Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * On SMP systems, each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * This reduces the number of spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts.
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
 *  Several members in kmem_cache_t and slab_t never change, they
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
 *	The global cache-chain is protected by the semaphore 'cache_chain_sem'.
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
 *	maybe be sleeping and therefore not holding the semaphore/lock), the
 *	growing field is used.  This also prevents reaping from a cache.
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
 */

#include	<linux/__KEEPIDENTS__B.h>
#include	<linux/__KEEPIDENTS__C.h>
#include	<linux/__KEEPIDENTS__D.h>
#include	<linux/__KEEPIDENTS__E.h>
#include	<asm/uaccess.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0

/*
 * Parameters for kmem_cache_reap
 */
#define REAP_SCANLEN	10
#define REAP_PERFECT	10

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | SLAB_CACHE_DMA)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementaion relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

#define BUFCTL_END 0xffffFFFF
#define	SLAB_LIMIT 0xffffFFFE
typedef unsigned int kmem_bufctl_t;

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in kmem_cache_grow().
 */
static unsigned long offslab_limit;

/*
 * slab_t
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into one ordered list: fully used, partial, then fully
 * free slabs.
 */
typedef struct slab_s {
	struct list_head	list;
	unsigned long		colouroff;
	void			*s_mem;		/* including colour offset */
	unsigned int		inuse;		/* num of objs active in slab */
	kmem_bufctl_t		free;
} slab_t;

#define slab_bufctl(slabp) \
	((kmem_bufctl_t *)(((slab_t*)slabp)+1))

/*
 * cpucache_t
 *
 * Per cpu structures
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 */
typedef struct cpucache_s {
	unsigned int avail;
	unsigned int limit;
} cpucache_t;

#define cc_entry(cpucache) \
	((void **)(((cpucache_t*)cpucache)+1))
#define cc_data(cachep) \
	((cachep)->cpudata[smp_processor_id()])
/*
 * kmem_cache_t
 *
 * manages a cache.
 */

#define CACHE_NAMELEN	20	/* max name length for a slab cache */

struct kmem_cache_s {
/* 1) each alloc & free */
	/* full, partial first, then free */
	struct list_head	slabs;
	struct list_head	*firstnotfull;
	unsigned int		objsize;
	unsigned int	 	flags;	/* constant flags */
	unsigned int		num;	/* # of objs per slab */
	spinlock_t		spinlock;
#ifdef CONFIG_SMP
	unsigned int		batchcount;
#endif

/* 2) slab additions /removals */
	/* order of pgs per slab (2^n) */
	unsigned int		gfporder;

	/* force GFP flags, e.g. GFP_DMA */
	unsigned int		gfpflags;

	size_t			colour;		/* cache colouring range */
	unsigned int		colour_off;	/* colour offset */
	unsigned int		colour_next;	/* cache colouring */
	kmem_cache_t		*slabp_cache;
	unsigned int		growing;
	unsigned int		dflags;		/* dynamic flags */

	/* constructor func */
	void (*ctor)(void *, kmem_cache_t *, unsigned long);

	/* de-constructor func */
	void (*dtor)(void *, kmem_cache_t *, unsigned long);

	unsigned long		failures;

/* 3) cache creation/removal */
	char			name[CACHE_NAMELEN];
	struct list_head	next;
#ifdef CONFIG_SMP
/* 4) per-cpu data */
	cpucache_t		*cpudata[NR_CPUS];
#endif
#if STATS
	unsigned long		num_active;
	unsigned long		num_allocations;
	unsigned long		high_mark;
	unsigned long		grown;
	unsigned long		reaped;
	unsigned long 		errors;
#ifdef CONFIG_SMP
	atomic_t		allochit;
	atomic_t		allocmiss;
	atomic_t		freehit;
	atomic_t		freemiss;
#endif
#endif
};

/* internal c_flags */
#define	CFLGS_OFF_SLAB	0x010000UL	/* slab management in own cache */
#define	CFLGS_OPTIMIZE	0x020000UL	/* optimized slab lookup */

/* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
#define	DFLGS_GROWN	0x000001UL	/* don't reap a recently grown */

#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
#define	OPTIMIZE(x)	((x)->flags & CFLGS_OPTIMIZE)
#define	GROWN(x)	((x)->dlags & DFLGS_GROWN)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#endif

#if STATS && defined(CONFIG_SMP)
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_MAGIC1	0x5A2CF071UL	/* when obj is active */
#define	RED_MAGIC2	0x170FC2A5UL	/* when obj is inactive */

/* ...and for poisoning */
#define	POISON_BYTE	0x5a		/* byte value for poisoning */
#define	POISON_END	0xa5		/* end-byte of poisoning */

#endif

/* maximum size of an obj (in 2^order pages) */
#define	MAX_OBJ_ORDER	5	/* 32 pages */

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	2
#define	BREAK_GFP_ORDER_LO	1
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

/*
 * Absolute limit for the gfp order
 */
#define	MAX_GFP_ORDER	5	/* 32 pages */


/* Macros for storing/retrieving the cachep and or slab from the
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
#define	SET_PAGE_CACHE(pg,x)  ((pg)->list.next = (struct list_head *)(x))
#define	GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->list.next)
#define	SET_PAGE_SLAB(pg,x)   ((pg)->list.prev = (struct list_head *)(x))
#define	GET_PAGE_SLAB(pg)     ((slab_t *)(pg)->list.prev)

/* Size description struct for general caches. */
typedef struct cache_sizes {
	size_t		 cs_size;
	kmem_cache_t	*cs_cachep;
	kmem_cache_t	*cs_dmacachep;
} cache_sizes_t;

static cache_sizes_t cache_sizes[] = {
#if PAGE_SIZE == 4096
	{    32,	NULL, NULL},
#endif
	{    64,	NULL, NULL},
	{   128,	NULL, NULL},
	{   256,	NULL, NULL},
	{   512,	NULL, NULL},
	{  1024,	NULL, NULL},
	{  2048,	NULL, NULL},
	{  4096,	NULL, NULL},
	{  8192,	NULL, NULL},
	{ 16384,	NULL, NULL},
	{ 32768,	NULL, NULL},
	{ 65536,	NULL, NULL},
	{131072,	NULL, NULL},
	{     0,	NULL, NULL}
};

