Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 | /* * linux/mm/slab.c * Written by Mark Hemment, 1996/97. * (markhe@nextd.demon.co.uk) * * 11 April '97. Started multi-threading - markhe * The global cache-chain is protected by the semaphore 'cache_chain_sem'. * The sem is only needed when accessing/extending the cache-chain, which * can never happen inside an interrupt (kmem_cache_create(), * kmem_cache_shrink() and kmem_cache_reap()). * This is a medium-term exclusion lock. * * Each cache has its own lock; 'c_spinlock'. This lock is needed only * when accessing non-constant members of a cache-struct. * Note: 'constant members' are assigned a value in kmem_cache_create() before * the cache is linked into the cache-chain. The values never change, so not * even a multi-reader lock is needed for these members. * The c_spinlock is only ever held for a few cycles. * * To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which * maybe be sleeping and therefore not holding the semaphore/lock), the * c_growing field is used. This also prevents reaping from a cache. * * Note, caches can _never_ be destroyed. When a sub-system (eg module) has * finished with a cache, it can only be shrunk. This leaves the cache empty, * but already enabled for re-use, eg. during a module re-load. * * Notes: * o Constructors/deconstructors are called while the cache-lock * is _not_ held. Therefore they _must_ be threaded. * o Constructors must not attempt to allocate memory from the * same cache that they are a constructor for - infinite loop! * (There is no easy way to trap this.) * o The per-cache locks must be obtained with local-interrupts disabled. * o When compiled with debug support, and an object-verify (upon release) * is request for a cache, the verify-function is called with the cache * lock held. This helps debugging. * o The functions called from try_to_free_page() must not attempt * to allocate memory from a cache which is being grown. * The buffer sub-system might try to allocate memory, via buffer_cachep. * As this pri is passed to the SLAB, and then (if necessary) onto the * gfp() funcs (which avoid calling try_to_free_page()), no deadlock * should happen. * * The positioning of the per-cache lock is tricky. If the lock is * placed on the same h/w cache line as commonly accessed members * the number of L1 cache-line faults is reduced. However, this can * lead to the cache-line ping-ponging between processors when the * lock is in contention (and the common members are being accessed). * Decided to keep it away from common members. * * More fine-graining is possible, with per-slab locks...but this might be * taking fine graining too far, but would have the advantage; * During most allocs/frees no writes occur to the cache-struct. * Therefore a multi-reader/one writer lock could be used (the writer * needed when the slab chain is being link/unlinked). * As we would not have an exclusion lock for the cache-structure, one * would be needed per-slab (for updating s_free ptr, and/or the contents * of s_index). * The above locking would allow parallel operations to different slabs within * the same cache with reduced spinning. * * Per-engine slab caches, backed by a global cache (as in Mach's Zone allocator), * would allow most allocations from the same cache to execute in parallel. * * At present, each engine can be growing a cache. This should be blocked. * * It is not currently 100% safe to examine the page_struct outside of a kernel * or global cli lock. The risk is v. small, and non-fatal. * * Calls to printk() are not 100% safe (the function is not threaded). However, * printk() is