Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/*
 * linux/fs/inode.c
 *
 * (C) 1997 Linus Torvalds
 */

#include <linux/fs.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/quotaops.h>
#include <linux/slab.h>

/*
 * New inode.c implementation.
 *
 * This implementation has the basic premise of trying
 * to be extremely low-overhead and SMP-safe, yet be
 * simple enough to be "obviously correct".
 *
 * Famous last words.
 */

/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */

#define INODE_PARANOIA 1
/* #define INODE_DEBUG 1 */

/*
 * Inode lookup is no longer as critical as it used to be:
 * most of the lookups are going to be through the dcache.
 */
#define HASH_BITS	14
#define HASH_SIZE	(1UL << HASH_BITS)
#define HASH_MASK	(HASH_SIZE-1)

/*
 * Each inode can be on two separate lists. One is
 * the hash list of the inode, used for lookups. The
 * other linked list is the "type" list:
 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
 *  "dirty"  - as "in_use" but also dirty
 *  "unused" - valid inode, i_count = 0
 *
 * A "dirty" list is maintained for each super block,
 * allowing for low-overhead inode sync() operations.
 */

static LIST_HEAD(inode_in_use);
static LIST_HEAD(inode_unused);
static struct list_head inode_hashtable[HASH_SIZE];

/*
 * A simple spinlock to protect the list manipulations.
 *
 * NOTE! You also have to own the lock if you change
 * the i_state of an inode while it is in use..
 */
spinlock_t inode_lock = SPIN_LOCK_UNLOCKED;

/*
 * Statistics gathering..
 */
struct {
	int nr_inodes;
	int nr_unused;
	int dummy[5];
} inodes_stat = {0, 0,};

static kmem_cache_t * inode_cachep;

#define alloc_inode() \
	 ((struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL))
#define destroy_inode(inode) kmem_cache_free(inode_cachep, (inode))

/*
 * These are initializations that only need to be done
 * once, because the fields are idempotent across use
 * of the inode, so let the slab aware of that.
 */
static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
	struct inode * inode = (struct inode *) foo;

	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
	    SLAB_CTOR_CONSTRUCTOR)
	{
		memset(inode, 0, sizeof(*inode));
		init_waitqueue_head(&inode->i_wait);
		INIT_LIST_HEAD(&inode->i_hash);
		INIT_LIST_HEAD(&inode->i_data.pages);
		INIT_LIST_HEAD(&inode->i_dentry);
		sema_init(&inode->i_sem, 1);
		spin_lock_init(&inode->i_shared_lock);
	}
}

/*
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but
 * move it onto the dirty list only if it is hashed.
 * If it was not hashed, it will never be added to
 * the dirty list even if it is later hashed, as it
 * will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_
 * you start marking them dirty..
 */
void __mark_inode_dirty(struct inode *inode)
{
	struct super_block * sb = inode->i_sb;

	if (sb) {
		spin_lock(&inode_lock);
		if (!(inode->i_state & I_DIRTY)) {
			inode->i_state |= I_DIRTY;
			/* Only add valid (ie hashed) inodes to the dirty list */
			if (!list_empty(&inode->i_hash)) {
				list_del(&inode->i_list);
				list_add(&inode->i_list, &sb->s_dirty);
			}
		}
		spin_unlock(&inode_lock);
	}
}

static void __wait_on_inode(struct inode * inode)
{
	DECLARE_WAITQUEUE(wait, current);

	add_wait_queue(&inode->i_wait, &wait);
repeat:
	set_current_state(TASK_UNINTERRUPTIBLE);
	if (inode->i_state & I_LOCK) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&inode->i_wait, &wait);
	current->state = TASK_RUNNING;
}

static inline void wait_on_inode(struct inode *inode)
{
	if (inode->i_state & I_LOCK)
		__wait_on_inode(inode);
}


static inline void write_inode(struct inode *inode)
{
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode)
		inode->i_sb->s_op->write_inode(inode);
}

