Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * 11 April '97.  Started multi-threading - markhe
 *	The global cache-chain is protected by the semaphore 'cache_chain_sem'.
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *	This is a medium-term exclusion lock.
 *
 *	Each cache has its own lock; 'c_spinlock'.  This lock is needed only
 *	when accessing non-constant members of a cache-struct.
 *	Note: 'constant members' are assigned a value in kmem_cache_create() before
 *	the cache is linked into the cache-chain.  The values never change, so not
 *	even a multi-reader lock is needed for these members.
 *	The c_spinlock is only ever held for a few cycles.
 *
 *	To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
 *	maybe be sleeping and therefore not holding the semaphore/lock), the
 *	c_growing field is used.  This also prevents reaping from a cache.
 *
 *	Note, caches can _never_ be destroyed.  When a sub-system (eg module) has
 *	finished with a cache, it can only be shrunk.  This leaves the cache empty,
 *	but already enabled for re-use, eg. during a module re-load.
 *
 *	Notes:
 *		o Constructors/deconstructors are called while the cache-lock
 *		  is _not_ held.  Therefore they _must_ be threaded.
 *		o Constructors must not attempt to allocate memory from the
 *		  same cache that they are a constructor for - infinite loop!
 *		  (There is no easy way to trap this.)
 *		o The per-cache locks must be obtained with local-interrupts disabled.
 *		o When compiled with debug support, and an object-verify (upon release)
 *		  is request for a cache, the verify-function is called with the cache
 *		  lock held.  This helps debugging.
 *		o The functions called from try_to_free_page() must not attempt
 *		  to allocate memory from a cache which is being grown.
 *		  The buffer sub-system might try to allocate memory, via buffer_cachep.
 *		  As this pri is passed to the SLAB, and then (if necessary) onto the
 *		  gfp() funcs (which avoid calling try_to_free_page()), no deadlock
 *		  should happen.
 *
 *	The positioning of the per-cache lock is tricky.  If the lock is
 *	placed on the same h/w cache line as commonly accessed members
 *	the number of L1 cache-line faults is reduced.  However, this can
 *	lead to the cache-line ping-ponging between processors when the
 *	lock is in contention (and the common members are being accessed).
 *	Decided to keep it away from common members.
 *
 *	More fine-graining is possible, with per-slab locks...but this might be
 *	taking fine graining too far, but would have the advantage;
 *		During most allocs/frees no writes occur to the cache-struct.
 *		Therefore a multi-reader/one writer lock could be used (the writer
 *		needed when the slab chain is being link/unlinked).
 *		As we would not have an exclusion lock for the cache-structure, one
 *		would be needed per-slab (for updating s_free ptr, and/or the contents
 *		of s_index).
 *	The above locking would allow parallel operations to different slabs within
 *	the same cache with reduced spinning.
 *
 *	Per-engine slab caches, backed by a global cache (as in Mach's Zone allocator),
 *	would allow most allocations from the same cache to execute in parallel.
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
 *	It is not currently 100% safe to examine the page_struct outside of a kernel
 *	or global cli lock.  The risk is v. small, and non-fatal.
 *
 *	Calls to printk() are not 100% safe (the function is not threaded).  However,
 *	printk() is only used under an error condition, and the risk is v. small (not
 *	sure if the console write functions 'enjoy' executing multiple contexts in
 *	parallel.  I guess they don't...).
 *	Note, for most calls to printk() any held cache-lock is dropped.  This is not
 *	always done for text size reasons - having *_unlock() everywhere is bloat.
 */

/*
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 */

/*
 * This implementation deviates from Bonwick's paper as it
 * does not use a hash-table for large objects, but rather a per slab
 * index to hold the bufctls.  This allows the bufctl structure to
 * be small (one word), but limits the number of objects a slab (not
 * a cache) can contain when off-slab bufctls are used.  The limit is the
 * size of the largest general cache that does not use off-slab bufctls,
 * divided by the size of a bufctl.  For 32bit archs, is this 256/4 = 64.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

#include	<linux/__KEEPIDENTS__B.h>
#include	<linux/__KEEPIDENTS__C.h>
#include	<linux/__KEEPIDENTS__D.h>
#include	<linux/__KEEPIDENTS__E.h>

/* If there is a different PAGE_SIZE around, and it works with this allocator,
 * then change the following.
 */
#if	(PAGE_SIZE != 8192 && PAGE_SIZE != 4096 && PAGE_SIZE != 32768)
#error	Your page size is probably not correctly supported - please check
#endif

/* SLAB_MGMT_CHECKS	- 1 to enable extra checks in kmem_cache_create().
 *			  0 if you wish to reduce memory usage.
 *
 * SLAB_DEBUG_SUPPORT	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_FREE,
 *			  SLAB_DEBUG_INITIAL, SLAB_RED_ZONE & SLAB_POISON.
 *			  0 for faster, smaller, code (especially in the critical paths).
 *
 * SLAB_STATS		- 1 to collect stats for /proc/slabinfo.
 *			  0 for faster, smaller, code (especially in the critical paths).
 *
 * SLAB_SELFTEST	- 1 to perform a few tests, mainly for development.
 */
#define		SLAB_MGMT_CHECKS	1
#define		SLAB_DEBUG_SUPPORT	0
#define		SLAB_STATS		0
#define		SLAB_SELFTEST		0

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

/* Legal flag mask for kmem_cache_create(). */
#if	SLAB_DEBUG_SUPPORT
#if	0
#define	SLAB_C_MASK		(SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
				 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP| \
				 SLAB_HIGH_PACK)
#endif
#define	SLAB_C_MASK		(SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \
				 SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
#else
#if	0
#define	SLAB_C_MASK		(SLAB_HWCACHE_ALIGN|SLAB_NO_REAP|SLAB_HIGH_PACK)
#endif
#define	SLAB_C_MASK		(SLAB_HWCACHE_ALIGN|SLAB_NO_REAP)
#endif	/* SLAB_DEBUG_SUPPORT */

/* Slab management struct.
 * Manages the objs in a slab.  Placed either at the end of mem allocated
 * for a slab, or from an internal obj cache (cache_slabp).
 * Slabs are chained into a partially ordered list; fully used first, partial
 * next, and then fully free slabs.
 * The first 4 members are referenced during an alloc/free operation, and
 * should always appear on the same cache line.
 * Note: The offset between some members _must_ match offsets within
 * the kmem_cache_t - see kmem_cache_init() for the checks. */

#define	SLAB_OFFSET_BITS	16	/* could make this larger for 64bit archs */

typedef struct kmem_slab_s {
	struct kmem_bufctl_s	*s_freep;  /* ptr to first inactive obj in slab */
	struct kmem_bufctl_s	*s_index;
	unsigned long		 s_magic;
	unsigned long		 s_inuse;  /* num of objs active in slab */

	struct kmem_slab_s	*s_nextp;
	struct kmem_slab_s	*s_prevp;
	void			*s_mem;	   /* addr of first obj in slab */
	unsigned long		 s_offset:SLAB_OFFSET_BITS,
				 s_dma:1;
} kmem_slab_t;

/* When the slab management is on-slab, this gives the size to use. */
#define	slab_align_size		(L1_CACHE_ALIGN(sizeof(kmem_slab_t)))

/* Test for end of slab chain. */
#define	kmem_slab_end(x)	((kmem_slab_t*)&((x)->c_offset))

/* s_magic */
#define	SLAB_MAGIC_ALLOC	0xA5C32F2BUL	/* slab is alive */
#define	SLAB_MAGIC_DESTROYED	0xB2F23C5AUL	/* slab has been destroyed */

/* Bufctl's are used for linking objs within a slab, identifying what slab an obj
 * is in, and the address of the associated obj (for sanity checking with off-slab
 * bufctls).  What a bufctl contains depends upon the state of the obj and
 * the organisation of the cache.
 */
typedef struct kmem_bufctl_s {
	union {
		struct kmem_bufctl_s	*buf_nextp;
		kmem_slab_t		*buf_slabp;	/* slab for obj */
		void *			 buf_objp;
	} u;
} kmem_bufctl_t;

/* ...shorthand... */
#define	buf_nextp	u.buf_nextp
#define	buf_slabp	u.buf_slabp
#define	buf_objp	u.buf_objp

#if	SLAB_DEBUG_SUPPORT
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	SLAB_RED_MAGIC1		0x5A2CF071UL	/* when obj is active */
#define	SLAB_RED_MAGIC2		0x170FC2A5UL	/* when obj is inactive */

/* ...and for poisoning */
#define	SLAB_POISON_BYTE	0x5a		/* byte value for poisoning */
#define	SLAB_POISON_END	0xa5		/* end-byte of poisoning */