/* internal cache of cache description objs */
static kmem_cache_t cache_cache = {
	slabs:		LIST_HEAD_INIT(cache_cache.slabs),
	firstnotfull:	&cache_cache.slabs,
	objsize:	sizeof(kmem_cache_t),
	flags:		SLAB_NO_REAP,
	spinlock:	SPIN_LOCK_UNLOCKED,
	colour_off:	L1_CACHE_BYTES,
	name:		"kmem_cache",
};

/* Guard access to the cache-chain. */
static struct semaphore	cache_chain_sem;

/* Place maintainer for reaping. */
static kmem_cache_t *clock_searchp = &cache_cache;

#define cache_chain (cache_cache.next)

#ifdef CONFIG_SMP
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static int g_cpucache_up;

static void enable_cpucache (kmem_cache_t *cachep);
static void enable_all_cpucaches (void);
#endif

/* Cal the num objs, wastage, and bytes left over for a given slab size. */
static void kmem_cache_estimate (unsigned long gfporder, size_t size,
		 int flags, size_t *left_over, unsigned int *num)
{
	int i;
	size_t wastage = PAGE_SIZE<<gfporder;
	size_t extra = 0;
	size_t base = 0;

	if (!(flags & CFLGS_OFF_SLAB)) {
		base = sizeof(slab_t);
		extra = sizeof(kmem_bufctl_t);
	}
	i = 0;
	while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
		i++;
	if (i > 0)
		i--;

	if (i > SLAB_LIMIT)
		i = SLAB_LIMIT;

	*num = i;
	wastage -= i*size;
	wastage -= L1_CACHE_ALIGN(base+i*extra);
	*left_over = wastage;
}

/* Initialisation - setup the `cache' cache. */
void __init kmem_cache_init(void)
{
	size_t left_over;

	init_MUTEX(&cache_chain_sem);
	INIT_LIST_HEAD(&cache_chain);

	kmem_cache_estimate(0, cache_cache.objsize, 0,
			&left_over, &cache_cache.num);
	if (!cache_cache.num)
		BUG();

	cache_cache.colour = left_over/cache_cache.colour_off;
	cache_cache.colour_next = 0;
}


/* Initialisation - setup remaining internal and general caches.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_sizes_init(void)
{
	cache_sizes_t *sizes = cache_sizes;
	char name[20];
	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
	do {
		/* For performance, all the general caches are L1 aligned.
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
		 * allow tighter packing of the smaller caches. */
		sprintf(name,"size-%Zd",sizes->cs_size);
		if (!(sizes->cs_cachep =
			kmem_cache_create(name, sizes->cs_size,
					0, SLAB_HWCACHE_ALIGN, NULL, NULL))) {
			BUG();
		}

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
			offslab_limit = sizes->cs_size-sizeof(slab_t);
			offslab_limit /= 2;
		}
		sprintf(name, "size-%Zd(DMA)",sizes->cs_size);
		sizes->cs_dmacachep = kmem_cache_create(name, sizes->cs_size, 0,
			      SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
		if (!sizes->cs_dmacachep)
			BUG();
		sizes++;
	} while (sizes->cs_size);
}

int __init kmem_cpucache_init(void)
{
#ifdef CONFIG_SMP
	g_cpucache_up = 1;
	enable_all_cpucaches();
#endif
	return 0;
}

__initcall(kmem_cpucache_init);

/* Interface to system's page allocator. No need to hold the cache-lock.
 */
static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long flags)
{
	void	*addr;

	/*
	 * If we requested dmaable memory, we will get it. Even if we
	 * did not request dmaable memory, we might get it, but that
	 * would be relatively rare and ignorable.
	 */
	flags |= cachep->gfpflags;
	addr = (void*) __get_free_pages(flags, cachep->gfporder);
	/* Assume that now we have the pages no one else can legally
	 * messes with the 'struct page's.
	 * However vm_scan() might try to test the structure to see if
	 * it is a named-page or buffer-page.  The members it tests are
	 * of no interest here.....
	 */
	return addr;
}

/* Interface to system's page release. */
static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
{
	unsigned long i = (1<<cachep->gfporder);
	struct page *page = virt_to_page(addr);

	/* free_pages() does not clear the type bit - we do that.
	 * The pages have been unlinked from their cache-slab,
	 * but their 'struct page's might be accessed in
	 * vm_scan(). Shouldn't be a worry.
	 */
	while (i--) {
		PageClearSlab(page);
		page++;
	}
	free_pages((unsigned long)addr, cachep->gfporder);
}

#if DEBUG
static inline void kmem_poison_obj (kmem_cache_t *cachep, void *addr)
{
	int size = cachep->objsize;
	if (cachep->flags & SLAB_RED_ZONE) {
		addr += BYTES_PER_WORD;
		size -= 2*BYTES_PER_WORD;
	}
	memset(addr, POISON_BYTE, size);
	*(unsigned char *)(addr+size-1) = POISON_END;
}

static inline int kmem_check_poison_obj (kmem_cache_t *cachep, void *addr)
{
	int size = cachep->objsize;
	void *end;
	if (cachep->flags & SLAB_RED_ZONE) {
		addr += BYTES_PER_WORD;
		size -= 2*BYTES_PER_WORD;
	}
	end = memchr(addr, POISON_END, size);
	if (end != (addr+size-1))
		return 1;
	return 0;
}
#endif

/* Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
{
	if (cachep->dtor
#if DEBUG
		|| cachep->flags & (SLAB_POISON | SLAB_RED_ZONE)
#endif
	) {
		int i;
		for (i = 0; i < cachep->num; i++) {
			void* objp = slabp->s_mem+cachep->objsize*i;
#if DEBUG
			if (cachep->flags & SLAB_RED_ZONE) {
				if (*((unsigned long*)(objp)) != RED_MAGIC1)
					BUG();
				if (*((unsigned long*)(objp + cachep->objsize
						-BYTES_PER_WORD)) != RED_MAGIC1)
					BUG();
				objp += BYTES_PER_WORD;
			}
#endif
			if (cachep->dtor)
				(cachep->dtor)(objp, cachep, 0);
#if DEBUG
			if (cachep->flags & SLAB_RED_ZONE) {
				objp -= BYTES_PER_WORD;
			}	
			if ((cachep->flags & SLAB_POISON)  &&
				kmem_check_poison_obj(cachep, objp))
				BUG();
#endif
		}
	}

	kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slabp);
}


/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @offset: The offset to use within the page.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
kmem_cache_t *
kmem_cache_create (const char *name, size_t size, size_t offset,
	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
	void (*dtor)(void*, kmem_cache_t *, unsigned long))
{
	const char *func_nm = KERN_ERR "kmem_create: ";
	size_t left_over, align, slab_size;
	kmem_cache_t *cachep = NULL;