only used under an error condition, and the risk is v. small (not * sure if the console write functions 'enjoy' executing multiple contexts in * parallel. I guess they don't...). * Note, for most calls to printk() any held cache-lock is dropped. This is not * always done for text size reasons - having *_unlock() everywhere is bloat. */ /* * An implementation of the Slab Allocator as described in outline in; * UNIX Internals: The New Frontiers by Uresh Vahalia * Pub: Prentice Hall ISBN 0-13-101908-2 * or with a little more detail in; * The Slab Allocator: An Object-Caching Kernel Memory Allocator * Jeff Bonwick (Sun Microsystems). * Presented at: USENIX Summer 1994 Technical Conference */ /* * This implementation deviates from Bonwick's paper as it * does not use a hash-table for large objects, but rather a per slab * index to hold the bufctls. This allows the bufctl structure to * be small (one word), but limits the number of objects a slab (not * a cache) can contain when off-slab bufctls are used. The limit is the * size of the largest general cache that does not use off-slab bufctls, * divided by the size of a bufctl. For 32bit archs, is this 256/4 = 64. * This is not serious, as it is only for large objects, when it is unwise * to have too many per slab. * Note: This limit can be raised by introducing a general cache whose size * is less than 512 (PAGE_SIZE<<3), but greater than 256. */ #include <linux/__KEEPIDENTS__B.h> #include <linux/__KEEPIDENTS__C.h> #include <linux/__KEEPIDENTS__D.h> #include <linux/__KEEPIDENTS__E.h> #include <linux/__KEEPIDENTS__F.h> #include <linux/__KEEPIDENTS__G.h> #include <asm/system.h> #include <asm/atomic.h> #include <asm/spinlock.h> /* If there is a different PAGE_SIZE around, and it works with this allocator, * then change the following. */ #if (PAGE_SIZE != 8192 && PAGE_SIZE != 4096) #error Your page size is probably not correctly supported - please check #endif /* SLAB_MGMT_CHECKS - 1 to enable extra checks in kmem_cache_create(). * 0 if you wish to reduce memory usage. * * SLAB_DEBUG_SUPPORT - 1 for kmem_cache_create() to honour; SLAB_DEBUG_FREE, * SLAB_DEBUG_INITIAL, SLAB_RED_ZONE & SLAB_POISON. * 0 for faster, smaller, code (especially in the critical paths). * * SLAB_STATS - 1 to collect stats for /proc/slabinfo. * 0 for faster, smaller, code (especially in the critical paths). * * SLAB_SELFTEST - 1 to perform a few tests, mainly for development. */ #define SLAB_MGMT_CHECKS 1 #define SLAB_DEBUG_SUPPORT 0 #define SLAB_STATS 0 #define SLAB_SELFTEST 0 /* Shouldn't this be in a header file somewhere? */ #define BYTES_PER_WORD sizeof(void *) /* Legal flag mask for kmem_cache_create(). */ #if SLAB_DEBUG_SUPPORT #if 0 #define SLAB_C_MASK (SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \ SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP| \ SLAB_HIGH_PACK) #endif #define SLAB_C_MASK (SLAB_DEBUG_FREE|SLAB_DEBUG_INITIAL|SLAB_RED_ZONE| \ SLAB_POISON|SLAB_HWCACHE_ALIGN|SLAB_NO_REAP) #else #if 0 #define SLAB_C_MASK (SLAB_HWCACHE_ALIGN|SLAB_NO_REAP|SLAB_HIGH_PACK) #endif #define SLAB_C_MASK (SLAB_HWCACHE_ALIGN|SLAB_NO_REAP) #endif /* SLAB_DEBUG_SUPPORT */ /* Slab management struct. * Manages the objs in a slab. Placed either at the end of mem allocated * for a slab, or from an internal obj cache (cache_slabp). * Slabs are chained into a partially ordered list; fully used first, partial * next, and then fully free slabs. * The first 4 members are referenced during an alloc/free operation, and * should always appear on the same cache line. * Note: The offset between some members _must_ match offsets within * the kmem_cache_t - see