#endif	/* SLAB_DEBUG_SUPPORT */

/* Cache struct - manages a cache.
 * First four members are commonly referenced during an alloc/free operation.
 */
struct kmem_cache_s {
	kmem_slab_t		 *c_freep;	/* first slab w. free objs */
	unsigned long	 	  c_flags;	/* constant flags */
	unsigned long		  c_offset;
	unsigned long		  c_num;	/* # of objs per slab */

	unsigned long		  c_magic;
	unsigned long		  c_inuse;	/* kept at zero */
	kmem_slab_t		 *c_firstp;	/* first slab in chain */
	kmem_slab_t		 *c_lastp;	/* last slab in chain */

	spinlock_t		  c_spinlock;
	unsigned long		  c_growing;
	unsigned long		  c_dflags;	/* dynamic flags */
	size_t 			  c_org_size;
	unsigned long		  c_gfporder;	/* order of pgs per slab (2^n) */
	void (*c_ctor)(void *, kmem_cache_t *, unsigned long); /* constructor func */
	void (*c_dtor)(void *, kmem_cache_t *, unsigned long); /* de-constructor func */
	unsigned long		  c_align;	/* alignment of objs */
	size_t			  c_colour;	/* cache colouring range */
	size_t			  c_colour_next;/* cache colouring */
	unsigned long		  c_failures;
	const char		 *c_name;
	struct kmem_cache_s	 *c_nextp;
	kmem_cache_t		 *c_index_cachep;
#if	SLAB_STATS
	unsigned long		  c_num_active;
	unsigned long		  c_num_allocations;
	unsigned long		  c_high_mark;
	unsigned long		  c_grown;
	unsigned long		  c_reaped;
	atomic_t 		  c_errors;
#endif	/* SLAB_STATS */
};

/* internal c_flags */
#define	SLAB_CFLGS_OFF_SLAB	0x010000UL	/* slab management in own cache */
#define	SLAB_CFLGS_BUFCTL	0x020000UL	/* bufctls in own cache */
#define	SLAB_CFLGS_GENERAL	0x080000UL	/* a general cache */

/* c_dflags (dynamic flags).  Need to hold the spinlock to access this member */
#define	SLAB_CFLGS_GROWN	0x000002UL	/* don't reap a recently grown */

#define	SLAB_OFF_SLAB(x)	((x) & SLAB_CFLGS_OFF_SLAB)
#define	SLAB_BUFCTL(x)		((x) & SLAB_CFLGS_BUFCTL)
#define	SLAB_GROWN(x)		((x) & SLAB_CFLGS_GROWN)

#if	SLAB_STATS
#define	SLAB_STATS_INC_ACTIVE(x)	((x)->c_num_active++)
#define	SLAB_STATS_DEC_ACTIVE(x)	((x)->c_num_active--)
#define	SLAB_STATS_INC_ALLOCED(x)	((x)->c_num_allocations++)
#define	SLAB_STATS_INC_GROWN(x)		((x)->c_grown++)
#define	SLAB_STATS_INC_REAPED(x)	((x)->c_reaped++)
#define	SLAB_STATS_SET_HIGH(x)		do { if ((x)->c_num_active > (x)->c_high_mark) \
						(x)->c_high_mark = (x)->c_num_active; \
					} while (0)
#define	SLAB_STATS_INC_ERR(x)		(atomic_inc(&(x)->c_errors))
#else
#define	SLAB_STATS_INC_ACTIVE(x)
#define	SLAB_STATS_DEC_ACTIVE(x)
#define	SLAB_STATS_INC_ALLOCED(x)
#define	SLAB_STATS_INC_GROWN(x)
#define	SLAB_STATS_INC_REAPED(x)
#define	SLAB_STATS_SET_HIGH(x)
#define	SLAB_STATS_INC_ERR(x)
#endif	/* SLAB_STATS */

#if	SLAB_SELFTEST
#if	!SLAB_DEBUG_SUPPORT
#error	Debug support needed for self-test
#endif
static void kmem_self_test(void);
#endif	/* SLAB_SELFTEST */

/* c_magic - used to detect 'out of slabs' in __kmem_cache_alloc() */
#define	SLAB_C_MAGIC		0x4F17A36DUL

/* maximum size of an obj (in 2^order pages) */
#define	SLAB_OBJ_MAX_ORDER	5	/* 32 pages */

/* maximum num of pages for a slab (prevents large requests to the VM layer) */
#define	SLAB_MAX_GFP_ORDER	5	/* 32 pages */

/* the 'preferred' minimum num of objs per slab - maybe less for large objs */
#define	SLAB_MIN_OBJS_PER_SLAB	4

/* If the num of objs per slab is <= SLAB_MIN_OBJS_PER_SLAB,
 * then the page order must be less than this before trying the next order.
 */
#define	SLAB_BREAK_GFP_ORDER_HI	2
#define	SLAB_BREAK_GFP_ORDER_LO	1
static int slab_break_gfp_order = SLAB_BREAK_GFP_ORDER_LO;

/* Macros for storing/retrieving the cachep and or slab from the
 * global 'mem_map'.  With off-slab bufctls, these are used to find the
 * slab an obj belongs to.  With kmalloc(), and kfree(), these are used
 * to find the cache which an obj belongs to.
 */
#define	SLAB_SET_PAGE_CACHE(pg,x)  ((pg)->list.next = (struct list_head *)(x))
#define	SLAB_GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->list.next)
#define	SLAB_SET_PAGE_SLAB(pg,x)   ((pg)->list.prev = (struct list_head *)(x))
#define	SLAB_GET_PAGE_SLAB(pg)     ((kmem_slab_t *)(pg)->list.prev)

/* Size description struct for general caches. */
typedef struct cache_sizes {
	size_t		 cs_size;
	kmem_cache_t	*cs_cachep;
} cache_sizes_t;

static cache_sizes_t cache_sizes[] = {
#if	PAGE_SIZE == 4096
	{  32,		NULL},
#endif
	{  64,		NULL},
	{ 128,		NULL},
	{ 256,		NULL},
	{ 512,		NULL},
	{1024,		NULL},
	{2048,		NULL},
	{4096,		NULL},
	{8192,		NULL},
	{16384,		NULL},
	{32768,		NULL},
	{65536,		NULL},
	{131072,	NULL},
	{0,		NULL}
};

/* Names for the general caches.  Not placed into the sizes struct for
 * a good reason; the string ptr is not needed while searching in kmalloc(),
 * and would 'get-in-the-way' in the h/w cache.
 */
static char *cache_sizes_name[] = {
#if	PAGE_SIZE == 4096
	"size-32",
#endif
	"size-64",
	"size-128",
	"size-256",
	"size-512",
	"size-1024",
	"size-2048",
	"size-4096",
	"size-8192",
	"size-16384",
	"size-32768",
	"size-65536",
	"size-131072"
};

/* internal cache of cache description objs */
static	kmem_cache_t	cache_cache = {
/* freep, flags */		kmem_slab_end(&cache_cache), SLAB_NO_REAP,
/* offset, num */		sizeof(kmem_cache_t),	0,
/* c_magic, c_inuse */		SLAB_C_MAGIC, 0,
/* firstp, lastp */		kmem_slab_end(&cache_cache), kmem_slab_end(&cache_cache),
/* spinlock */			SPIN_LOCK_UNLOCKED,
/* growing */			0,
/* dflags */			0,
/* org_size, gfp */		0, 0,
/* ctor, dtor, align */		NULL, NULL, L1_CACHE_BYTES,
/* colour, colour_next */	0, 0,
/* failures */			0,
/* name */			"kmem_cache",
/* nextp */			&cache_cache,
/* index */			NULL,
};

/* Guard access to the cache-chain. */
static struct semaphore	cache_chain_sem;

/* Place maintainer for reaping. */
static	kmem_cache_t	*clock_searchp = &cache_cache;

/* Internal slab management cache, for when slab management is off-slab. */
static kmem_cache_t	*cache_slabp = NULL;

/* Max number of objs-per-slab for caches which use bufctl's.
 * Needed to avoid a possible looping condition in kmem_cache_grow().
 */
static unsigned long bufctl_limit = 0;

/* Initialisation - setup the `cache' cache. */
void __init kmem_cache_init(void)
{
	size_t size, i;

#define	kmem_slab_offset(x)  ((unsigned long)&((kmem_slab_t *)0)->x)
#define kmem_slab_diff(a,b)  (kmem_slab_offset(a) - kmem_slab_offset(b))
#define	kmem_cache_offset(x) ((unsigned long)&((kmem_cache_t *)0)->x)
#define kmem_cache_diff(a,b) (kmem_cache_offset(a) - kmem_cache_offset(b))