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
		((strlen(name) >= CACHE_NAMELEN - 1)) ||
		in_interrupt() ||
		(size < BYTES_PER_WORD) ||
		(size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
		(dtor && !ctor) ||
		(offset < 0 || offset > size))
			BUG();

#if DEBUG
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk("%sNo con, but init state check requested - %s\n", func_nm, name);
		flags &= ~SLAB_DEBUG_INITIAL;
	}

	if ((flags & SLAB_POISON) && ctor) {
		/* request for poisoning, but we can't do that with a constructor */
		printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
		flags &= ~SLAB_POISON;
	}
#if FORCED_DEBUG
	if (size < (PAGE_SIZE>>3))
		/*
		 * do not red zone large object, causes severe
		 * fragmentation.
		 */
		flags |= SLAB_RED_ZONE;
	if (!ctor)
		flags |= SLAB_POISON;
#endif
#endif

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Get cache's description obj. */
	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
	if (!cachep)
		goto opps;
	memset(cachep, 0, sizeof(kmem_cache_t));

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
	if (size & (BYTES_PER_WORD-1)) {
		size += (BYTES_PER_WORD-1);
		size &= ~(BYTES_PER_WORD-1);
		printk("%sForcing size word alignment - %s\n", func_nm, name);
	}
	
#if DEBUG
	if (flags & SLAB_RED_ZONE) {
		/*
		 * There is no point trying to honour cache alignment
		 * when redzoning.
		 */
		flags &= ~SLAB_HWCACHE_ALIGN;
		size += 2*BYTES_PER_WORD;	/* words for redzone */
	}
#endif
	align = BYTES_PER_WORD;
	if (flags & SLAB_HWCACHE_ALIGN)
		align = L1_CACHE_BYTES;

	/* Determine if the slab management is 'on' or 'off' slab. */
	if (size >= (PAGE_SIZE>>3))
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Need to adjust size so that objs are cache aligned. */
		/* Small obj size, can get at least two per cache line. */
		/* FIXME: only power of 2 supported, was better */
		while (size < align/2)
			align /= 2;
		size = (size+align-1)&(~(align-1));
	}

	/* Cal size (in pages) of slabs, and the num of objs per slab.
	 * This could be made much more intelligent.  For now, try to avoid
	 * using high page-orders for slabs.  When the gfp() funcs are more
	 * friendly towards high-order requests, this should be changed.
	 */
	do {
		unsigned int break_flag = 0;
cal_wastage:
		kmem_cache_estimate(cachep->gfporder, size, flags,
						&left_over, &cachep->num);
		if (break_flag)
			break;
		if (cachep->gfporder >= MAX_GFP_ORDER)
			break;
		if (!cachep->num)
			goto next;
		if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) {
			/* Oops, this num of objs will cause problems. */
			cachep->gfporder--;
			break_flag++;
			goto cal_wastage;
		}

		/*
		 * Large num of objs is good, but v. large slabs are currently
		 * bad for the gfp()s.
		 */
		if (cachep->gfporder >= slab_break_gfp_order)
			break;

		if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
			break;	/* Acceptable internal fragmentation. */
next:
		cachep->gfporder++;
	} while (1);

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
		goto opps;
	}
	slab_size = L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(slab_t));

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	/* Offset must be a multiple of the alignment. */
	offset += (align-1);
	offset &= ~(align-1);
	if (!offset)
		offset = L1_CACHE_BYTES;
	cachep->colour_off = offset;
	cachep->colour = left_over/offset;

	/* init remaining fields */
	if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
		flags |= CFLGS_OPTIMIZE;

	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
	cachep->objsize = size;
	INIT_LIST_HEAD(&cachep->slabs);
	cachep->firstnotfull = &cachep->slabs;

	if (flags & CFLGS_OFF_SLAB)
		cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	/* Copy name over so we don't have problems with unloaded modules */
	strcpy(cachep->name, name);

#ifdef CONFIG_SMP
	if (g_cpucache_up)
		enable_cpucache(cachep);
#endif
	/* Need the semaphore to access the chain. */
	down(&cache_chain_sem);
	{
		struct list_head *p;

		list_for_each(p, &cache_chain) {
			kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);

			/* The name field is constant - no lock needed. */
			if (!strcmp(pc->name, name))
				BUG();
		}
	}

	/* There is no reason to lock our new cache before we
	 * link it in - no one knows about it yet...
	 */
	list_add(&cachep->next, &cache_chain);
	up(&cache_chain_sem);
opps:
	return cachep;
}

/*
 * This check if the kmem_cache_t pointer is chained in the cache_cache
 * list. -arca
 */
static int is_chained_kmem_cache(kmem_cache_t * cachep)
{
	struct list_head *p;
	int ret = 0;

	/* Find the cache in the chain of caches. */
	down(&cache_chain_sem);
	list_for_each(p, &cache_chain) {
		if (p == &cachep->next) {
			ret = 1;
			break;
		}
	}
	up(&cache_chain_sem);

	return ret;
}

#ifdef CONFIG_SMP
static DECLARE_MUTEX(cache_drain_sem);
static kmem_cache_t *cache_to_drain = NULL;
static DECLARE_WAIT_QUEUE_HEAD(cache_drain_wait);
unsigned long slab_cache_drain_mask;

static void drain_cpu_caches(kmem_cache_t *cachep)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long cpu_mask = 0;
	int i;

	for (i = 0; i < smp_num_cpus; i++)
		cpu_mask |= (1UL << cpu_logical_map(i));

	down(&cache_drain_sem);

	cache_to_drain = cachep;
	slab_cache_drain_mask = cpu_mask;

	slab_drain_local_cache();

	add_wait_queue(&cache_drain_wait, &wait);
	current->state = TASK_UNINTERRUPTIBLE;
	while (slab_cache_drain_mask != 0UL)
		schedule();
	current->state = TASK_RUNNING;
	remove_wait_queue(&cache_drain_wait, &wait);

	cache_to_drain = NULL;

	up(&cache_drain_sem);
}
#else
#define drain_cpu_caches(cachep)	do { } while (0)
#endif

static int __kmem_cache_shrink(kmem_cache_t *cachep)
{
	slab_t *slabp;
	int ret;

	drain_cpu_caches(cachep);

	spin_lock_irq(&cachep->spinlock);

