Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 | /* * linux/fs/inode.c * * (C) 1997 Linus Torvalds */ #include <linux/fs.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/dcache.h> #include <linux/init.h> #include <linux/quotaops.h> #include <linux/slab.h> /* * New inode.c implementation. * * This implementation has the basic premise of trying * to be extremely low-overhead and SMP-safe, yet be * simple enough to be "obviously correct". * * Famous last words. */ /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ #define INODE_PARANOIA 1 /* #define INODE_DEBUG 1 */ /* * Inode lookup is no longer as critical as it used to be: * most of the lookups are going to be through the dcache. */ #define HASH_BITS 14 #define HASH_SIZE (1UL << HASH_BITS) #define HASH_MASK (HASH_SIZE-1) /* * Each inode can be on two separate lists. One is * the hash list of the inode, used for lookups. The * other linked list is the "type" list: * "in_use" - valid inode, i_count > 0, i_nlink > 0 * "dirty" - as "in_use" but also dirty * "unused" - valid inode, i_count = 0 * * A "dirty" list is maintained for each super block, * allowing for low-overhead inode sync() operations. */ static LIST_HEAD(inode_in_use); static LIST_HEAD(inode_unused); static struct list_head inode_hashtable[HASH_SIZE]; /* * A simple spinlock to protect the list manipulations. * * NOTE! You also have to own the lock if you change * the i_state of an inode while it is in use.. */ spinlock_t inode_lock = SPIN_LOCK_UNLOCKED; /* * Statistics gathering.. */ struct { int nr_inodes; int nr_unused; int dummy[5]; } inodes_stat = {0, 0,}; static kmem_cache_t * inode_cachep; #define alloc_inode() \ ((struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL)) #define destroy_inode(inode) kmem_cache_free(inode_cachep, (inode)) /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode, so let the slab aware of that. */ static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) { struct inode * inode = (struct inode *) foo; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { memset(inode, 0, sizeof(*inode)); init_waitqueue_head(&inode->i_wait); INIT_LIST_HEAD(&inode->i_hash); INIT_LIST_HEAD(&inode->i_data.pages); INIT_LIST_HEAD(&inode->i_dentry); sema_init(&inode->i_sem, 1); spin_lock_init(&inode->i_shared_lock); } } /* * Put the inode on the super block's dirty list. * * CAREFUL! We mark it dirty unconditionally, but * move it onto the dirty list only if it is hashed. * If it was not hashed, it will never be added to * the dirty list even if it is later hashed, as it * will have been marked dirty already. * * In short, make sure you hash any inodes _before_ * you start marking them dirty.. */ void __mark_inode_dirty(struct inode *inode) { struct super_block * sb = inode->i_sb; if (sb) { spin_lock(&inode_lock); if (!(inode->i_state & I_DIRTY)) { inode->i_state |= I_DIRTY; /* Only add valid (ie hashed) inodes to the dirty list */ if (!list_empty(&inode->i_hash)) { list_del(&inode->i_list); list_add(&inode->i_list, &sb->s_dirty); } } spin_unlock(&inode_lock); } } static void __wait_on_inode(struct inode * inode) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&inode->i_wait, &wait); repeat: set_current_state(TASK_UNINTERRUPTIBLE); if (inode->i_state & I_LOCK) { schedule(); goto repeat; } remove_wait_queue(&inode->i_wait, &wait); current->state = TASK_RUNNING; } static inline void wait_on_inode(struct inode *inode) { if (inode->i_state & I_LOCK) __wait_on_inode(inode); } static inline void write_inode(struct inode *inode) { if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode) inode->i_sb->s_op->write_inode(inode); } static inline void sync_one(struct inode *inode) { if (inode->i_state & I_LOCK) { spin_unlock(&inode_lock); __wait_on_inode(inode); spin_lock(&inode_lock); } else { list_del(&inode->i_list); list_add(&inode->i_list, inode->i_count ? &inode_in_use : &inode_unused); /* Set I_LOCK, reset I_DIRTY */ inode->i_state ^= I_DIRTY | I_LOCK; spin_unlock(&inode_lock); write_inode(inode); spin_lock(&inode_lock); inode->i_state &= ~I_LOCK; wake_up(&inode->i_wait); } } static