	/* Sanity checks... */
	if (kmem_cache_diff(c_firstp, c_magic) != kmem_slab_diff(s_nextp, s_magic) ||
	    kmem_cache_diff(c_firstp, c_inuse) != kmem_slab_diff(s_nextp, s_inuse) ||
	    ((kmem_cache_offset(c_lastp) -
	      ((unsigned long) kmem_slab_end((kmem_cache_t*)NULL))) !=
	     kmem_slab_offset(s_prevp)) ||
	    kmem_cache_diff(c_lastp, c_firstp) != kmem_slab_diff(s_prevp, s_nextp)) {
		/* Offsets to the magic are incorrect, either the structures have
		 * been incorrectly changed, or adjustments are needed for your
		 * architecture.
		 */
		panic("kmem_cache_init(): Offsets are wrong - I've been messed with!");
		/* NOTREACHED */
	}
#undef	kmem_cache_offset
#undef	kmem_cache_diff
#undef	kmem_slab_offset
#undef	kmem_slab_diff

	init_MUTEX(&cache_chain_sem);

	size = cache_cache.c_offset + sizeof(kmem_bufctl_t);
	size += (L1_CACHE_BYTES-1);
	size &= ~(L1_CACHE_BYTES-1);
	cache_cache.c_offset = size-sizeof(kmem_bufctl_t);
	
	i = (PAGE_SIZE<<cache_cache.c_gfporder)-slab_align_size;
	cache_cache.c_num = i / size;	/* num of objs per slab */

	/* Cache colouring. */
	cache_cache.c_colour = (i-(cache_cache.c_num*size))/L1_CACHE_BYTES;
	cache_cache.c_colour_next = cache_cache.c_colour;

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = SLAB_BREAK_GFP_ORDER_HI;
}

/* Initialisation - setup remaining internal and general caches.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_sizes_init(void)
{
	unsigned int	found = 0;

	cache_slabp = kmem_cache_create("slab_cache", sizeof(kmem_slab_t),
					0, SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (cache_slabp) {
		char **names = cache_sizes_name;
		cache_sizes_t *sizes = cache_sizes;
		do {
			/* For performance, all the general caches are L1 aligned.
			 * This should be particularly beneficial on SMP boxes, as it
			 * eliminates "false sharing".
			 * Note for systems short on memory removing the alignment will
			 * allow tighter packing of the smaller caches. */
			if (!(sizes->cs_cachep =
			      kmem_cache_create(*names++, sizes->cs_size,
						0, SLAB_HWCACHE_ALIGN, NULL, NULL)))
				goto panic_time;
			if (!found) {
				/* Inc off-slab bufctl limit until the ceiling is hit. */
				if (SLAB_BUFCTL(sizes->cs_cachep->c_flags))
					found++;
				else
					bufctl_limit =
						(sizes->cs_size/sizeof(kmem_bufctl_t));
			}
			sizes->cs_cachep->c_flags |= SLAB_CFLGS_GENERAL;
			sizes++;
		} while (sizes->cs_size);
#if	SLAB_SELFTEST
		kmem_self_test();
#endif	/* SLAB_SELFTEST */
		return;
	}
panic_time:
	panic("kmem_cache_sizes_init: Error creating caches");
	/* NOTREACHED */
}

/* Interface to system's page allocator.  Dma pts to non-zero if all
 * of memory is DMAable. No need to hold the cache-lock.
 */
static inline void *
kmem_getpages(kmem_cache_t *cachep, unsigned long flags, unsigned int *dma)
{
	void	*addr;

	*dma = flags & SLAB_DMA;
	addr = (void*) __get_free_pages(flags, cachep->c_gfporder);
	/* Assume that now we have the pages no one else can legally
	 * messes with the 'struct page's.
	 * However vm_scan() might try to test the structure to see if
	 * it is a named-page or buffer-page.  The members it tests are
	 * of no interest here.....
	 */
	if (!*dma && addr) {
		/* Need to check if can dma. */
		struct page *page = mem_map + MAP_NR(addr);
		*dma = 1<<cachep->c_gfporder;
		while ((*dma)--) {
			if (!PageDMA(page)) {
				*dma = 0;
				break;
			}
			page++;
		}
	}
	return addr;
}

/* Interface to system's page release. */
static inline void
kmem_freepages(kmem_cache_t *cachep, void *addr)
{
	unsigned long i = (1<<cachep->c_gfporder);
	struct page *page = &mem_map[MAP_NR(addr)];

	/* free_pages() does not clear the type bit - we do that.
	 * The pages have been unlinked from their cache-slab,
	 * but their 'struct page's might be accessed in
	 * vm_scan(). Shouldn't be a worry.
	 */
	while (i--) {
		PageClearSlab(page);
		page++;
	}
	free_pages((unsigned long)addr, cachep->c_gfporder); 
}

#if	SLAB_DEBUG_SUPPORT
static inline void
kmem_poison_obj(kmem_cache_t *cachep, void *addr)
{
	memset(addr, SLAB_POISON_BYTE, cachep->c_org_size);
	*(unsigned char *)(addr+cachep->c_org_size-1) = SLAB_POISON_END;
}

static inline int
kmem_check_poison_obj(kmem_cache_t *cachep, void *addr)
{
	void *end;
	end = memchr(addr, SLAB_POISON_END, cachep->c_org_size);
	if (end != (addr+cachep->c_org_size-1))
		return 1;
	return 0;
}
#endif	/* SLAB_DEBUG_SUPPORT */

/* Three slab chain funcs - all called with ints disabled and the appropriate
 * cache-lock held.
 */
static inline void
kmem_slab_unlink(kmem_slab_t *slabp)
{
	kmem_slab_t	*prevp = slabp->s_prevp;
	kmem_slab_t	*nextp = slabp->s_nextp;
	prevp->s_nextp = nextp;
	nextp->s_prevp = prevp;
}

static inline void 
kmem_slab_link_end(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	kmem_slab_t	*lastp = cachep->c_lastp;
	slabp->s_nextp = kmem_slab_end(cachep);
	slabp->s_prevp = lastp;
	cachep->c_lastp = slabp;
	lastp->s_nextp = slabp;
}

static inline void
kmem_slab_link_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	kmem_slab_t	*nextp = cachep->c_freep;
	kmem_slab_t	*prevp = nextp->s_prevp;
	slabp->s_nextp = nextp;
	slabp->s_prevp = prevp;
	nextp->s_prevp = slabp;
	slabp->s_prevp->s_nextp = slabp;
}

/* Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
static void
kmem_slab_destroy(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	if (cachep->c_dtor
#if	SLAB_DEBUG_SUPPORT
		|| cachep->c_flags & (SLAB_POISON | SLAB_RED_ZONE)
#endif	/*SLAB_DEBUG_SUPPORT*/
	) {
		/* Doesn't use the bufctl ptrs to find objs. */
		unsigned long num = cachep->c_num;
		void *objp = slabp->s_mem;
		do {
#if	SLAB_DEBUG_SUPPORT
			if (cachep->c_flags & SLAB_RED_ZONE) {
				if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1)
					printk(KERN_ERR "kmem_slab_destroy: "
					       "Bad front redzone - %s\n",
					       cachep->c_name);
				objp += BYTES_PER_WORD;
				if (*((unsigned long*)(objp+cachep->c_org_size)) !=
				    SLAB_RED_MAGIC1)
					printk(KERN_ERR "kmem_slab_destroy: "
					       "Bad rear redzone - %s\n",
					       cachep->c_name);
			}
			if (cachep->c_dtor)
#endif	/*SLAB_DEBUG_SUPPORT*/
				(cachep->c_dtor)(objp, cachep, 0);
#if	SLAB_DEBUG_SUPPORT
			else if (cachep->c_flags & SLAB_POISON) {
				if (kmem_check_poison_obj(cachep, objp))
					printk(KERN_ERR "kmem_slab_destroy: "
					       "Bad poison - %s\n", cachep->c_name);
			}
			if (cachep->c_flags & SLAB_RED_ZONE)
				objp -= BYTES_PER_WORD;
#endif	/* SLAB_DEBUG_SUPPORT */
			objp += cachep->c_offset;
			if (!slabp->s_index)
				objp += sizeof(kmem_bufctl_t);
		} while (--num);
	}

	slabp->s_magic = SLAB_MAGIC_DESTROYED;
	if (slabp->s_index)
		kmem_cache_free(cachep->c_index_cachep, slabp->s_index);
	kmem_freepages(cachep, slabp->s_mem-slabp->s_offset);
	if (SLAB_OFF_SLAB(cachep->c_flags))
		kmem_cache_free(cache_slabp, slabp);
}

