bmap) return inode->i_op->bmap(inode, block); return 0; } /* * Initialize the hash tables */ void inode_init(void) { int i; struct list_head *head = inode_hashtable; i = HASH_SIZE; do { INIT_LIST_HEAD(head); head++; i--; } while (i); } /* * FIXME! These need to go through the in-use inodes to * check whether we can mount/umount/remount. */ int fs_may_mount(kdev_t dev) { return 1; } int fs_may_umount(struct super_block *sb, struct dentry * root) { shrink_dcache(); return root->d_count == 1; } int fs_may_remount_ro(struct super_block *sb) { return 1; } |