inline void sync_list(struct list_head *head) { struct list_head * tmp; while ((tmp = head->prev) != head) sync_one(list_entry(tmp, struct inode, i_list)); } /* * "sync_inodes()" goes through the super block's dirty list, * writes them out, and puts them back on the normal list. */ void sync_inodes(kdev_t dev) { struct super_block * sb = sb_entry(super_blocks.next); /* * Search the super_blocks array for the device(s) to sync. */ spin_lock(&inode_lock); for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) { if (!sb->s_dev) continue; if (dev && sb->s_dev != dev) continue; sync_list(&sb->s_dirty); if (dev) break; } spin_unlock(&inode_lock); } /* * Called with the spinlock already held.. */ static void sync_all_inodes(void) { struct super_block * sb = sb_entry(super_blocks.next); for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) { if (!sb->s_dev) continue; sync_list(&sb->s_dirty); } } /* * Needed by knfsd */ void write_inode_now(struct inode *inode) { struct super_block * sb = inode->i_sb; if (sb) { spin_lock(&inode_lock); while (inode->i_state & I_DIRTY) sync_one(inode); spin_unlock(&inode_lock); } else printk("write_inode_now: no super block\n"); } /* * This is called by the filesystem to tell us * that the inode is no longer useful. We just * terminate it with extreme prejudice. */ void clear_inode(struct inode *inode) { if (inode->i_data.nrpages) BUG(); if (!(inode->i_state & I_FREEING)) BUG(); wait_on_inode(inode); if (IS_QUOTAINIT(inode)) DQUOT_DROP(inode); if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode) inode->i_sb->s_op->clear_inode(inode); inode->i_state = 0; } /* * Dispose-list gets a local list with local inodes in it, so it doesn't * need to worry about list corruption and SMP locks. */ static void dispose_list(struct list_head * head) { struct list_head * inode_entry; struct inode * inode; while ((inode_entry = head->next) != head) { list_del(inode_entry); inode = list_entry(inode_entry, struct inode, i_list); if (inode->i_data.nrpages) truncate_inode_pages(inode, 0); clear_inode(inode); destroy_inode(inode); } } /* * Invalidate all inodes for a device. */ static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose) { struct list_head *next; int busy = 0, count = 0; next = head->next; for (;;) { struct list_head * tmp = next; struct inode * inode; next = next->next; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_list); if (inode->i_sb != sb) continue; if (!inode->i_count) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); list_add(&inode->i_list, dispose); inode->i_state |= I_FREEING; count++; continue; } busy = 1; } /* only unused inodes may be cached with i_count zero */ inodes_stat.nr_unused -= count; return busy; } /* * This is a two-stage process. First we collect all * offending inodes onto the throw-away list, and in * the second stage we actually dispose of them. This * is because we don't want to sleep while messing * with the global lists.. */ int invalidate_inodes(struct super_block * sb) { int busy; LIST_HEAD(throw_away); spin_lock(&inode_lock); busy = invalidate_list(&inode_in_use, sb, &throw_away); busy |= invalidate_list(&inode_unused, sb, &throw_away); busy |= invalidate_list(&sb->s_dirty, sb, &throw_away); spin_unlock(&inode_lock); dispose_list(&throw_away); return busy; } /* * This is called with the inode lock held. It searches * the in-use for freeable inodes, which are moved to a * temporary list and then placed on the unused list by * dispose_list. * * We don't expect to have to call this very often. * * N.B. The spinlock is released during the call to * dispose_list. */ #define CAN_UNUSE(inode) \ (((inode)->i_state | (inode)->i_data.nrpages) == 0) #define INODE(entry) (list_entry(entry, struct inode, i_list)) void prune_icache(int goal) { LIST_HEAD(list); struct list_head *entry, *freeable = &list; int count = 0; struct inode * inode; spin_lock(&inode_lock); /* go simple and safe syncing everything before starting */ sync_all_inodes(); entry = inode_unused.prev; while (entry != &inode_unused) { struct list_head *tmp = entry; entry = entry->prev; inode = INODE(tmp); if (!CAN_UNUSE(inode)) continue; if (inode->i_count) BUG(); list_del(tmp); list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_add(tmp, freeable); inode->i_state |= I_FREEING; count++; if (!