/* Cal the num objs, wastage, and bytes left over for a given slab size. */
static inline size_t
kmem_cache_cal_waste(unsigned long gfporder, size_t size, size_t extra,
		     unsigned long flags, size_t *left_over, unsigned long *num)
{
	size_t wastage = PAGE_SIZE<<gfporder;

	if (SLAB_OFF_SLAB(flags))
		gfporder = 0;
	else
		gfporder = slab_align_size;
	wastage -= gfporder;
	*num = wastage / size;
	wastage -= (*num * size);
	*left_over = wastage;

	return (wastage + gfporder + (extra * *num));
}

/* Create a cache:
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * NOTE: The 'name' is assumed to be memory that is _not_  going to disappear.
 */
kmem_cache_t *
kmem_cache_create(const char *name, size_t size, size_t offset,
	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
	void (*dtor)(void*, kmem_cache_t *, unsigned long))
{
	const char *func_nm= KERN_ERR "kmem_create: ";
	kmem_cache_t	*searchp;
	kmem_cache_t	*cachep=NULL;
	size_t		extra;
	size_t		left_over;
	size_t		align;

	/* Sanity checks... */
#if	SLAB_MGMT_CHECKS
	if (!name) {
		printk("%sNULL ptr\n", func_nm);
		goto opps;
	}
	if (in_interrupt()) {
		printk("%sCalled during int - %s\n", func_nm, name);
		goto opps;
	}

	if (size < BYTES_PER_WORD) {
		printk("%sSize too small %d - %s\n", func_nm, (int) size, name);
		size = BYTES_PER_WORD;
	}

	if (size > ((1<<SLAB_OBJ_MAX_ORDER)*PAGE_SIZE)) {
		printk("%sSize too large %d - %s\n", func_nm, (int) size, name);
		goto opps;
	}

	if (dtor && !ctor) {
		/* Decon, but no con - doesn't make sense */
		printk("%sDecon but no con - %s\n", func_nm, name);
		goto opps;
	}

	if (offset < 0 || offset > size) {
		printk("%sOffset weird %d - %s\n", func_nm, (int) offset, name);
		offset = 0;
	}

#if	SLAB_DEBUG_SUPPORT
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk("%sNo con, but init state check requested - %s\n", func_nm, name);
		flags &= ~SLAB_DEBUG_INITIAL;
	}

	if ((flags & SLAB_POISON) && ctor) {
		/* request for poisoning, but we can't do that with a constructor */
		printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
		flags &= ~SLAB_POISON;
	}
#if	0
	if ((flags & SLAB_HIGH_PACK) && ctor) {
		printk("%sHigh pack requested, but con given - %s\n", func_nm, name);
		flags &= ~SLAB_HIGH_PACK;
	}
	if ((flags & SLAB_HIGH_PACK) && (flags & (SLAB_POISON|SLAB_RED_ZONE))) {
		printk("%sHigh pack requested, but with poisoning/red-zoning - %s\n",
		       func_nm, name);
		flags &= ~SLAB_HIGH_PACK;
	}
#endif
#endif	/* SLAB_DEBUG_SUPPORT */
#endif	/* SLAB_MGMT_CHECKS */

	/* Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~SLAB_C_MASK) {
		printk("%sIllgl flg %lX - %s\n", func_nm, flags, name);
		flags &= SLAB_C_MASK;
	}

	/* Get cache's description obj. */
	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
	if (!cachep)
		goto opps;
	memset(cachep, 0, sizeof(kmem_cache_t));

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
	if (size & (BYTES_PER_WORD-1)) {
		size += (BYTES_PER_WORD-1);
		size &= ~(BYTES_PER_WORD-1);
		printk("%sForcing size word alignment - %s\n", func_nm, name);
	}

	cachep->c_org_size = size;
#if	SLAB_DEBUG_SUPPORT
	if (flags & SLAB_RED_ZONE) {
		/* There is no point trying to honour cache alignment when redzoning. */
		flags &= ~SLAB_HWCACHE_ALIGN;
		size += 2*BYTES_PER_WORD;		/* words for redzone */
	}
#endif	/* SLAB_DEBUG_SUPPORT */

	align = BYTES_PER_WORD;
	if (flags & SLAB_HWCACHE_ALIGN)
		align = L1_CACHE_BYTES;

	/* Determine if the slab management and/or bufclts are 'on' or 'off' slab. */
	extra = sizeof(kmem_bufctl_t);
	if (size < (PAGE_SIZE>>3)) {
		/* Size is small(ish).  Use packing where bufctl size per
		 * obj is low, and slab management is on-slab.
		 */
#if	0
		if ((flags & SLAB_HIGH_PACK)) {
			/* Special high packing for small objects
			 * (mainly for vm_mapping structs, but
			 * others can use it).
			 */
			if (size == (L1_CACHE_BYTES/4) || size == (L1_CACHE_BYTES/2) ||
			    size == L1_CACHE_BYTES) {
				/* The bufctl is stored with the object. */
				extra = 0;
			} else
				flags &= ~SLAB_HIGH_PACK;
		}
#endif
	} else {
		/* Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= SLAB_CFLGS_OFF_SLAB;
		if (!(size & ~PAGE_MASK) || size == (PAGE_SIZE/2)
		    || size == (PAGE_SIZE/4) || size == (PAGE_SIZE/8)) {
			/* To avoid waste the bufctls are off-slab... */
			flags |= SLAB_CFLGS_BUFCTL;
			extra = 0;
		} /* else slab management is off-slab, but freelist pointers are on. */
	}
	size += extra;

	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Need to adjust size so that objs are cache aligned. */
		if (size > (L1_CACHE_BYTES/2)) {
			size_t words = size % L1_CACHE_BYTES;
			if (words)
				size += (L1_CACHE_BYTES-words);
		} else {
			/* Small obj size, can get at least two per cache line. */
			int num_per_line = L1_CACHE_BYTES/size;
			left_over = L1_CACHE_BYTES - (num_per_line*size);
			if (left_over) {
				/* Need to adjust size so objs cache align. */
				if (left_over%num_per_line) {
					/* Odd num of objs per line - fixup. */
					num_per_line--;
					left_over += size;
				}
				size += (left_over/num_per_line);
			}
		}
	} else if (!(size%L1_CACHE_BYTES)) {
		/* Size happens to cache align... */
		flags |= SLAB_HWCACHE_ALIGN;
		align = L1_CACHE_BYTES;
	}

	/* Cal size (in pages) of slabs, and the num of objs per slab.
	 * This could be made much more intelligent.  For now, try to avoid
	 * using high page-orders for slabs.  When the gfp() funcs are more
	 * friendly towards high-order requests, this should be changed.
	 */
	do {
		size_t wastage;
		unsigned int break_flag = 0;
cal_wastage:
		wastage = kmem_cache_cal_waste(cachep->c_gfporder, size, extra,
					       flags, &left_over, &cachep->c_num);
		if (!cachep->c_num)
			goto next;
		if (break_flag)
			break;
		if (SLAB_BUFCTL(flags) && cachep->c_num > bufctl_limit) {
			/* Oops, this num of objs will cause problems. */
			cachep->c_gfporder--;
			break_flag++;
			goto cal_wastage;
		}
		if (cachep->c_gfporder == SLAB_MAX_GFP_ORDER)
			break;

		/* Large num of objs is good, but v. large slabs are currently
		 * bad for the gfp()s.
		 */
		if (cachep->c_num <= SLAB_MIN_OBJS_PER_SLAB) {
			if (cachep->c_gfporder < slab_break_gfp_order)
				goto next;
		}

		/* Stop caches with small objs having a large num of pages. */
		if (left_over <= slab_align_size)
			break;
		if ((wastage*8) <= (PAGE_SIZE<<cachep->c_gfporder))
			break;	/* Acceptable internal fragmentation. */
next:
		cachep->c_gfporder++;
	} while (1);

	/* If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab.  This is at the expense of any extra colouring.
	 */
	if ((flags & SLAB_CFLGS_OFF_SLAB) && !SLAB_BUFCTL(flags) &&
	    left_over >= slab_align_size) {
		flags &= ~SLAB_CFLGS_OFF_SLAB;
		left_over -= slab_align_size;
	}

	/* Offset must be a multiple of the alignment. */
	offset += (align-1);
	offset &= ~(align-1);

	/* Mess around with the offset alignment. */
	if (!left_over) {
		offset = 0;
	} else if (left_over < offset) {
		offset = align;
		if (flags & SLAB_HWCACHE_ALIGN) {
			if (left_over < offset)
				offset = 0;
		} else {
			/* Offset is BYTES_PER_WORD, and left_over is at
			 * least BYTES_PER_WORD.
			 */
			if (left_over >= (BYTES_PER_WORD*2)) {
				offset >>= 1;
				if (left_over >= (BYTES_PER_WORD*4))
					offset >>= 1;
			}
		}
	} else if (!offset) {
		/* No offset requested, but space enough - give one. */
		offset = left_over/align;
		if (flags & SLAB_HWCACHE_ALIGN) {
			if (offset >= 8) {
				/* A large number of colours - use a larger alignment. */
				align <<= 1;
			}
		} else {
			if (offset >= 10) {
				align <<= 1;
				if (offset >= 16)
					align <<= 1;
			}
		}
		offset = align;
	}