kmem_cache_init() for the checks. */ #define SLAB_OFFSET_BITS 16 /* could make this larger for 64bit archs */ typedef struct kmem_slab_s { struct kmem_bufctl_s *s_freep; /* ptr to first inactive obj in slab */ struct kmem_bufctl_s *s_index; unsigned long s_magic; unsigned long s_inuse; /* num of objs active in slab */ struct kmem_slab_s *s_nextp; struct kmem_slab_s *s_prevp; void *s_mem; /* addr of first obj in slab */ unsigned long s_offset:SLAB_OFFSET_BITS, s_dma:1; } kmem_slab_t; /* When the slab management is on-slab, this gives the size to use. */ #define slab_align_size (L1_CACHE_ALIGN(sizeof(kmem_slab_t))) /* Test for end of slab chain. */ #define kmem_slab_end(x) ((kmem_slab_t*)&((x)->c_offset)) /* s_magic */ #define SLAB_MAGIC_ALLOC 0xA5C32F2BUL /* slab is alive */ #define SLAB_MAGIC_DESTROYED 0xB2F23C5AUL /* slab has been destroyed */ /* Bufctl's are used for linking objs within a slab, identifying what slab an obj * is in, and the address of the associated obj (for sanity checking with off-slab * bufctls). What a bufctl contains depends upon the state of the obj and * the organisation of the cache. */ typedef struct kmem_bufctl_s { union { struct kmem_bufctl_s *buf_nextp; kmem_slab_t *buf_slabp; /* slab for obj */ void * buf_objp; } u; } kmem_bufctl_t; /* ...shorthand... */ #define buf_nextp u.buf_nextp #define buf_slabp u.buf_slabp #define buf_objp u.buf_objp #if SLAB_DEBUG_SUPPORT /* Magic nums for obj red zoning. * Placed in the first word before and the first word after an obj. */ #define SLAB_RED_MAGIC1 0x5A2CF071UL /* when obj is active */ #define SLAB_RED_MAGIC2 0x170FC2A5UL /* when obj is inactive */ /* ...and for poisoning */ #define SLAB_POISON_BYTE 0x5a /* byte value for poisoning */ #define SLAB_POISON_END 0xa5 /* end-byte of poisoning */ #endif /* SLAB_DEBUG_SUPPORT */ /* Cache struct - manages a cache. * First four members are commonly referenced during an alloc/free operation. */ struct kmem_cache_s { kmem_slab_t *c_freep; /* first slab w. free objs */ unsigned long c_flags; /* constant flags */ unsigned long c_offset; unsigned long c_num; /* # of objs per slab */ unsigned long c_magic; unsigned long c_inuse; /* kept at zero */ kmem_slab_t *c_firstp; /* first slab in chain */ kmem_slab_t *c_lastp; /* last slab in chain */ spinlock_t c_spinlock; unsigned long c_growing; unsigned long c_dflags; /* dynamic flags */ size_t c_org_size; unsigned long c_gfporder; /* order of pgs per slab (2^n) */ void (*c_ctor)(void *, kmem_cache_t *, unsigned long); /* constructor func */ void (*c_dtor)(void *, kmem_cache_t *, unsigned long); /* de-constructor func */ unsigned long c_align; /* alignment of objs */ size_t c_colour; /* cache colouring range */ size_t c_colour_next;/* cache colouring */ unsigned long c_failures; const char *c_name; struct kmem_cache_s *c_nextp; kmem_cache_t *c_index_cachep; #if SLAB_STATS unsigned long c_num_active; unsigned long c_num_allocations; unsigned long c_high_mark; unsigned long c_grown; unsigned long c_reaped; atomic_t c_errors; #endif /* SLAB_STATS */ }; /* internal c_flags */ #define SLAB_CFLGS_OFF_SLAB 0x010000UL /* slab management in own cache */ #define SLAB_CFLGS_BUFCTL 0x020000UL /* bufctls in own cache */ #define SLAB_CFLGS_GENERAL 0x080000UL /* a general cache */ /* c_dflags (dynamic flags). Need to hold the spinlock to access this member */ #define SLAB_CFLGS_GROWN 0x000002UL /* don't reap a recently grown */ #define SLAB_OFF_SLAB(x) ((x) & SLAB_CFLGS_OFF_SLAB) #define SLAB_BUFCTL(x) ((x) & SLAB_CFLGS_BUFCTL) #define SLAB_GROWN(x) ((x) & SLAB_CFLGS_GROWN) #if SLAB_STATS #define SLAB_STATS_INC_ACTIVE(x) ((x)->c_num_active++) #define