	/* If the cache is growing, stop shrinking. */
	while (!cachep->growing) {
		struct list_head *p;

		p = cachep->slabs.prev;
		if (p == &cachep->slabs)
			break;

		slabp = list_entry(cachep->slabs.prev, slab_t, list);
		if (slabp->inuse)
			break;

		list_del(&slabp->list);
		if (cachep->firstnotfull == &slabp->list)
			cachep->firstnotfull = &cachep->slabs;

		spin_unlock_irq(&cachep->spinlock);
		kmem_slab_destroy(cachep, slabp);
		spin_lock_irq(&cachep->spinlock);
	}
	ret = !list_empty(&cachep->slabs);
	spin_unlock_irq(&cachep->spinlock);
	return ret;
}

/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(kmem_cache_t *cachep)
{
	if (!cachep || in_interrupt() || !is_chained_kmem_cache(cachep))
		BUG();

	return __kmem_cache_shrink(cachep);
}

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
 * Remove a kmem_cache_t object from the slab cache.
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
int kmem_cache_destroy (kmem_cache_t * cachep)
{
	if (!cachep || in_interrupt() || cachep->growing)
		BUG();

	/* Find the cache in the chain of caches. */
	down(&cache_chain_sem);
	/* the chain is never empty, cache_cache is never destroyed */
	if (clock_searchp == cachep)
		clock_searchp = list_entry(cachep->next.next,
						kmem_cache_t, next);
	list_del(&cachep->next);
	up(&cache_chain_sem);

	if (__kmem_cache_shrink(cachep)) {
		printk(KERN_ERR "kmem_cache_destroy: Can't free all objects %p\n",
		       cachep);
		down(&cache_chain_sem);
		list_add(&cachep->next,&cache_chain);
		up(&cache_chain_sem);
		return 1;
	}
#ifdef CONFIG_SMP
	{
		int i;
		for (i = 0; i < NR_CPUS; i++)
			kfree(cachep->cpudata[i]);
	}
#endif
	kmem_cache_free(&cache_cache, cachep);

	return 0;
}

/* Get the memory for a slab management obj. */
static inline slab_t * kmem_cache_slabmgmt (kmem_cache_t *cachep,
			void *objp, int colour_off, int local_flags)
{
	slab_t *slabp;
	
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
		/* FIXME: change to
			slabp = objp
		 * if you enable OPTIMIZE
		 */
		slabp = objp+colour_off;
		colour_off += L1_CACHE_ALIGN(cachep->num *
				sizeof(kmem_bufctl_t) + sizeof(slab_t));
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
	slabp->s_mem = objp+colour_off;

	return slabp;
}

static inline void kmem_cache_init_objs (kmem_cache_t * cachep,
			slab_t * slabp, unsigned long ctor_flags)
{
	int i;

	for (i = 0; i < cachep->num; i++) {
		void* objp = slabp->s_mem+cachep->objsize*i;
#if DEBUG
		if (cachep->flags & SLAB_RED_ZONE) {
			*((unsigned long*)(objp)) = RED_MAGIC1;
			*((unsigned long*)(objp + cachep->objsize -
					BYTES_PER_WORD)) = RED_MAGIC1;
			objp += BYTES_PER_WORD;
		}
#endif

		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#if DEBUG
		if (cachep->flags & SLAB_RED_ZONE)
			objp -= BYTES_PER_WORD;
		if (cachep->flags & SLAB_POISON)
			/* need to poison the objs */
			kmem_poison_obj(cachep, objp);
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*((unsigned long*)(objp)) != RED_MAGIC1)
				BUG();
			if (*((unsigned long*)(objp + cachep->objsize -
					BYTES_PER_WORD)) != RED_MAGIC1)
				BUG();
		}
#endif
		slab_bufctl(slabp)[i] = i+1;
	}
	slab_bufctl(slabp)[i-1] = BUFCTL_END;
	slabp->free = 0;
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
static int kmem_cache_grow (kmem_cache_t * cachep, int flags)
{
	slab_t	*slabp;
	struct page	*page;
	void		*objp;
	size_t		 offset;
	unsigned int	 i, local_flags;
	unsigned long	 ctor_flags;
	unsigned long	 save_flags;

	/* Be lazy and only check for valid flags here,
 	 * keeping it out of the critical path in kmem_cache_alloc().
	 */
	if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)
		BUG();

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (local_flags == SLAB_ATOMIC)
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

	/* About to mess with non-constant members - lock. */
	spin_lock_irqsave(&cachep->spinlock, save_flags);

	/* Get colour for the slab, and cal the next value. */
	offset = cachep->colour_next;
	cachep->colour_next++;
	if (cachep->colour_next >= cachep->colour)
		cachep->colour_next = 0;
	offset *= cachep->colour_off;
	cachep->dflags |= DFLGS_GROWN;

	cachep->growing++;
	spin_unlock_irqrestore(&cachep->spinlock, save_flags);

	/* A series of memory allocations for a new slab.
	 * Neither the cache-chain semaphore, or cache-lock, are
	 * held, but the incrementing c_growing prevents this
	 * cache from being reaped or shrunk.
	 * Note: The cache could be selected in for reaping in
	 * kmem_cache_reap(), but when the final test is made the
	 * growing value will be seen.
	 */

	/* Get mem for the objs. */
	if (!(objp = kmem_getpages(cachep, flags)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = kmem_cache_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
		SET_PAGE_CACHE(page, cachep);
		SET_PAGE_SLAB(page, slabp);
		PageSetSlab(page);
		page++;
	} while (--i);

	kmem_cache_init_objs(cachep, slabp, ctor_flags);

	spin_lock_irqsave(&cachep->spinlock, save_flags);
	cachep->growing--;