static inline void sync_one(struct inode *inode)
{
	if (inode->i_state & I_LOCK) {
		spin_unlock(&inode_lock);
		__wait_on_inode(inode);
		spin_lock(&inode_lock);
	} else {
		list_del(&inode->i_list);
		list_add(&inode->i_list,
			 inode->i_count ? &inode_in_use : &inode_unused);
		/* Set I_LOCK, reset I_DIRTY */
		inode->i_state ^= I_DIRTY | I_LOCK;
		spin_unlock(&inode_lock);

		write_inode(inode);

		spin_lock(&inode_lock);
		inode->i_state &= ~I_LOCK;
		wake_up(&inode->i_wait);
	}
}

static inline void sync_list(struct list_head *head)
{
	struct list_head * tmp;

	while ((tmp = head->prev) != head)
		sync_one(list_entry(tmp, struct inode, i_list));
}

/*
 * "sync_inodes()" goes through the super block's dirty list, 
 * writes them out, and puts them back on the normal list.
 */
void sync_inodes(kdev_t dev)
{
	struct super_block * sb = sb_entry(super_blocks.next);

	/*
	 * Search the super_blocks array for the device(s) to sync.
	 */
	spin_lock(&inode_lock);
	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) {
		if (!sb->s_dev)
			continue;
		if (dev && sb->s_dev != dev)
			continue;

		sync_list(&sb->s_dirty);

		if (dev)
			break;
	}
	spin_unlock(&inode_lock);
}

/*
 * Called with the spinlock already held..
 */
static void sync_all_inodes(void)
{
	struct super_block * sb = sb_entry(super_blocks.next);
	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) {
		if (!sb->s_dev)
			continue;
		sync_list(&sb->s_dirty);
	}
}

/*
 * Needed by knfsd
 */
void write_inode_now(struct inode *inode)
{
	struct super_block * sb = inode->i_sb;

	if (sb) {
		spin_lock(&inode_lock);
		while (inode->i_state & I_DIRTY)
			sync_one(inode);
		spin_unlock(&inode_lock);
	}
	else
		printk("write_inode_now: no super block\n");
}

/*
 * This is called by the filesystem to tell us
 * that the inode is no longer useful. We just
 * terminate it with extreme prejudice.
 */
void clear_inode(struct inode *inode)
{
	if (inode->i_data.nrpages)
		BUG();
	if (!(inode->i_state & I_FREEING))
		BUG();
	wait_on_inode(inode);
	if (IS_QUOTAINIT(inode))
		DQUOT_DROP(inode);
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode)
		inode->i_sb->s_op->clear_inode(inode);

	inode->i_state = 0;
}

/*
 * Dispose-list gets a local list with local inodes in it, so it doesn't
 * need to worry about list corruption and SMP locks.
 */
static void dispose_list(struct list_head * head)
{
	struct list_head * inode_entry;
	struct inode * inode;

	while ((inode_entry = head->next) != head)
	{
		list_del(inode_entry);

		inode = list_entry(inode_entry, struct inode, i_list);
		if (inode->i_data.nrpages)
			truncate_inode_pages(inode, 0);
		clear_inode(inode);
		destroy_inode(inode);
	}
}

/*
 * Invalidate all inodes for a device.
 */
static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose)
{
	struct list_head *next;
	int busy = 0, count = 0;

	next = head->next;
	for (;;) {
		struct list_head * tmp = next;
		struct inode * inode;

		next = next->next;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_list);
		if (inode->i_sb != sb)
			continue;
		if (!inode->i_count) {
			list_del(&inode->i_hash);
			INIT_LIST_HEAD(&inode->i_hash);
			list_del(&inode->i_list);
			list_add(&inode->i_list, dispose);
			inode->i_state |= I_FREEING;
			count++;
			continue;
		}
		busy = 1;
	}
	/* only unused inodes may be cached with i_count zero */
	inodes_stat.nr_unused -= count;
	return busy;
}