#if	0
printk("%s: Left_over:%d Align:%d Size:%d\n", name, left_over, offset, size);
#endif

	if ((cachep->c_align = (unsigned long) offset))
		cachep->c_colour = (left_over/offset);
	cachep->c_colour_next = cachep->c_colour;

	/* If the bufctl's are on-slab, c_offset does not include the size of bufctl. */
	if (!SLAB_BUFCTL(flags))
		size -= sizeof(kmem_bufctl_t);
	else
		cachep->c_index_cachep =
			kmem_find_general_cachep(cachep->c_num*sizeof(kmem_bufctl_t));
	cachep->c_offset = (unsigned long) size;
	cachep->c_freep = kmem_slab_end(cachep);
	cachep->c_firstp = kmem_slab_end(cachep);
	cachep->c_lastp = kmem_slab_end(cachep);
	cachep->c_flags = flags;
	cachep->c_ctor = ctor;
	cachep->c_dtor = dtor;
	cachep->c_magic = SLAB_C_MAGIC;
	cachep->c_name = name;		/* Simply point to the name. */
	spin_lock_init(&cachep->c_spinlock);

	/* Need the semaphore to access the chain. */
	down(&cache_chain_sem);
	searchp = &cache_cache;
	do {
		/* The name field is constant - no lock needed. */
		if (!strcmp(searchp->c_name, name)) {
			printk("%sDup name - %s\n", func_nm, name);
			break;
		}
		searchp = searchp->c_nextp;
	} while (searchp != &cache_cache);

	/* There is no reason to lock our new cache before we
	 * link it in - no one knows about it yet...
	 */
	cachep->c_nextp = cache_cache.c_nextp;
	cache_cache.c_nextp = cachep;
	up(&cache_chain_sem);
opps:
	return cachep;
}

/*
 * This check if the kmem_cache_t pointer is chained in the cache_cache
 * list. -arca
 */
static int is_chained_kmem_cache(kmem_cache_t * cachep)
{
	kmem_cache_t * searchp;
	int ret = 0;

	/* Find the cache in the chain of caches. */
	down(&cache_chain_sem);
	for (searchp = &cache_cache; searchp->c_nextp != &cache_cache;
	     searchp = searchp->c_nextp) {
		if (searchp->c_nextp != cachep)
			continue;

		/* Accessing clock_searchp is safe - we hold the mutex. */
		if (cachep == clock_searchp)
			clock_searchp = cachep->c_nextp;
		ret = 1;
		break;
	}
	up(&cache_chain_sem);

	return ret;
}

/* returns 0 if every slab is been freed -arca */
static int __kmem_cache_shrink(kmem_cache_t *cachep)
{
	kmem_slab_t	*slabp;
	int	ret;

	spin_lock_irq(&cachep->c_spinlock);

	/* If the cache is growing, stop shrinking. */
	while (!cachep->c_growing) {
		slabp = cachep->c_lastp;
		if (slabp->s_inuse || slabp == kmem_slab_end(cachep))
			break;
		kmem_slab_unlink(slabp);
		spin_unlock_irq(&cachep->c_spinlock);
		kmem_slab_destroy(cachep, slabp);
		spin_lock_irq(&cachep->c_spinlock);
	}
	ret = 1;
	if (cachep->c_lastp == kmem_slab_end(cachep))
		ret = 0;		/* Cache is empty. */
	spin_unlock_irq(&cachep->c_spinlock);
	return ret;
}

/* Shrink a cache.  Releases as many slabs as possible for a cache.
 * It is expected this function will be called by a module when it is
 * unloaded.  The cache is _not_ removed, this creates too many problems and
 * the cache-structure does not take up much room.  A module should keep its
 * cache pointer(s) in unloaded memory, so when reloaded it knows the cache
 * is available.  To help debugging, a zero exit status indicates all slabs
 * were released.
 */
int
kmem_cache_shrink(kmem_cache_t *cachep)
{
	if (!cachep) {
		printk(KERN_ERR "kmem_shrink: NULL ptr\n");
		return 2;
	}
	if (in_interrupt()) {
		printk(KERN_ERR "kmem_shrink: Called during int - %s\n", cachep->c_name);
		return 2;
	}

	if (!is_chained_kmem_cache(cachep)) {
		printk(KERN_ERR "kmem_shrink: Invalid cache addr %p\n",
		       cachep);
		return 2;
	}

	return __kmem_cache_shrink(cachep);
}

/*
 * Remove a kmem_cache_t object from the slab cache. When returns 0 it
 * completed succesfully. -arca
 */
int kmem_cache_destroy(kmem_cache_t * cachep)
{
	kmem_cache_t * prev;
	int ret;

	if (!cachep) {
		printk(KERN_ERR "kmem_destroy: NULL ptr\n");
		return 1;
	}
	if (in_interrupt()) {
		printk(KERN_ERR "kmem_destroy: Called during int - %s\n",
		       cachep->c_name);
		return 1;
	}

	ret = 0;
	/* Find the cache in the chain of caches. */
	down(&cache_chain_sem);
	for (prev = &cache_cache; prev->c_nextp != &cache_cache;
	     prev = prev->c_nextp) {
		if (prev->c_nextp != cachep)
			continue;

		/* Accessing clock_searchp is safe - we hold the mutex. */
		if (cachep == clock_searchp)
			clock_searchp = cachep->c_nextp;

		/* remove the cachep from the cache_cache list. -arca */
		prev->c_nextp = cachep->c_nextp;

		ret = 1;
		break;
	}
	up(&cache_chain_sem);

	if (!ret) {
		printk(KERN_ERR "kmem_destroy: Invalid cache addr %p\n",
		       cachep);
		return 1;
	}

	if (__kmem_cache_shrink(cachep)) {
		printk(KERN_ERR "kmem_destroy: Can't free all objects %p\n",
		       cachep);
		down(&cache_chain_sem);
		cachep->c_nextp = cache_cache.c_nextp;
		cache_cache.c_nextp = cachep;
		up(&cache_chain_sem);
		return 1;
	}

	kmem_cache_free(&cache_cache, cachep);

	return 0;
}

/* Get the memory for a slab management obj. */
static inline kmem_slab_t *
kmem_cache_slabmgmt(kmem_cache_t *cachep, void *objp, int local_flags)
{
	kmem_slab_t	*slabp;

	if (SLAB_OFF_SLAB(cachep->c_flags)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cache_slabp, local_flags);
	} else {
		/* Slab management at end of slab memory, placed so that
		 * the position is 'coloured'.
		 */
		void *end;
		end = objp + (cachep->c_num * cachep->c_offset);
		if (!SLAB_BUFCTL(cachep->c_flags))
			end += (cachep->c_num * sizeof(kmem_bufctl_t));
		slabp = (kmem_slab_t *) L1_CACHE_ALIGN((unsigned long)end);
	}

	if (slabp) {
		slabp->s_inuse = 0;
		slabp->s_dma = 0;
		slabp->s_index = NULL;
	}

	return slabp;
}

static inline void
kmem_cache_init_objs(kmem_cache_t * cachep, kmem_slab_t * slabp, void *objp,
				unsigned long ctor_flags)
{
	kmem_bufctl_t	**bufpp = &slabp->s_freep;
	unsigned long	num = cachep->c_num-1;

	do {
#if	SLAB_DEBUG_SUPPORT
		if (cachep->c_flags & SLAB_RED_ZONE) {
			*((unsigned long*)(objp)) = SLAB_RED_MAGIC1;
			objp += BYTES_PER_WORD;
			*((unsigned long*)(objp+cachep->c_org_size)) = SLAB_RED_MAGIC1;
		}
#endif	/* SLAB_DEBUG_SUPPORT */

		/* Constructors are not allowed to allocate memory from the same cache
		 * which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
		 */
		if (cachep->c_ctor)
			cachep->c_ctor(objp, cachep, ctor_flags);
#if	SLAB_DEBUG_SUPPORT
		else if (cachep->c_flags & SLAB_POISON) {
			/* need to poison the objs */
			kmem_poison_obj(cachep, objp);
		}

		if (cachep->c_flags & SLAB_RED_ZONE) {
			if (*((unsigned long*)(objp+cachep->c_org_size)) !=
			    SLAB_RED_MAGIC1) {
				*((unsigned long*)(objp+cachep->c_org_size)) =
					SLAB_RED_MAGIC1;
				printk(KERN_ERR "kmem_init_obj: Bad rear redzone "
				       "after constructor - %s\n", cachep->c_name);
			}
			objp -= BYTES_PER_WORD;
			if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1) {
				*((unsigned long*)(objp)) = SLAB_RED_MAGIC1;
				printk(KERN_ERR "kmem_init_obj: Bad front redzone "
				       "after constructor - %s\n", cachep->c_name);
			}
		}
#endif	/* SLAB_DEBUG_SUPPORT */

		objp += cachep->c_offset;
		if (!slabp->s_index) {
			*bufpp = objp;
			objp += sizeof(kmem_bufctl_t);
		} else
			*bufpp = &slabp->s_index[num];
		bufpp = &(*bufpp)->buf_nextp;
	} while (num--);