	/* Make slab active. */
	list_add_tail(&slabp->list,&cachep->slabs);
	if (cachep->firstnotfull == &cachep->slabs)
		cachep->firstnotfull = &slabp->list;
	STATS_INC_GROWN(cachep);
	cachep->failures = 0;

	spin_unlock_irqrestore(&cachep->spinlock, save_flags);
	return 1;
opps1:
	kmem_freepages(cachep, objp);
failed:
	spin_lock_irqsave(&cachep->spinlock, save_flags);
	cachep->growing--;
	spin_unlock_irqrestore(&cachep->spinlock, save_flags);
	return 0;
}

/*
 * Perform extra freeing checks:
 * - detect double free
 * - detect bad pointers.
 * Called with the cache-lock held.
 */

#if DEBUG
static int kmem_extra_free_checks (kmem_cache_t * cachep,
			slab_t *slabp, void * objp)
{
	int i;
	unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

	if (objnr >= cachep->num)
		BUG();
	if (objp != slabp->s_mem + objnr*cachep->objsize)
		BUG();

	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		if (i == objnr)
			BUG();
	}
	return 0;
}
#endif

static inline void kmem_cache_alloc_head(kmem_cache_t *cachep, int flags)
{
#if DEBUG
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
#endif
}

static inline void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,
							 slab_t *slabp)
{
	void *objp;

	STATS_INC_ALLOCED(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	/* get obj pointer */
	slabp->inuse++;
	objp = slabp->s_mem + slabp->free*cachep->objsize;
	slabp->free=slab_bufctl(slabp)[slabp->free];

	if (slabp->free == BUFCTL_END)
		/* slab now full: move to next slab for next alloc */
		cachep->firstnotfull = slabp->list.next;
#if DEBUG
	if (cachep->flags & SLAB_POISON)
		if (kmem_check_poison_obj(cachep, objp))
			BUG();
	if (cachep->flags & SLAB_RED_ZONE) {
		/* Set alloc red-zone, and check old one. */
		if (xchg((unsigned long *)objp, RED_MAGIC2) !=
							 RED_MAGIC1)
			BUG();
		if (xchg((unsigned long *)(objp+cachep->objsize -
			  BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)
			BUG();
		objp += BYTES_PER_WORD;
	}
#endif
	return objp;
}

/*
 * Returns a ptr to an obj in the given cache.
 * caller must guarantee synchronization
 * #define for the goto optimization 8-)
 */
#define kmem_cache_alloc_one(cachep)				\
({								\
	slab_t	*slabp;					\
								\
	/* Get slab alloc is to come from. */			\
	{							\
		struct list_head* p = cachep->firstnotfull;	\
		if (p == &cachep->slabs)			\
			goto alloc_new_slab;			\
		slabp = list_entry(p,slab_t, list);	\
	}							\
	kmem_cache_alloc_one_tail(cachep, slabp);		\
})

#ifdef CONFIG_SMP
void* kmem_cache_alloc_batch(kmem_cache_t* cachep, int flags)
{
	int batchcount = cachep->batchcount;
	cpucache_t* cc = cc_data(cachep);

	spin_lock(&cachep->spinlock);
	while (batchcount--) {
		/* Get slab alloc is to come from. */
		struct list_head *p = cachep->firstnotfull;
		slab_t *slabp;

		if (p == &cachep->slabs)
			break;
		slabp = list_entry(p,slab_t, list);
		cc_entry(cc)[cc->avail++] =
				kmem_cache_alloc_one_tail(cachep, slabp);
	}
	spin_unlock(&cachep->spinlock);

	if (cc->avail)
		return cc_entry(cc)[--cc->avail];
	return NULL;
}
#endif

static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)
{
	unsigned long save_flags;
	void* objp;

	kmem_cache_alloc_head(cachep, flags);
try_again:
	local_irq_save(save_flags);
#ifdef CONFIG_SMP
	{
		cpucache_t *cc = cc_data(cachep);

		if (cc) {
			if (cc->avail) {
				STATS_INC_ALLOCHIT(cachep);
				objp = cc_entry(cc)[--cc->avail];
			} else {
				STATS_INC_ALLOCMISS(cachep);
				objp = kmem_cache_alloc_batch(cachep,flags);
				if (!objp)
					goto alloc_new_slab_nolock;
			}
		} else {
			spin_lock(&cachep->spinlock);
			objp = kmem_cache_alloc_one(cachep);
			spin_unlock(&cachep->spinlock);
		}
	}
#else
	objp = kmem_cache_alloc_one(cachep);
#endif
	local_irq_restore(save_flags);
	return objp;
alloc_new_slab:
#ifdef CONFIG_SMP
	spin_unlock(&cachep->spinlock);
alloc_new_slab_nolock:
#endif
	local_irq_restore(save_flags);
	if (kmem_cache_grow(cachep, flags))
		/* Someone may have stolen our objs.  Doesn't matter, we'll
		 * just come back here again.
		 */
		goto try_again;
	return NULL;
}

/*
 * Release an obj back to its cache. If the obj has a constructed
 * state, it should be in this state _before_ it is released.
 * - caller is responsible for the synchronization
 */

#if DEBUG
# define CHECK_NR(pg)						\
	do {							\
		if (!VALID_PAGE(pg)) {				\
			printk(KERN_ERR "kfree: out of range ptr %lxh.\n", \
				(unsigned long)objp);		\
			BUG();					\
		} \
	} while (0)
# define CHECK_PAGE(page)					\
	do {							\
		CHECK_NR(page);					\
		if (!PageSlab(page)) {				\
			printk(KERN_ERR "kfree: bad ptr %lxh.\n", \
				(unsigned long)objp);		\
			BUG();					\
		}						\
	} while (0)

#else
# define CHECK_PAGE(pg)	do { } while (0)
#endif

static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)
{
	slab_t* slabp;

	CHECK_PAGE(virt_to_page(objp));
	/* reduces memory footprint
	 *
	if (OPTIMIZE(cachep))
		slabp = (void*)((unsigned long)objp&(~(PAGE_SIZE-1)));
	 else
	 */
	slabp = GET_PAGE_SLAB(virt_to_page(objp));