/*
 * This is a two-stage process. First we collect all
 * offending inodes onto the throw-away list, and in
 * the second stage we actually dispose of them. This
 * is because we don't want to sleep while messing
 * with the global lists..
 */
int invalidate_inodes(struct super_block * sb)
{
	int busy;
	LIST_HEAD(throw_away);

	spin_lock(&inode_lock);
	busy = invalidate_list(&inode_in_use, sb, &throw_away);
	busy |= invalidate_list(&inode_unused, sb, &throw_away);
	busy |= invalidate_list(&sb->s_dirty, sb, &throw_away);
	spin_unlock(&inode_lock);

	dispose_list(&throw_away);

	return busy;
}

/*
 * This is called with the inode lock held. It searches
 * the in-use for freeable inodes, which are moved to a
 * temporary list and then placed on the unused list by
 * dispose_list. 
 *
 * We don't expect to have to call this very often.
 *
 * N.B. The spinlock is released during the call to
 *      dispose_list.
 */
#define CAN_UNUSE(inode) \
	(((inode)->i_state | (inode)->i_data.nrpages) == 0)
#define INODE(entry)	(list_entry(entry, struct inode, i_list))

void prune_icache(int goal)
{
	LIST_HEAD(list);
	struct list_head *entry, *freeable = &list;
	int count = 0;
	struct inode * inode;

	spin_lock(&inode_lock);
	/* go simple and safe syncing everything before starting */
	sync_all_inodes();

	entry = inode_unused.prev;
	while (entry != &inode_unused)
	{
		struct list_head *tmp = entry;

		entry = entry->prev;
		inode = INODE(tmp);
		if (!CAN_UNUSE(inode))
			continue;
		if (inode->i_count)
			BUG();
		list_del(tmp);
		list_del(&inode->i_hash);
		INIT_LIST_HEAD(&inode->i_hash);
		list_add(tmp, freeable);
		inode->i_state |= I_FREEING;
		count++;
		if (!--goal)
			break;
	}
	inodes_stat.nr_unused -= count;
	spin_unlock(&inode_lock);

	dispose_list(freeable);
}

int shrink_icache_memory(int priority, int gfp_mask)
{
	if (gfp_mask & __GFP_IO)
	{
		int count = 0;
		
		if (priority)
			count = inodes_stat.nr_unused / priority;
		prune_icache(count);
		/* FIXME: kmem_cache_shrink here should tell us
		   the number of pages freed, and it should
		   work in a __GFP_DMA/__GFP_HIGHMEM behaviour
		   to free only the interesting pages in
		   function of the needs of the current allocation. */
		kmem_cache_shrink(inode_cachep);
	}

	return 0;
}

static inline void __iget(struct inode * inode)
{
	if (!inode->i_count++)
	{
		if (!(inode->i_state & I_DIRTY))
		{
			list_del(&inode->i_list);
			list_add(&inode->i_list, &inode_in_use);
		}
		inodes_stat.nr_unused--;
	}
}

/*
 * Called with the inode lock held.
 * NOTE: we are not increasing the inode-refcount, you must call __iget()
 * by hand after calling find_inode now! This simplify iunique and won't
 * add any additional branch in the common code.
 */
static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque)
{
	struct list_head *tmp;
	struct inode * inode;

	tmp = head;
	for (;;) {
		tmp = tmp->next;
		inode = NULL;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_hash);
		if (inode->i_sb != sb)
			continue;
		if (inode->i_ino != ino)
			continue;
		if (find_actor && !find_actor(inode, ino, opaque))
			continue;
		break;
	}
	return inode;
}

/*
 * This just initializes the inode fields
 * to known values before returning the inode..
 *
 * i_sb, i_ino, i_count, i_state and the lists have
 * been initialized elsewhere..
 */
static void clean_inode(struct inode *inode)
{
	memset(&inode->u, 0, sizeof(inode->u));
	inode->i_sock = 0;
	inode->i_op = NULL;
	inode->i_nlink = 1;
	atomic_set(&inode->i_writecount, 0);
	inode->i_size = 0;
	inode->i_generation = 0;
	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
	inode->i_pipe = NULL;
}