	*bufpp = NULL;
}

/* Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
static int
kmem_cache_grow(kmem_cache_t * cachep, int flags)
{
	kmem_slab_t	*slabp;
	struct page	*page;
	void		*objp;
	size_t		 offset;
	unsigned int	 dma, local_flags;
	unsigned long	 ctor_flags;
	unsigned long	 save_flags;

	/* Be lazy and only check for valid flags here,
 	 * keeping it out of the critical path in kmem_cache_alloc().
	 */
	if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) {
		printk(KERN_WARNING "kmem_grow: Illegal flgs %X (correcting) - %s\n",
		       flags, cachep->c_name);
		flags &= (SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW);
	}

	if (flags & SLAB_NO_GROW)
		return 0;

	/* The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc().  If a caller is slightly mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC) {
		printk(KERN_ERR "kmem_grow: Called nonatomically from int - %s\n",
		       cachep->c_name);
		flags &= ~SLAB_LEVEL_MASK;
		flags |= SLAB_ATOMIC;
	}
	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (local_flags == SLAB_ATOMIC) {
		/* Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;
	}

	/* About to mess with non-constant members - lock. */
	spin_lock_irqsave(&cachep->c_spinlock, save_flags);

	/* Get colour for the slab, and cal the next value. */
	if (!(offset = cachep->c_colour_next--))
		cachep->c_colour_next = cachep->c_colour;
	offset *= cachep->c_align;
	cachep->c_dflags = SLAB_CFLGS_GROWN;

	cachep->c_growing++;
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);

	/* A series of memory allocations for a new slab.
	 * Neither the cache-chain semaphore, or cache-lock, are
	 * held, but the incrementing c_growing prevents this
	 * this cache from being reaped or shrunk.
	 * Note: The cache could be selected in for reaping in
	 * kmem_cache_reap(), but when the final test is made the
	 * growing value will be seen.
	 */

	/* Get mem for the objs. */
	if (!(objp = kmem_getpages(cachep, flags, &dma)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = kmem_cache_slabmgmt(cachep, objp+offset, local_flags)))
		goto opps1;
	if (dma)
		slabp->s_dma = 1;
	if (SLAB_BUFCTL(cachep->c_flags)) {
		slabp->s_index = kmem_cache_alloc(cachep->c_index_cachep, local_flags);
		if (!slabp->s_index)
			goto opps2;
	}

	/* Nasty!!!!!!  I hope this is OK. */
	dma = 1 << cachep->c_gfporder;
	page = &mem_map[MAP_NR(objp)];
	do {
		SLAB_SET_PAGE_CACHE(page, cachep);
		SLAB_SET_PAGE_SLAB(page, slabp);
		PageSetSlab(page);
		page++;
	} while (--dma);

	slabp->s_offset = offset;	/* It will fit... */
	objp += offset;		/* Address of first object. */
	slabp->s_mem = objp;

	/* For on-slab bufctls, c_offset is the distance between the start of
	 * an obj and its related bufctl.  For off-slab bufctls, c_offset is
	 * the distance between objs in the slab.
	 */
	kmem_cache_init_objs(cachep, slabp, objp, ctor_flags);

	spin_lock_irq(&cachep->c_spinlock);

	/* Make slab active. */
	slabp->s_magic = SLAB_MAGIC_ALLOC;
	kmem_slab_link_end(cachep, slabp);
	if (cachep->c_freep == kmem_slab_end(cachep))
		cachep->c_freep = slabp;
	SLAB_STATS_INC_GROWN(cachep);
	cachep->c_failures = 0;
	cachep->c_growing--;

	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	return 1;
opps2:
	if (SLAB_OFF_SLAB(cachep->c_flags))
		kmem_cache_free(cache_slabp, slabp);
opps1:
	kmem_freepages(cachep, objp); 
failed:
	spin_lock_irq(&cachep->c_spinlock);
	cachep->c_growing--;
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	return 0;
}

static void
kmem_report_alloc_err(const char *str, kmem_cache_t * cachep)
{
	if (cachep)
		SLAB_STATS_INC_ERR(cachep);	/* this is atomic */
	printk(KERN_ERR "kmem_alloc: %s (name=%s)\n",
	       str, cachep ? cachep->c_name : "unknown");
}

static void
kmem_report_free_err(const char *str, const void *objp, kmem_cache_t * cachep)
{
	if (cachep)
		SLAB_STATS_INC_ERR(cachep);
	printk(KERN_ERR "kmem_free: %s (objp=%p, name=%s)\n",
	       str, objp, cachep ? cachep->c_name : "unknown");
}

/* Search for a slab whose objs are suitable for DMA.
 * Note: since testing the first free slab (in __kmem_cache_alloc()),
 * ints must not have been enabled, or the cache-lock released!
 */
static inline kmem_slab_t *
kmem_cache_search_dma(kmem_cache_t * cachep)
{
	kmem_slab_t	*slabp = cachep->c_freep->s_nextp;

	for (; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) {
		if (!(slabp->s_dma))
			continue;
		kmem_slab_unlink(slabp);
		kmem_slab_link_free(cachep, slabp);
		cachep->c_freep = slabp;
		break;
	}
	return slabp;
}

#if	SLAB_DEBUG_SUPPORT
/* Perform extra freeing checks.  Currently, this check is only for caches
 * that use bufctl structures within the slab.  Those which use bufctl's
 * from the internal cache have a reasonable check when the address is
 * searched for.  Called with the cache-lock held.
 */
static void *
kmem_extra_free_checks(kmem_cache_t * cachep, kmem_bufctl_t *search_bufp,
		       kmem_bufctl_t *bufp, void * objp)
{
	if (SLAB_BUFCTL(cachep->c_flags))
		return objp;

	/* Check slab's freelist to see if this obj is there. */
	for (; search_bufp; search_bufp = search_bufp->buf_nextp) {
		if (search_bufp != bufp)
			continue;
		return NULL;
	}
	return objp;
}
#endif	/* SLAB_DEBUG_SUPPORT */

/* Called with cache lock held. */
static inline void
kmem_cache_full_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	if (slabp->s_nextp->s_inuse) {
		/* Not at correct position. */
		if (cachep->c_freep == slabp)
			cachep->c_freep = slabp->s_nextp;
		kmem_slab_unlink(slabp);
		kmem_slab_link_end(cachep, slabp);
	}
}

/* Called with cache lock held. */
static inline void
kmem_cache_one_free(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
	if (slabp->s_nextp->s_inuse == cachep->c_num) {
		kmem_slab_unlink(slabp);
		kmem_slab_link_free(cachep, slabp);
	}
	cachep->c_freep = slabp;
}

/* Returns a ptr to an obj in the given cache. */
static inline void *
__kmem_cache_alloc(kmem_cache_t *cachep, int flags)
{
	kmem_slab_t	*slabp;
	kmem_bufctl_t	*bufp;
	void		*objp;
	unsigned long	save_flags;

	/* Sanity check. */
	if (!cachep)
		goto nul_ptr;
	spin_lock_irqsave(&cachep->c_spinlock, save_flags);
try_again:
	/* Get slab alloc is to come from. */
	slabp = cachep->c_freep;

	/* Magic is a sanity check _and_ says if we need a new slab. */
	if (slabp->s_magic != SLAB_MAGIC_ALLOC)
		goto alloc_new_slab;
	/* DMA requests are 'rare' - keep out of the critical path. */
	if (flags & SLAB_DMA)
		goto search_dma;
try_again_dma:
	SLAB_STATS_INC_ALLOCED(cachep);
	SLAB_STATS_INC_ACTIVE(cachep);
	SLAB_STATS_SET_HIGH(cachep);
	slabp->s_inuse++;
	bufp = slabp->s_freep;
	slabp->s_freep = bufp->buf_nextp;
	if (slabp->s_freep) {
ret_obj:
		if (!slabp->s_index) {
			bufp->buf_slabp = slabp;
			objp = ((void*)bufp) - cachep->c_offset;
finished:
			/* The lock is not needed by the red-zone or poison ops, and the
			 * obj has been removed from the slab.  Should be safe to drop
			 * the lock here.
			 */
			spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
#if	SLAB_DEBUG_SUPPORT
			if (cachep->c_flags & SLAB_RED_ZONE)
				goto red_zone;
ret_red:
			if ((cachep->c_flags & SLAB_POISON) && kmem_check_poison_obj(cachep, objp))
				kmem_report_alloc_err("Bad poison", cachep);
#endif	/* SLAB_DEBUG_SUPPORT */
			return objp;
		}
		/* Update index ptr. */
		objp = ((bufp-slabp->s_index)*cachep->c_offset) + slabp->s_mem;
		bufp->buf_objp = objp;
		goto finished;
	}
	cachep->c_freep = slabp->s_nextp;
	goto ret_obj;