#if DEBUG
	if (cachep->flags & SLAB_DEBUG_INITIAL)
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
		cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);

	if (cachep->flags & SLAB_RED_ZONE) {
		objp -= BYTES_PER_WORD;
		if (xchg((unsigned long *)objp, RED_MAGIC1) != RED_MAGIC2)
			/* Either write before start, or a double free. */
			BUG();
		if (xchg((unsigned long *)(objp+cachep->objsize -
				BYTES_PER_WORD), RED_MAGIC1) != RED_MAGIC2)
			/* Either write past end, or a double free. */
			BUG();
	}
	if (cachep->flags & SLAB_POISON)
		kmem_poison_obj(cachep, objp);
	if (kmem_extra_free_checks(cachep, slabp, objp))
		return;
#endif
	{
		unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

		slab_bufctl(slabp)[objnr] = slabp->free;
		slabp->free = objnr;
	}
	STATS_DEC_ACTIVE(cachep);
	
	/* fixup slab chain */
	if (slabp->inuse-- == cachep->num)
		goto moveslab_partial;
	if (!slabp->inuse)
		goto moveslab_free;
	return;

moveslab_partial:
    	/* was full.
	 * Even if the page is now empty, we can set c_firstnotfull to
	 * slabp: there are no partial slabs in this case
	 */
	{
		struct list_head *t = cachep->firstnotfull;

		cachep->firstnotfull = &slabp->list;
		if (slabp->list.next == t)
			return;
		list_del(&slabp->list);
		list_add_tail(&slabp->list, t);
		return;
	}
moveslab_free:
	/*
	 * was partial, now empty.
	 * c_firstnotfull might point to slabp
	 * FIXME: optimize
	 */
	{
		struct list_head *t = cachep->firstnotfull->prev;

		list_del(&slabp->list);
		list_add_tail(&slabp->list, &cachep->slabs);
		if (cachep->firstnotfull == &slabp->list)
			cachep->firstnotfull = t->next;
		return;
	}
}

#ifdef CONFIG_SMP
static inline void __free_block (kmem_cache_t* cachep,
							void** objpp, int len)
{
	for ( ; len > 0; len--, objpp++)
		kmem_cache_free_one(cachep, *objpp);
}

static void free_block (kmem_cache_t* cachep, void** objpp, int len)
{
	spin_lock(&cachep->spinlock);
	__free_block(cachep, objpp, len);
	spin_unlock(&cachep->spinlock);
}
#endif

/*
 * __kmem_cache_free
 * called with disabled ints
 */
static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)
{
#ifdef CONFIG_SMP
	cpucache_t *cc = cc_data(cachep);

	CHECK_PAGE(virt_to_page(objp));
	if (cc) {
		int batchcount;
		if (cc->avail < cc->limit) {
			STATS_INC_FREEHIT(cachep);
			cc_entry(cc)[cc->avail++] = objp;
			return;
		}
		STATS_INC_FREEMISS(cachep);
		batchcount = cachep->batchcount;
		cc->avail -= batchcount;
		free_block(cachep,
					&cc_entry(cc)[cc->avail],batchcount);
		cc_entry(cc)[cc->avail++] = objp;
		return;
	} else {
		free_block(cachep, &objp, 1);
	}
#else
	kmem_cache_free_one(cachep, objp);
#endif
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
{
	return __kmem_cache_alloc(cachep, flags);
}

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.  The @flags argument may be one of:
 *
 * %GFP_BUFFER - XXX
 *
 * %GFP_ATOMIC - allocation will not sleep.  Use inside interrupt handlers.
 *
 * %GFP_USER - allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - allocate normal kernel ram.  May sleep.
 *
 * %GFP_NFS - has a slightly lower probability of sleeping than %GFP_KERNEL.
 * Don't use unless you're in the NFS code.
 *
 * %GFP_KSWAPD - Don't use unless you're modifying kswapd.
 */
void * kmalloc (size_t size, int flags)
{
	cache_sizes_t *csizep = cache_sizes;

	for (; csizep->cs_size; csizep++) {
		if (size > csizep->cs_size)
			continue;
		return __kmem_cache_alloc(flags & GFP_DMA ?
			 csizep->cs_dmacachep : csizep->cs_cachep, flags);
	}
	BUG(); // too big size
	return NULL;
}

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
void kmem_cache_free (kmem_cache_t *cachep, void *objp)
{
	unsigned long flags;
#if DEBUG
	CHECK_PAGE(virt_to_page(objp));
	if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
		BUG();
#endif

	local_irq_save(flags);
	__kmem_cache_free(cachep, objp);
	local_irq_restore(flags);
}

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree (const void *objp)
{
	kmem_cache_t *c;
	unsigned long flags;

	if (!objp)
		return;
	local_irq_save(flags);
	CHECK_PAGE(virt_to_page(objp));
	c = GET_PAGE_CACHE(virt_to_page(objp));
	__kmem_cache_free(c, (void*)objp);
	local_irq_restore(flags);
}

kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
{
	cache_sizes_t *csizep = cache_sizes;

	/* This function could be moved to the header file, and
	 * made inline so consumers can quickly determine what
	 * cache pointer they require.
	 */
	for ( ; csizep->cs_size; csizep++) {
		if (size > csizep->cs_size)
			continue;
		break;
	}
	return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
}

#ifdef CONFIG_SMP

typedef struct ccupdate_struct_s
{
	kmem_cache_t *cachep;
	cpucache_t *new[NR_CPUS];
} ccupdate_struct_t;

static ccupdate_struct_t *ccupdate_state = NULL;