SLAB_STATS_DEC_ACTIVE(x) ((x)->c_num_active--) #define SLAB_STATS_INC_ALLOCED(x) ((x)->c_num_allocations++) #define SLAB_STATS_INC_GROWN(x) ((x)->c_grown++) #define SLAB_STATS_INC_REAPED(x) ((x)->c_reaped++) #define SLAB_STATS_SET_HIGH(x) do { if ((x)->c_num_active > (x)->c_high_mark) \ (x)->c_high_mark = (x)->c_num_active; \ } while (0) #define SLAB_STATS_INC_ERR(x) (atomic_inc(&(x)->c_errors)) #else #define SLAB_STATS_INC_ACTIVE(x) #define SLAB_STATS_DEC_ACTIVE(x) #define SLAB_STATS_INC_ALLOCED(x) #define SLAB_STATS_INC_GROWN(x) #define SLAB_STATS_INC_REAPED(x) #define SLAB_STATS_SET_HIGH(x) #define SLAB_STATS_INC_ERR(x) #endif /* SLAB_STATS */ #if SLAB_SELFTEST #if !SLAB_DEBUG_SUPPORT #error Debug support needed for self-test #endif static void kmem_self_test(void); #endif /* SLAB_SELFTEST */ /* c_magic - used to detect 'out of slabs' in __kmem_cache_alloc() */ #define SLAB_C_MAGIC 0x4F17A36DUL /* maximum size of an obj (in 2^order pages) */ #define SLAB_OBJ_MAX_ORDER 5 /* 32 pages */ /* maximum num of pages for a slab (prevents large requests to the VM layer) */ #define SLAB_MAX_GFP_ORDER 5 /* 32 pages */ /* the 'preferred' minimum num of objs per slab - maybe less for large objs */ #define SLAB_MIN_OBJS_PER_SLAB 4 /* If the num of objs per slab is <= SLAB_MIN_OBJS_PER_SLAB, * then the page order must be less than this before trying the next order. */ #define SLAB_BREAK_GFP_ORDER_HI 2 #define SLAB_BREAK_GFP_ORDER_LO 1 static int slab_break_gfp_order = SLAB_BREAK_GFP_ORDER_LO; /* Macros for storing/retrieving the cachep and or slab from the * global 'mem_map'. With off-slab bufctls, these are used to find the * slab an obj belongs to. With kmalloc(), and kfree(), these are used * to find the cache which an obj belongs to. */ #define SLAB_SET_PAGE_CACHE(pg, x) ((pg)->next = (struct page *)(x)) #define SLAB_GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->next) #define SLAB_SET_PAGE_SLAB(pg, x) ((pg)->prev = (struct page *)(x)) #define SLAB_GET_PAGE_SLAB(pg) ((kmem_slab_t *)(pg)->prev) /* Size description struct for general caches. */ typedef struct cache_sizes { size_t cs_size; kmem_cache_t *cs_cachep; } cache_sizes_t; static cache_sizes_t cache_sizes[] = { #if PAGE_SIZE == 4096 { 32, NULL}, #endif { 64, NULL}, { 128, NULL}, { 256, NULL}, { 512, NULL}, {1024, NULL}, {2048, NULL}, {4096, NULL}, {8192, NULL}, {16384, NULL}, {32768, NULL}, {65536, NULL}, {131072, NULL}, {0, NULL} }; /* Names for the general caches. Not placed into the sizes struct for * a good reason; the string ptr is not needed while searching in kmalloc(), * and would 'get-in-the-way' in the h/w cache. */ static char *cache_sizes_name[] = { #if PAGE_SIZE == 4096 "size-32", #endif "size-64", "size-128", "size-256", "size-512", "size-1024", "size-2048", "size-4096", "size-8192", "size-16384", "size-32768", "size-65536", "size-131072" }; /* internal cache of cache description objs */ static kmem_cache_t cache_cache = { /* freep, flags */ kmem_slab_end(&cache_cache), SLAB_NO_REAP, /* offset, num */ sizeof(kmem_cache_t), 0, /* c_magic, c_inuse */ SLAB_C_MAGIC, 0, /* firstp, lastp */ kmem_slab_end(&cache_cache), kmem_slab_end(&cache_cache), /* spinlock */ SPIN_LOCK_UNLOCKED, /* growing */ 0, /* dflags */ 0, /* org_size, gfp */ 0, 0, /* ctor, dtor, align */ NULL, NULL, L1_CACHE_BYTES, /* colour, colour_next */ 0, 0, /* failures */ 0, /* name */ "kmem_cache", /* nextp */ &cache_cache, /* index */ NULL, }; /* Guard access to the cache-chain. */ static struct semaphore cache_chain_sem; /* Place maintainer for reaping. */ static kmem_cache_t *clock_searchp = &cache_cache; /* Internal slab management cache, for when