#if	SLAB_DEBUG_SUPPORT
red_zone:
	/* Set alloc red-zone, and check old one. */
	if (xchg((unsigned long *)objp, SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1)
		kmem_report_alloc_err("Bad front redzone", cachep);
	objp += BYTES_PER_WORD;
	if (xchg((unsigned long *)(objp+cachep->c_org_size), SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1)
		kmem_report_alloc_err("Bad rear redzone", cachep);
	goto ret_red;
#endif	/* SLAB_DEBUG_SUPPORT */

search_dma:
	if (slabp->s_dma || (slabp = kmem_cache_search_dma(cachep))!=kmem_slab_end(cachep))
		goto try_again_dma;
alloc_new_slab:
	/* Either out of slabs, or magic number corruption. */
	if (slabp == kmem_slab_end(cachep)) {
		/* Need a new slab.  Release the lock before calling kmem_cache_grow().
		 * This allows objs to be released back into the cache while growing.
		 */
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		if (kmem_cache_grow(cachep, flags)) {
			/* Someone may have stolen our objs.  Doesn't matter, we'll
			 * just come back here again.
			 */
			spin_lock_irq(&cachep->c_spinlock);
			goto try_again;
		}
		/* Couldn't grow, but some objs may have been freed. */
		spin_lock_irq(&cachep->c_spinlock);
		if (cachep->c_freep != kmem_slab_end(cachep)) {
			if ((flags & SLAB_ATOMIC) == 0) 
				goto try_again;
		}
	} else {
		/* Very serious error - maybe panic() here? */
		kmem_report_alloc_err("Bad slab magic (corrupt)", cachep);
	}
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
err_exit:
	return NULL;
nul_ptr:
	kmem_report_alloc_err("NULL ptr", NULL);
	goto err_exit;
}

/* Release an obj back to its cache.  If the obj has a constructed state,
 * it should be in this state _before_ it is released.
 */
static inline void
__kmem_cache_free(kmem_cache_t *cachep, const void *objp)
{
	kmem_slab_t	*slabp;
	kmem_bufctl_t	*bufp;
	unsigned long	save_flags;

	/* Basic sanity checks. */
	if (!cachep || !objp)
		goto null_addr;

#if	SLAB_DEBUG_SUPPORT
	/* A verify func is called without the cache-lock held. */
	if (cachep->c_flags & SLAB_DEBUG_INITIAL)
		goto init_state_check;
finished_initial:

	if (cachep->c_flags & SLAB_RED_ZONE)
		goto red_zone;
return_red:
#endif	/* SLAB_DEBUG_SUPPORT */

	spin_lock_irqsave(&cachep->c_spinlock, save_flags);

	if (SLAB_BUFCTL(cachep->c_flags))
		goto bufctl;
	bufp = (kmem_bufctl_t *)(objp+cachep->c_offset);

	/* Get slab for the object. */
#if	0
	/* _NASTY_IF/ELSE_, but avoids a 'distant' memory ref for some objects.
	 * Is this worth while? XXX
	 */
	if (cachep->c_flags & SLAB_HIGH_PACK)
		slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(bufp)]);
	else
#endif
		slabp = bufp->buf_slabp;

check_magic:
	if (slabp->s_magic != SLAB_MAGIC_ALLOC)		/* Sanity check. */
		goto bad_slab;

#if	SLAB_DEBUG_SUPPORT
	if (cachep->c_flags & SLAB_DEBUG_FREE)
		goto extra_checks;
passed_extra:
#endif	/* SLAB_DEBUG_SUPPORT */

	if (slabp->s_inuse) {		/* Sanity check. */
		SLAB_STATS_DEC_ACTIVE(cachep);
		slabp->s_inuse--;
		bufp->buf_nextp = slabp->s_freep;
		slabp->s_freep = bufp;
		if (bufp->buf_nextp) {
			if (slabp->s_inuse) {
				/* (hopefully) The most common case. */
finished:
#if	SLAB_DEBUG_SUPPORT
				if (cachep->c_flags & SLAB_POISON) {
					if (cachep->c_flags & SLAB_RED_ZONE)
						objp += BYTES_PER_WORD;
					kmem_poison_obj(cachep, objp);
				}
#endif	/* SLAB_DEBUG_SUPPORT */
				spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
				return;
			}
			kmem_cache_full_free(cachep, slabp);
			goto finished;
		}
		kmem_cache_one_free(cachep, slabp);
		goto finished;
	}

	/* Don't add to freelist. */
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	kmem_report_free_err("free with no active objs", objp, cachep);
	return;
bufctl:
	/* No 'extra' checks are performed for objs stored this way, finding
	 * the obj is check enough.
	 */
	slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(objp)]);
	bufp =	&slabp->s_index[(objp - slabp->s_mem)/cachep->c_offset];
	if (bufp->buf_objp == objp)
		goto check_magic;
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
	kmem_report_free_err("Either bad obj addr or double free", objp, cachep);
	return;
#if	SLAB_DEBUG_SUPPORT
init_state_check:
	/* Need to call the slab's constructor so the
	 * caller can perform a verify of its state (debugging).
	 */
	cachep->c_ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
	goto finished_initial;
extra_checks:
	if (!kmem_extra_free_checks(cachep, slabp->s_freep, bufp, objp)) {
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		kmem_report_free_err("Double free detected during checks", objp, cachep);
		return;
	}
	goto passed_extra;
red_zone:
	/* We do not hold the cache-lock while checking the red-zone.
	 */
	objp -= BYTES_PER_WORD;
	if (xchg((unsigned long *)objp, SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) {
		/* Either write before start of obj, or a double free. */
		kmem_report_free_err("Bad front redzone", objp, cachep);
	}
	if (xchg((unsigned long *)(objp+cachep->c_org_size+BYTES_PER_WORD), SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) {
		/* Either write past end of obj, or a double free. */
		kmem_report_free_err("Bad rear redzone", objp, cachep);
	}
	goto return_red;
#endif	/* SLAB_DEBUG_SUPPORT */

bad_slab:
	/* Slab doesn't contain the correct magic num. */
	if (slabp->s_magic == SLAB_MAGIC_DESTROYED) {
		/* Magic num says this is a destroyed slab. */
		kmem_report_free_err("free from inactive slab", objp, cachep);
	} else
		kmem_report_free_err("Bad obj addr", objp, cachep);
	spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);

#if 1
/* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
	BUG();
#endif

	return;
null_addr:
	kmem_report_free_err("NULL ptr", objp, cachep);
	return;
}

void *
kmem_cache_alloc(kmem_cache_t *cachep, int flags)
{
	return __kmem_cache_alloc(cachep, flags);
}

void
kmem_cache_free(kmem_cache_t *cachep, void *objp)
{
	__kmem_cache_free(cachep, objp);
}

void *
kmalloc(size_t size, int flags)
{
	cache_sizes_t	*csizep = cache_sizes;

	for (; csizep->cs_size; csizep++) {
		if (size > csizep->cs_size)
			continue;
		return __kmem_cache_alloc(csizep->cs_cachep, flags);
	}
	printk(KERN_ERR "kmalloc: Size (%lu) too large\n", (unsigned long) size);
	return NULL;
}

void
kfree(const void *objp)
{
	struct page *page;
	int	nr;

	if (!objp)
		goto null_ptr;
	nr = MAP_NR(objp);
	if (nr >= max_mapnr)
		goto bad_ptr;

	/* Assume we own the page structure - hence no locking.
	 * If someone is misbehaving (for example, calling us with a bad
	 * address), then access to the page structure can race with the
	 * kmem_slab_destroy() code.  Need to add a spin_lock to each page
	 * structure, which would be useful in threading the gfp() functions....
	 */
	page = &mem_map[nr];
	if (PageSlab(page)) {
		kmem_cache_t	*cachep;

		/* Here, we again assume the obj address is good.
		 * If it isn't, and happens to map onto another
		 * general cache page which has no active objs, then
		 * we race.
		 */
		cachep = SLAB_GET_PAGE_CACHE(page);
		if (cachep && (cachep->c_flags & SLAB_CFLGS_GENERAL)) {
			__kmem_cache_free(cachep, objp);
			return;
		}
	}
bad_ptr:
	printk(KERN_ERR "kfree: Bad obj %p\n", objp);