/* Called from per-cpu timer interrupt. */
void slab_drain_local_cache(void)
{
	local_irq_disable();
	if (ccupdate_state != NULL) {
		ccupdate_struct_t *new = ccupdate_state;
		cpucache_t *old = cc_data(new->cachep);

		cc_data(new->cachep) = new->new[smp_processor_id()];
		new->new[smp_processor_id()] = old;
	} else {
		kmem_cache_t *cachep = cache_to_drain;
		cpucache_t *cc = cc_data(cachep);

		if (cc && cc->avail) {
			free_block(cachep, cc_entry(cc), cc->avail);
			cc->avail = 0;
		}
	}
	local_irq_enable();

	clear_bit(smp_processor_id(), &slab_cache_drain_mask);
	if (slab_cache_drain_mask == 0)
		wake_up(&cache_drain_wait);
}

static void do_ccupdate(ccupdate_struct_t *data)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long cpu_mask = 0;
	int i;

	for (i = 0; i < smp_num_cpus; i++)
		cpu_mask |= (1UL << cpu_logical_map(i));

	down(&cache_drain_sem);

	ccupdate_state = data;
	slab_cache_drain_mask = cpu_mask;

	slab_drain_local_cache();

	add_wait_queue(&cache_drain_wait, &wait);
	current->state = TASK_UNINTERRUPTIBLE;
	while (slab_cache_drain_mask != 0UL)
		schedule();
	current->state = TASK_RUNNING;
	remove_wait_queue(&cache_drain_wait, &wait);

	ccupdate_state = NULL;

	up(&cache_drain_sem);
}

/* called with cache_chain_sem acquired.  */
static int kmem_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount)
{
	ccupdate_struct_t new;
	int i;

	/*
	 * These are admin-provided, so we are more graceful.
	 */
	if (limit < 0)
		return -EINVAL;
	if (batchcount < 0)
		return -EINVAL;
	if (batchcount > limit)
		return -EINVAL;
	if (limit != 0 && !batchcount)
		return -EINVAL;

	memset(&new.new,0,sizeof(new.new));
	if (limit) {
		for (i = 0; i< smp_num_cpus; i++) {
			cpucache_t* ccnew;


			ccnew = kmalloc(sizeof(void*)*limit+
					sizeof(cpucache_t), GFP_KERNEL);
			if (!ccnew)
				goto oom;
			ccnew->limit = limit;
			ccnew->avail = 0;
			new.new[cpu_logical_map(i)] = ccnew;
		}
	}
	new.cachep = cachep;
	spin_lock_irq(&cachep->spinlock);
	cachep->batchcount = batchcount;
	spin_unlock_irq(&cachep->spinlock);

	do_ccupdate(&new);

	for (i = 0; i < smp_num_cpus; i++) {
		cpucache_t* ccold = new.new[cpu_logical_map(i)];
		if (!ccold)
			continue;
		local_irq_disable();
		free_block(cachep, cc_entry(ccold), ccold->avail);
		local_irq_enable();
		kfree(ccold);
	}
	return 0;
oom:
	for (i--; i >= 0; i--)
		kfree(new.new[cpu_logical_map(i)]);
	return -ENOMEM;
}

static void enable_cpucache (kmem_cache_t *cachep)
{
	int err;
	int limit;

	/* FIXME: optimize */
	if (cachep->objsize > PAGE_SIZE)
		return;
	if (cachep->objsize > 1024)
		limit = 60;
	else if (cachep->objsize > 256)
		limit = 124;
	else
		limit = 252;

	err = kmem_tune_cpucache(cachep, limit, limit/2);
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
					cachep->name, -err);
}

static void enable_all_cpucaches (void)
{
	struct list_head* p;

	down(&cache_chain_sem);

	p = &cache_cache.next;
	do {
		kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);

		enable_cpucache(cachep);
		p = cachep->next.next;
	} while (p != &cache_cache.next);

	up(&cache_chain_sem);
}
#endif

/**
 * kmem_cache_reap - Reclaim memory from caches.
 * @gfp_mask: the type of memory required.
 *
 * Called from try_to_free_page().
 */
void kmem_cache_reap (int gfp_mask)
{
	slab_t *slabp;
	kmem_cache_t *searchp;
	kmem_cache_t *best_cachep;
	unsigned int best_pages;
	unsigned int best_len;
	unsigned int scan;

	if (gfp_mask & __GFP_WAIT)
		down(&cache_chain_sem);
	else
		if (down_trylock(&cache_chain_sem))
			return;

	scan = REAP_SCANLEN;
	best_len = 0;
	best_pages = 0;
	best_cachep = NULL;
	searchp = clock_searchp;
	do {
		unsigned int pages;
		struct list_head* p;
		unsigned int full_free;

		/* It's safe to test this without holding the cache-lock. */
		if (searchp->flags & SLAB_NO_REAP)
			goto next;
		/* FIXME: is this really a good idea? */
		if (gfp_mask & GFP_DMA) {
			if (!(searchp->gfpflags & GFP_DMA))
				goto next;
		} else {
			if (searchp->gfpflags & GFP_DMA)
				goto next;
		}
		spin_lock_irq(&searchp->spinlock);
		if (searchp->growing)
			goto next_unlock;
		if (searchp->dflags & DFLGS_GROWN) {
			searchp->dflags &= ~DFLGS_GROWN;
			goto next_unlock;
		}
#ifdef CONFIG_SMP
		{
			cpucache_t *cc = cc_data(searchp);
			if (cc && cc->avail) {
				__free_block(searchp, cc_entry(cc), cc->avail);
				cc->avail = 0;
			}
		}
#endif

		full_free = 0;
		p = searchp->slabs.prev;
		while (p != &searchp->slabs) {
			slabp = list_entry(p, slab_t, list);
			if (slabp->inuse)
				break;
			full_free++;
			p = p->prev;
		}

		/*
		 * Try to avoid slabs with constructors and/or
		 * more than one page per slab (as it can be difficult
		 * to get high orders from gfp()).
		 */
		pages = full_free * (1<<searchp->gfporder);
		if (searchp->ctor)
			pages = (pages*4+1)/5;
		if (searchp->gfporder)
			pages = (pages*4+1)/5;
		if (pages > best_pages) {
			best_cachep = searchp;
			best_len = full_free;
			best_pages = pages;
			if (full_free >= REAP_PERFECT) {
				clock_searchp = list_entry(searchp->next.next,
							kmem_cache_t,next);
				goto perfect;
			}
		}
next_unlock:
		spin_unlock_irq(&searchp->spinlock);
next:
		searchp = list_entry(searchp->next.next,kmem_cache_t,next);
	} while (--scan && searchp != clock_searchp);

	clock_searchp = searchp;

	if (!best_cachep)
		/* couldn't find anything to reap */
		goto out;

	spin_lock_irq(&best_cachep->spinlock);
perfect:
	/* free only 80% of the free slabs */
	best_len = (best_len*4 + 1)/5;
	for (scan = 0; scan < best_len; scan++) {
		struct list_head *p;

		if (best_cachep->growing)
			break;
		p = best_cachep->slabs.prev;
		if (p == &best_cachep->slabs)
			break;
		slabp = list_entry(p,slab_t,list);
		if (slabp->inuse)
			break;
		list_del(&slabp->list);
		if (best_cachep->firstnotfull == &slabp->list)
			best_cachep->firstnotfull = &best_cachep->slabs;
		STATS_INC_REAPED(best_cachep);