/*
 * This is called by things like the networking layer
 * etc that want to get an inode without any inode
 * number, or filesystems that allocate new inodes with
 * no pre-existing information.
 */
struct inode * get_empty_inode(void)
{
	static unsigned long last_ino = 0;
	struct inode * inode;

	inode = alloc_inode();
	if (inode)
	{
		spin_lock(&inode_lock);
		list_add(&inode->i_list, &inode_in_use);
		inode->i_sb = NULL;
		inode->i_dev = 0;
		inode->i_ino = ++last_ino;
		inode->i_flags = 0;
		inode->i_count = 1;
		inode->i_state = 0;
		spin_unlock(&inode_lock);
		clean_inode(inode);
	}
	return inode;
}

/*
 * This is called without the inode lock held.. Be careful.
 *
 * We no longer cache the sb_flags in i_flags - see fs.h
 *	-- rmk@arm.uk.linux.org
 */
static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque)
{
	struct inode * inode;

	inode = alloc_inode();
	if (inode) {
		struct inode * old;

		spin_lock(&inode_lock);
		/* We released the lock, so.. */
		old = find_inode(sb, ino, head, find_actor, opaque);
		if (!old) {
			list_add(&inode->i_list, &inode_in_use);
			list_add(&inode->i_hash, head);
			inode->i_sb = sb;
			inode->i_dev = sb->s_dev;
			inode->i_ino = ino;
			inode->i_flags = 0;
			inode->i_count = 1;
			inode->i_state = I_LOCK;
			spin_unlock(&inode_lock);

			clean_inode(inode);
			sb->s_op->read_inode(inode);

			/*
			 * This is special!  We do not need the spinlock
			 * when clearing I_LOCK, because we're guaranteed
			 * that nobody else tries to do anything about the
			 * state of the inode when it is locked, as we
			 * just created it (so there can be no old holders
			 * that haven't tested I_LOCK).
			 */
			inode->i_state &= ~I_LOCK;
			wake_up(&inode->i_wait);

			return inode;
		}

		/*
		 * Uhhuh, somebody else created the same inode under
		 * us. Use the old inode instead of the one we just
		 * allocated.
		 */
		__iget(old);
		spin_unlock(&inode_lock);
		destroy_inode(inode);
		inode = old;
		wait_on_inode(inode);
	}
	return inode;
}

static inline unsigned long hash(struct super_block *sb, unsigned long i_ino)
{
	unsigned long tmp = i_ino | (unsigned long) sb;
	tmp = tmp + (tmp >> HASH_BITS) + (tmp >> HASH_BITS*2);
	return tmp & HASH_MASK;
}

/* Yeah, I know about quadratic hash. Maybe, later. */
ino_t iunique(struct super_block *sb, ino_t max_reserved)
{
	static ino_t counter = 0;
	struct inode *inode;
	struct list_head * head;
	ino_t res;
	spin_lock(&inode_lock);
retry:
	if (counter > max_reserved) {
		head = inode_hashtable + hash(sb,counter);
		inode = find_inode(sb, res = counter++, head, NULL, NULL);
		if (!inode) {
			spin_unlock(&inode_lock);
			return res;
		}
	} else {
		counter = max_reserved + 1;
	}
	goto retry;
	
}

struct inode *igrab(struct inode *inode)
{
	spin_lock(&inode_lock);
	if (!(inode->i_state & I_FREEING))
		__iget(inode);
	else
		inode = NULL;
	spin_unlock(&inode_lock);
	if (inode)
		wait_on_inode(inode);
	return inode;
}

struct inode *iget4(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque)
{
	struct list_head * head = inode_hashtable + hash(sb,ino);
	struct inode * inode;

	spin_lock(&inode_lock);
	inode = find_inode(sb, ino, head, find_actor, opaque);
	if (inode) {
		__iget(inode);
		spin_unlock(&inode_lock);
		wait_on_inode(inode);
		return inode;
	}
	spin_unlock(&inode_lock);