slab management is off-slab. */ static kmem_cache_t *cache_slabp = NULL; /* Max number of objs-per-slab for caches which use bufctl's. * Needed to avoid a possible looping condition in kmem_cache_grow(). */ static unsigned long bufctl_limit = 0; /* Initialisation - setup the `cache' cache. */ long __init kmem_cache_init(long start, long end) { size_t size, i; #define kmem_slab_offset(x) ((unsigned long)&((kmem_slab_t *)0)->x) #define kmem_slab_diff(a,b) (kmem_slab_offset(a) - kmem_slab_offset(b)) #define kmem_cache_offset(x) ((unsigned long)&((kmem_cache_t *)0)->x) #define kmem_cache_diff(a,b) (kmem_cache_offset(a) - kmem_cache_offset(b)) /* Sanity checks... */ if (kmem_cache_diff(c_firstp, c_magic) != kmem_slab_diff(s_nextp, s_magic) || kmem_cache_diff(c_firstp, c_inuse) != kmem_slab_diff(s_nextp, s_inuse) || ((kmem_cache_offset(c_lastp) - ((unsigned long) kmem_slab_end((kmem_cache_t*)NULL))) != kmem_slab_offset(s_prevp)) || kmem_cache_diff(c_lastp, c_firstp) != kmem_slab_diff(s_prevp, s_nextp)) { /* Offsets to the magic are incorrect, either the structures have * been incorrectly changed, or adjustments are needed for your * architecture. */ panic("kmem_cache_init(): Offsets are wrong - I've been messed with!"); /* NOTREACHED */ } #undef kmem_cache_offset #undef kmem_cache_diff #undef kmem_slab_offset #undef kmem_slab_diff cache_chain_sem = MUTEX; size = cache_cache.c_offset + sizeof(kmem_bufctl_t); size += (L1_CACHE_BYTES-1); size &= ~(L1_CACHE_BYTES-1); cache_cache.c_offset = size-sizeof(kmem_bufctl_t); i = (PAGE_SIZE<<cache_cache.c_gfporder)-slab_align_size; cache_cache.c_num = i / size; /* num of objs per slab */ /* Cache colouring. */ cache_cache.c_colour = (i-(cache_cache.c_num*size))/L1_CACHE_BYTES; cache_cache.c_colour_next = cache_cache.c_colour; /* * Fragmentation resistance on low memory - only use bigger * page orders on machines with more than 32MB of memory. */ if (num_physpages > (32 << 20) >> PAGE_SHIFT) slab_break_gfp_order = SLAB_BREAK_GFP_ORDER_HI; return start; } /* Initialisation - setup remaining internal and general caches. * Called after the gfp() functions have been enabled, and before smp_init(). */ void __init kmem_cache_sizes_init(void) { unsigned int found = 0; cache_slabp = kmem_cache_create("slab_cache", sizeof(kmem_slab_t), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (cache_slabp) { char **names = cache_sizes_name; cache_sizes_t *sizes = cache_sizes; do { /* For performance, all the general caches are L1 aligned. * This should be particularly beneficial on SMP boxes, as it * eliminates "false sharing". * Note for systems short on memory removing the alignment will * allow tighter packing of the smaller caches. */ if (!(sizes->cs_cachep = kmem_cache_create(*names++, sizes->cs_size, 0, SLAB_HWCACHE_ALIGN, NULL, NULL))) goto panic_time; if (!found) { /* Inc off-slab bufctl limit until the ceiling is hit. */ if (SLAB_BUFCTL(sizes->cs_cachep->c_flags)) found++; else bufctl_limit = (sizes->cs_size/sizeof(kmem_bufctl_t)); } sizes->cs_cachep->c_flags |= SLAB_CFLGS_GENERAL; sizes++; } while (sizes->cs_size); #if SLAB_SELFTEST kmem_self_test(); #endif /* SLAB_SELFTEST */ return; } panic_time: panic("kmem_cache_sizes_init: Error creating caches"); /* NOTREACHED */ } /* Interface to system's page allocator. Dma pts to non-zero if all * of memory is DMAable. No need to hold the cache-lock. */ static inline void * kmem_getpages(kmem_cache_t *cachep, unsigned long flags, unsigned int *dma) { void *addr; *dma = flags & SLAB_DMA; addr = (void*) __get_free_pages(flags, cachep->c_gfporder); /* Assume that now we have the pages no one else can legally * messes with the 'struct page's. * However vm_scan() might try to test the structure to see if * it is a named-page or buffer-page. The members it tests are * of no interest here..... */ if (!