--goal) break; } inodes_stat.nr_unused -= count; spin_unlock(&inode_lock); dispose_list(freeable); } int shrink_icache_memory(int priority, int gfp_mask) { if (gfp_mask & __GFP_IO) { int count = 0; if (priority) count = inodes_stat.nr_unused / priority; prune_icache(count); /* FIXME: kmem_cache_shrink here should tell us the number of pages freed, and it should work in a __GFP_DMA/__GFP_HIGHMEM behaviour to free only the interesting pages in function of the needs of the current allocation. */ kmem_cache_shrink(inode_cachep); } return 0; } static inline void __iget(struct inode * inode) { if (!inode->i_count++) { if (!(inode->i_state & I_DIRTY)) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_in_use); } inodes_stat.nr_unused--; } } /* * Called with the inode lock held. * NOTE: we are not increasing the inode-refcount, you must call __iget() * by hand after calling find_inode now! This simplify iunique and won't * add any additional branch in the common code. */ static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque) { struct list_head *tmp; struct inode * inode; tmp = head; for (;;) { tmp = tmp->next; inode = NULL; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_hash); if (inode->i_sb != sb) continue; if (inode->i_ino != ino) continue; if (find_actor && !find_actor(inode, ino, opaque)) continue; break; } return inode; } /* * This just initializes the inode fields * to known values before returning the inode.. * * i_sb, i_ino, i_count, i_state and the lists have * been initialized elsewhere.. */ static void clean_inode(struct inode *inode) { memset(&inode->u, 0, sizeof(inode->u)); inode->i_sock = 0; inode->i_op = NULL; inode->i_nlink = 1; atomic_set(&inode->i_writecount, 0); inode->i_size = 0; inode->i_generation = 0; memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); inode->i_pipe = NULL; } /* * This is called by things like the networking layer * etc that want to get an inode without any inode * number, or filesystems that allocate new inodes with * no pre-existing information. */ struct inode * get_empty_inode(void) { static unsigned long last_ino = 0; struct inode * inode; inode = alloc_inode(); if (inode) { spin_lock(&inode_lock); list_add(&inode->i_list, &inode_in_use); inode->i_sb = NULL; inode->i_dev = 0; inode->i_ino = ++last_ino; inode->i_flags = 0; inode->i_count = 1; inode->i_state = 0; spin_unlock(&inode_lock); clean_inode(inode); } return inode; } /* * This is called without the inode lock held.. Be careful. * * We no longer cache the sb_flags in i_flags - see fs.h * -- rmk@arm.uk.linux.org */ static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque) { struct inode * inode; inode = alloc_inode(); if (inode) { struct inode * old; spin_lock(&inode_lock); /* We released the lock, so.. */ old = find_inode(sb, ino, head, find_actor, opaque); if (!old) { list_add(&inode->i_list, &inode_in_use); list_add(&inode->i_hash, head); inode->i_sb = sb; inode->i_dev = sb->s_dev; inode->i_ino = ino; inode->i_flags = 0; inode->i_count = 1; inode->i_state = I_LOCK; spin_unlock(&inode_lock); clean_inode(inode); sb->s_op->read_inode(inode); /* * This is special! We do not need the spinlock * when clearing I_LOCK, because we're guaranteed * that nobody else tries to do anything about the * state of the inode when it is locked, as we * just created it (so there can be no old holders * that haven't tested I_LOCK). */ inode->i_state &= ~I_LOCK; wake_up(&inode->i_wait); return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ __iget(old); spin_unlock(&inode_lock); destroy_inode(inode); inode = old; wait_on_inode(inode); } return inode; } static inline unsigned long hash(struct super_block *sb, unsigned long i_ino) { unsigned long tmp = i_ino | (unsigned long) sb; tmp = tmp + (tmp >> HASH_BITS) + (tmp >> HASH_BITS*2); return tmp & HASH_MASK; } /* Yeah, I know about quadratic hash. Maybe, later. */ ino_t iunique(struct super_block *sb, ino_t max_reserved) { static ino_t counter = 0; struct inode *inode; struct list_head * head; ino_t res; spin_lock(&inode_lock); retry: if (counter > max_reserved) { head = inode_hashtable + hash(sb,counter); inode = find_inode(sb, res = counter++, head, NULL, NULL); if (!inode) { spin_unlock(&inode_lock); return res; } } else { counter = max_reserved + 1; } goto retry; } struct inode *igrab(struct inode *inode) { spin_lock(&inode_lock); if (!