		/* Safe to drop the lock. The slab is no longer linked to the
		 * cache.
		 */
		spin_unlock_irq(&best_cachep->spinlock);
		kmem_slab_destroy(best_cachep, slabp);
		spin_lock_irq(&best_cachep->spinlock);
	}
	spin_unlock_irq(&best_cachep->spinlock);
out:
	up(&cache_chain_sem);
	return;
}

#ifdef CONFIG_PROC_FS
/* /proc/slabinfo
 *	cache-name num-active-objs total-objs
 *	obj-size num-active-slabs total-slabs
 *	num-pages-per-slab
 */
#define FIXUP(t)				\
	do {					\
		if (len <= off) {		\
			off -= len;		\
			len = 0;		\
		} else {			\
			if (len-off > count)	\
				goto t;		\
		}				\
	} while (0)

static int proc_getdata (char*page, char**start, off_t off, int count)
{
	struct list_head *p;
	int len = 0;

	/* Output format version, so at least we can change it without _too_
	 * many complaints.
	 */
	len += sprintf(page+len, "slabinfo - version: 1.1"
#if STATS
				" (statistics)"
#endif
#ifdef CONFIG_SMP
				" (SMP)"
#endif
				"\n");
	FIXUP(got_data);

	down(&cache_chain_sem);
	p = &cache_cache.next;
	do {
		kmem_cache_t	*cachep;
		struct list_head *q;
		slab_t		*slabp;
		unsigned long	active_objs;
		unsigned long	num_objs;
		unsigned long	active_slabs = 0;
		unsigned long	num_slabs;
		cachep = list_entry(p, kmem_cache_t, next);

		spin_lock_irq(&cachep->spinlock);
		active_objs = 0;
		num_slabs = 0;
		list_for_each(q,&cachep->slabs) {
			slabp = list_entry(q, slab_t, list);
			active_objs += slabp->inuse;
			num_objs += cachep->num;
			if (slabp->inuse)
				active_slabs++;
			else
				num_slabs++;
		}
		num_slabs+=active_slabs;
		num_objs = num_slabs*cachep->num;

		len += sprintf(page+len, "%-17s %6lu %6lu %6u %4lu %4lu %4u",
			cachep->name, active_objs, num_objs, cachep->objsize,
			active_slabs, num_slabs, (1<<cachep->gfporder));

#if STATS
		{
			unsigned long errors = cachep->errors;
			unsigned long high = cachep->high_mark;
			unsigned long grown = cachep->grown;
			unsigned long reaped = cachep->reaped;
			unsigned long allocs = cachep->num_allocations;

			len += sprintf(page+len, " : %6lu %7lu %5lu %4lu %4lu",
					high, allocs, grown, reaped, errors);
		}
#endif
#ifdef CONFIG_SMP
		{
			unsigned int batchcount = cachep->batchcount;
			unsigned int limit;

			if (cc_data(cachep))
				limit = cc_data(cachep)->limit;
			 else
				limit = 0;
			len += sprintf(page+len, " : %4u %4u",
					limit, batchcount);
		}
#endif
#if STATS && defined(CONFIG_SMP)
		{
			unsigned long allochit = atomic_read(&cachep->allochit);
			unsigned long allocmiss = atomic_read(&cachep->allocmiss);
			unsigned long freehit = atomic_read(&cachep->freehit);
			unsigned long freemiss = atomic_read(&cachep->freemiss);
			len += sprintf(page+len, " : %6lu %6lu %6lu %6lu",
					allochit, allocmiss, freehit, freemiss);
		}
#endif
		len += sprintf(page+len,"\n");
		spin_unlock_irq(&cachep->spinlock);
		FIXUP(got_data_up);
		p = cachep->next.next;
	} while (p != &cache_cache.next);
got_data_up:
	up(&cache_chain_sem);

got_data:
	*start = page+off;
	return len;
}

/**
 * slabinfo_read_proc - generates /proc/slabinfo
 * @page: scratch area, one page long
 * @start: pointer to the pointer to the output buffer
 * @off: offset within /proc/slabinfo the caller is interested in
 * @count: requested len in bytes
 * @eof: eof marker
 * @data: unused
 *
 * The contents of the buffer are
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
int slabinfo_read_proc (char *page, char **start, off_t off,
				 int count, int *eof, void *data)
{
	int len = proc_getdata(page, start, off, count);
	len -= (*start-page);
	if (len <= count)
		*eof = 1;
	if (len>count) len = count;
	if (len<0) len = 0;
	return len;
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write_proc - SMP tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data len
 * @data: unused
 */
int slabinfo_write_proc (struct file *file, const char *buffer,
				unsigned long count, void *data)
{
#ifdef CONFIG_SMP
	char kbuf[MAX_SLABINFO_WRITE], *tmp;
	int limit, batchcount, res;
	struct list_head *p;
	
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	limit = simple_strtol(tmp, &tmp, 10);
	while (*tmp == ' ')
		tmp++;
	batchcount = simple_strtol(tmp, &tmp, 10);

	/* Find the cache in the chain of caches. */
	down(&cache_chain_sem);
	res = -EINVAL;
	list_for_each(p,&cache_chain) {
		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);

		if (!strcmp(cachep->name, kbuf)) {
			res = kmem_tune_cpucache(cachep, limit, batchcount);
			break;
		}
	}
	up(&cache_chain_sem);
	if (res >= 0)
		res = count;
	return res;
#else
	return -EINVAL;
#endif
}
#endif