	/*
	 * get_new_inode() will do the right thing, re-trying the search
	 * in case it had to block at any point.
	 */
	return get_new_inode(sb, ino, head, find_actor, opaque);
}

void insert_inode_hash(struct inode *inode)
{
	struct list_head *head = inode_hashtable + hash(inode->i_sb, inode->i_ino);
	spin_lock(&inode_lock);
	list_add(&inode->i_hash, head);
	spin_unlock(&inode_lock);
}

void remove_inode_hash(struct inode *inode)
{
	spin_lock(&inode_lock);
	list_del(&inode->i_hash);
	INIT_LIST_HEAD(&inode->i_hash);
	spin_unlock(&inode_lock);
}

void iput(struct inode *inode)
{
	if (inode) {
		struct super_operations *op = NULL;
		int destroy = 0;

		if (inode->i_sb && inode->i_sb->s_op)
			op = inode->i_sb->s_op;
		if (op && op->put_inode)
			op->put_inode(inode);

		spin_lock(&inode_lock);
		if (!--inode->i_count) {
			if (!inode->i_nlink) {
				list_del(&inode->i_hash);
				INIT_LIST_HEAD(&inode->i_hash);
				list_del(&inode->i_list);
				INIT_LIST_HEAD(&inode->i_list);
				inode->i_state|=I_FREEING;
				if (op && op->delete_inode) {
					void (*delete)(struct inode *) = op->delete_inode;
					spin_unlock(&inode_lock);
					if (inode->i_data.nrpages)
						truncate_inode_pages(inode, 0);
					delete(inode);
					spin_lock(&inode_lock);
				}
			}
			if (list_empty(&inode->i_hash)) {
				list_del(&inode->i_list);
				INIT_LIST_HEAD(&inode->i_list);
				inode->i_state|=I_FREEING;
				spin_unlock(&inode_lock);
				clear_inode(inode);
				destroy = 1;
				spin_lock(&inode_lock);
			}
			else
			{
				if (!(inode->i_state & I_DIRTY)) {
					list_del(&inode->i_list);
					list_add(&inode->i_list,
						 &inode_unused);
				}
				inodes_stat.nr_unused++;
			}
#ifdef INODE_PARANOIA
if (inode->i_flock)
printk(KERN_ERR "iput: inode %s/%ld still has locks!\n",
kdevname(inode->i_dev), inode->i_ino);
if (!list_empty(&inode->i_dentry))
printk(KERN_ERR "iput: device %s inode %ld still has aliases!\n",
kdevname(inode->i_dev), inode->i_ino);
if (inode->i_count)
printk(KERN_ERR "iput: device %s inode %ld count changed, count=%d\n",
kdevname(inode->i_dev), inode->i_ino, inode->i_count);
if (atomic_read(&inode->i_sem.count) != 1)
printk(KERN_ERR "iput: Aieee, semaphore in use inode %s/%ld, count=%d\n",
kdevname(inode->i_dev), inode->i_ino, atomic_read(&inode->i_sem.count));
#endif
		}
		if (inode->i_count > (1<<31)) {
			printk(KERN_ERR "iput: inode %s/%ld count wrapped\n",
				kdevname(inode->i_dev), inode->i_ino);
		}
		spin_unlock(&inode_lock);
		if (destroy)
			destroy_inode(inode);
	}
}

int bmap(struct inode * inode, int block)
{
	struct buffer_head tmp;

	if (inode->i_op && inode->i_op->get_block) {
		tmp.b_state = 0;
		tmp.b_blocknr = 0;
		inode->i_op->get_block(inode, block, &tmp, 0);
		return tmp.b_blocknr;
	}
	return 0;
}

/*
 * Initialize the hash tables.
 */
void __init inode_init(void)
{
	int i;
	struct list_head *head = inode_hashtable;

	i = HASH_SIZE;
	do {
		INIT_LIST_HEAD(head);
		head++;
		i--;
	} while (i);

	/* inode slab cache */
	inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
					 0, SLAB_HWCACHE_ALIGN, init_once,
					 NULL);
	if (!inode_cachep)
		panic("cannot create inode slab cache");
}

void update_atime (struct inode *inode)
{
    if ( IS_NOATIME (inode) ) return;
    if ( IS_NODIRATIME (inode) && S_ISDIR (inode->i_mode) ) return;
    if ( IS_RDONLY (inode) ) return;
    inode->i_atime = CURRENT_TIME;
    mark_inode_dirty (inode);
}   /*  End Function update_atime  */