(inode->i_state & I_FREEING)) __iget(inode); else inode = NULL; spin_unlock(&inode_lock); if (inode) wait_on_inode(inode); return inode; } struct inode *iget4(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque) { struct list_head * head = inode_hashtable + hash(sb,ino); struct inode * inode; spin_lock(&inode_lock); inode = find_inode(sb, ino, head, find_actor, opaque); if (inode) { __iget(inode); spin_unlock(&inode_lock); wait_on_inode(inode); return inode; } spin_unlock(&inode_lock); /* * get_new_inode() will do the right thing, re-trying the search * in case it had to block at any point. */ return get_new_inode(sb, ino, head, find_actor, opaque); } void insert_inode_hash(struct inode *inode) { struct list_head *head = inode_hashtable + hash(inode->i_sb, inode->i_ino); spin_lock(&inode_lock); list_add(&inode->i_hash, head); spin_unlock(&inode_lock); } void remove_inode_hash(struct inode *inode) { spin_lock(&inode_lock); list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); spin_unlock(&inode_lock); } void iput(struct inode *inode) { if (inode) { struct super_operations *op = NULL; int destroy = 0; if (inode->i_sb && inode->i_sb->s_op) op = inode->i_sb->s_op; if (op && op->put_inode) op->put_inode(inode); spin_lock(&inode_lock); if (!--inode->i_count) { if (!inode->i_nlink) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); INIT_LIST_HEAD(&inode->i_list); inode->i_state|=I_FREEING; if (op && op->delete_inode) { void (*delete)(struct inode *) = op->delete_inode; spin_unlock(&inode_lock); if (inode->i_data.nrpages) truncate_inode_pages(inode, 0); delete(inode); spin_lock(&inode_lock); } } if (list_empty(&inode->i_hash)) { list_del(&inode->i_list); INIT_LIST_HEAD(&inode->i_list); inode->i_state|=I_FREEING; spin_unlock(&inode_lock); clear_inode(inode); destroy = 1; spin_lock(&inode_lock); } else { if (!(inode->i_state & I_DIRTY)) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_unused); } inodes_stat.nr_unused++; } #ifdef INODE_PARANOIA if (inode->i_flock) printk(KERN_ERR "iput: inode %s/%ld still has locks!\n", kdevname(inode->i_dev), inode->i_ino); if (!list_empty(&inode->i_dentry)) printk(KERN_ERR "iput: device %s inode %ld still has aliases!\n", kdevname(inode->i_dev), inode->i_ino); if (inode->i_count) printk(KERN_ERR "iput: device %s inode %ld count changed, count=%d\n", kdevname(inode->i_dev), inode->i_ino, inode->i_count); if (atomic_read(&inode->i_sem.count) != 1) printk(KERN_ERR "iput: Aieee, semaphore in use inode %s/%ld, count=%d\n", kdevname(inode->i_dev), inode->i_ino, atomic_read(&inode->i_sem.count)); #endif } if (inode->i_count > (1<<31)) { printk(KERN_ERR "iput: inode %s/%ld count wrapped\n", kdevname(inode->i_dev), inode->i_ino); } spin_unlock(&inode_lock); if (destroy) destroy_inode(inode); } } int bmap(struct inode * inode, int block) { struct buffer_head tmp; if (inode->i_op && inode->i_op->get_block) { tmp.b_state = 0; tmp.b_blocknr = 0; inode->i_op->get_block(inode, block, &tmp, 0); return tmp.b_blocknr; } return 0; } /* * Initialize the hash tables. */ void __init inode_init(void) { int i; struct list_head *head = inode_hashtable; i = HASH_SIZE; do { INIT_LIST_HEAD(head); head++; i--; } while (i); /* inode slab cache */ inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 0, SLAB_HWCACHE_ALIGN, init_once, NULL); if (!inode_cachep) panic("cannot create inode slab cache"); } void update_atime (struct inode *inode) { if ( IS_NOATIME (inode) ) return; if ( IS_NODIRATIME (inode) && S_ISDIR (inode->i_mode) ) return; if ( IS_RDONLY (inode) ) return; inode->i_atime = CURRENT_TIME; mark_inode_dirty (inode); } /* End Function update_atime */ |