#if 1
/* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */
*(int *) 0 = 0;
#endif

null_ptr:
	return;
}

void
kfree_s(const void *objp, size_t size)
{
	struct page *page;
	int	nr;

	if (!objp)
		goto null_ptr;
	nr = MAP_NR(objp);
	if (nr >= max_mapnr)
		goto null_ptr;
	/* See comment in kfree() */
	page = &mem_map[nr];
	if (PageSlab(page)) {
		kmem_cache_t	*cachep;
		/* See comment in kfree() */
		cachep = SLAB_GET_PAGE_CACHE(page);
		if (cachep && cachep->c_flags & SLAB_CFLGS_GENERAL) {
			if (size <= cachep->c_org_size) {	/* XXX better check */
				__kmem_cache_free(cachep, objp);
				return;
			}
		}
	}
null_ptr:
	printk(KERN_ERR "kfree_s: Bad obj %p\n", objp);
	return;
}

kmem_cache_t *
kmem_find_general_cachep(size_t size)
{
	cache_sizes_t	*csizep = cache_sizes;

	/* This function could be moved to the header file, and
	 * made inline so consumers can quickly determine what
	 * cache pointer they require.
	 */
	for (; csizep->cs_size; csizep++) {
		if (size > csizep->cs_size)
			continue;
		break;
	}
	return csizep->cs_cachep;
}


/* Called from try_to_free_page().
 * This function _cannot_ be called within a int, but it
 * can be interrupted.
 */
void
kmem_cache_reap(int gfp_mask)
{
	kmem_slab_t	*slabp;
	kmem_cache_t	*searchp;
	kmem_cache_t	*best_cachep;
	unsigned int	 scan;
	unsigned int	 reap_level;

	if (in_interrupt()) {
		printk("kmem_cache_reap() called within int!\n");
		return;
	}

	/* We really need a test semaphore op so we can avoid sleeping when
	 * !wait is true.
	 */
	down(&cache_chain_sem);

	scan = 10;
	reap_level = 0;

	best_cachep = NULL;
	searchp = clock_searchp;
	do {
		unsigned int	full_free;
		unsigned int	dma_flag;

		/* It's safe to test this without holding the cache-lock. */
		if (searchp->c_flags & SLAB_NO_REAP)
			goto next;
		spin_lock_irq(&searchp->c_spinlock);
		if (searchp->c_growing)
			goto next_unlock;
		if (searchp->c_dflags & SLAB_CFLGS_GROWN) {
			searchp->c_dflags &= ~SLAB_CFLGS_GROWN;
			goto next_unlock;
		}
		/* Sanity check for corruption of static values. */
		if (searchp->c_inuse || searchp->c_magic != SLAB_C_MAGIC) {
			spin_unlock_irq(&searchp->c_spinlock);
			printk(KERN_ERR "kmem_reap: Corrupted cache struct for %s\n", searchp->c_name);
			goto next;
		}
		dma_flag = 0;
		full_free = 0;

		/* Count the fully free slabs.  There should not be not many,
		 * since we are holding the cache lock.
		 */
		slabp = searchp->c_lastp;
		while (!slabp->s_inuse && slabp != kmem_slab_end(searchp)) {
			slabp = slabp->s_prevp;
			full_free++;
			if (slabp->s_dma)
				dma_flag++;
		}
		spin_unlock_irq(&searchp->c_spinlock);

		if ((gfp_mask & GFP_DMA) && !dma_flag)
			goto next;

		if (full_free) {
			if (full_free >= 10) {
				best_cachep = searchp;
				break;
			}

			/* Try to avoid slabs with constructors and/or
			 * more than one page per slab (as it can be difficult
			 * to get high orders from gfp()).
			 */
			if (full_free >= reap_level) {
				reap_level = full_free;
				best_cachep = searchp;
			}
		}
		goto next;
next_unlock:
		spin_unlock_irq(&searchp->c_spinlock);
next:
		searchp = searchp->c_nextp;
	} while (--scan && searchp != clock_searchp);

	clock_searchp = searchp;
	up(&cache_chain_sem);

	if (!best_cachep) {
		/* couldn't find anything to reap */
		return;
	}

	spin_lock_irq(&best_cachep->c_spinlock);
	while (!best_cachep->c_growing &&
	       !(slabp = best_cachep->c_lastp)->s_inuse &&
	       slabp != kmem_slab_end(best_cachep)) {
		if (gfp_mask & GFP_DMA) {
			do {
				if (slabp->s_dma)
					goto good_dma;
				slabp = slabp->s_prevp;
			} while (!slabp->s_inuse && slabp != kmem_slab_end(best_cachep));

			/* Didn't found a DMA slab (there was a free one -
			 * must have been become active).
			 */
			goto dma_fail;
good_dma:
		}
		if (slabp == best_cachep->c_freep)
			best_cachep->c_freep = slabp->s_nextp;
		kmem_slab_unlink(slabp);
		SLAB_STATS_INC_REAPED(best_cachep);

		/* Safe to drop the lock.  The slab is no longer linked to the
		 * cache.
		 */
		spin_unlock_irq(&best_cachep->c_spinlock);
		kmem_slab_destroy(best_cachep, slabp);
		spin_lock_irq(&best_cachep->c_spinlock);
	}
dma_fail:
	spin_unlock_irq(&best_cachep->c_spinlock);
	return;
}

#if	SLAB_SELFTEST
/* A few v. simple tests */
static void
kmem_self_test(void)
{
	kmem_cache_t	*test_cachep;

	printk(KERN_INFO "kmem_test() - start\n");
	test_cachep = kmem_cache_create("test-cachep", 16, 0, SLAB_RED_ZONE|SLAB_POISON, NULL, NULL);
	if (test_cachep) {
		char *objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL);
		if (objp) {
			/* Write in front and past end, red-zone test. */
			*(objp-1) = 1;
			*(objp+16) = 1;
			kmem_cache_free(test_cachep, objp);

			/* Mess up poisoning. */
			*objp = 10;
			objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL);
			kmem_cache_free(test_cachep, objp);

			/* Mess up poisoning (again). */
			*objp = 10;
			kmem_cache_shrink(test_cachep);
		}
	}
	printk(KERN_INFO "kmem_test() - finished\n");
}
#endif	/* SLAB_SELFTEST */

#if	defined(CONFIG_PROC_FS)
/* /proc/slabinfo
 * cache-name num-active-objs total-objs num-active-slabs total-slabs num-pages-per-slab
 */
int
get_slabinfo(char *buf)
{
	kmem_cache_t	*cachep;
	kmem_slab_t	*slabp;
	unsigned long	active_objs;
	unsigned long	save_flags;
	unsigned long	num_slabs;
	unsigned long	num_objs;
	int		len=0;
#if	SLAB_STATS
	unsigned long	active_slabs;
#endif	/* SLAB_STATS */

	__save_flags(save_flags);

	/* Output format version, so at least we can change it without _too_
	 * many complaints.
	 */
#if	SLAB_STATS
	len = sprintf(buf, "slabinfo - version: 1.0 (statistics)\n");
#else
	len = sprintf(buf, "slabinfo - version: 1.0\n");
#endif	/* SLAB_STATS */
	down(&cache_chain_sem);
	cachep = &cache_cache;
	do {
#if	SLAB_STATS
		active_slabs = 0;
#endif	/* SLAB_STATS */
		num_slabs = active_objs = 0;
		spin_lock_irq(&cachep->c_spinlock);
		for (slabp = cachep->c_firstp; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) {
			active_objs += slabp->s_inuse;
			num_slabs++;
#if	SLAB_STATS
			if (slabp->s_inuse)
				active_slabs++;
#endif	/* SLAB_STATS */
		}
		num_objs = cachep->c_num*num_slabs;
#if	SLAB_STATS
		{
		unsigned long errors;
		unsigned long high = cachep->c_high_mark;
		unsigned long grown = cachep->c_grown;
		unsigned long reaped = cachep->c_reaped;
		unsigned long allocs = cachep->c_num_allocations;
		errors = (unsigned long) atomic_read(&cachep->c_errors);
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		len += sprintf(buf+len, "%-16s %6lu %6lu %4lu %4lu %4lu %6lu %7lu %5lu %4lu %4lu\n",
				cachep->c_name, active_objs, num_objs, active_slabs, num_slabs,
				(1<<cachep->c_gfporder)*num_slabs,
				high, allocs, grown, reaped, errors);
		}
#else
		spin_unlock_irqrestore(&cachep->c_spinlock, save_flags);
		len += sprintf(buf+len, "%-17s %6lu %6lu\n", cachep->c_name, active_objs, num_objs);
#endif	/* SLAB_STATS */
	} while ((cachep = cachep->c_nextp) != &cache_cache);
	up(&cache_chain_sem);

	return len;
}
#endif	/* CONFIG_PROC_FS */