*dma && addr) { /* Need to check if can dma. */ struct page *page = mem_map + MAP_NR(addr); *dma = 1<<cachep->c_gfporder; while ((*dma)--) { if (!PageDMA(page)) { *dma = 0; break; } page++; } } return addr; } /* Interface to system's page release. */ static inline void kmem_freepages(kmem_cache_t *cachep, void *addr) { unsigned long i = (1<<cachep->c_gfporder); struct page *page = &mem_map[MAP_NR(addr)]; /* free_pages() does not clear the type bit - we do that. * The pages have been unlinked from their cache-slab, * but their 'struct page's might be accessed in * vm_scan(). Shouldn't be a worry. */ while (i--) { PageClearSlab(page); page++; } free_pages((unsigned long)addr, cachep->c_gfporder); } #if SLAB_DEBUG_SUPPORT static inline void kmem_poison_obj(kmem_cache_t *cachep, void *addr) { memset(addr, SLAB_POISON_BYTE, cachep->c_org_size); *(unsigned char *)(addr+cachep->c_org_size-1) = SLAB_POISON_END; } static inline int kmem_check_poison_obj(kmem_cache_t *cachep, void *addr) { void *end; end = memchr(addr, SLAB_POISON_END, cachep->c_org_size); if (end != (addr+cachep->c_org_size-1)) return 1; return 0; } #endif /* SLAB_DEBUG_SUPPORT */ /* Three slab chain funcs - all called with ints disabled and the appropriate * cache-lock held. */ static inline void kmem_slab_unlink(kmem_slab_t *slabp) { kmem_slab_t *prevp = slabp->s_prevp; kmem_slab_t *nextp = slabp->s_nextp; prevp->s_nextp = nextp; nextp->s_prevp = prevp; } static inline void kmem_slab_link_end(kmem_cache_t *cachep, kmem_slab_t *slabp) { kmem_slab_t *lastp = cachep->c_lastp; slabp->s_nextp = kmem_slab_end(cachep); slabp->s_prevp = lastp; cachep->c_lastp = slabp; lastp->s_nextp = slabp; } static inline void kmem_slab_link_free(kmem_cache_t *cachep, kmem_slab_t *slabp) { kmem_slab_t *nextp = cachep->c_freep; kmem_slab_t *prevp = nextp->s_prevp; slabp->s_nextp = nextp; slabp->s_prevp = prevp; nextp->s_prevp = slabp; slabp->s_prevp->s_nextp = slabp; } /* Destroy all the objs in a slab, and release the mem back to the system. * Before calling the slab must have been unlinked from the cache. * The cache-lock is not held/needed. */ static void kmem_slab_destroy(kmem_cache_t *cachep, kmem_slab_t *slabp) { if (cachep->c_dtor #if SLAB_DEBUG_SUPPORT || cachep->c_flags & (SLAB_POISON | SLAB_RED_ZONE) #endif /*SLAB_DEBUG_SUPPORT*/ ) { /* Doesn't use the bufctl ptrs to find objs. */ unsigned long num = cachep->c_num; void *objp = slabp->s_mem; do { #if SLAB_DEBUG_SUPPORT if (cachep->c_flags & SLAB_RED_ZONE) { if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1) printk(KERN_ERR "kmem_slab_destroy: " "Bad front redzone - %s\n", cachep->c_name); objp += BYTES_PER_WORD; if (*((unsigned long*)(objp+cachep->c_org_size)) != SLAB_RED_MAGIC1) printk(KERN_ERR "kmem_slab_destroy: " "Bad rear redzone - %s\n", cachep->c_name); } if (cachep->c_dtor) #endif /*SLAB_DEBUG_SUPPORT*/ (cachep->c_dtor)(objp, cachep, 0); #if SLAB_DEBUG_SUPPORT else if (cachep->c_flags & SLAB_POISON) { if (kmem_check_poison_obj(cachep, objp)) printk(KERN_ERR "kmem_slab_destroy: " "Bad poison - %s\n", cachep->c_name); } if (cachep->c_flags & SLAB_RED_ZONE) objp -= BYTES_PER_WORD; #endif /* SLAB_DEBUG_SUPPORT */ objp += cachep->c_offset; if (!slabp->s_index) objp += sizeof(kmem_bufctl_t); } while (--num); } slabp->s_magic = SLAB_MAGIC_DESTROYED; kmem_freepages(cachep, slabp->s_mem-slabp->s_offset); if (slabp->s_index) kmem_cache_free(cachep->c_index_cachep, slabp->s_index); if (SLAB_OFF_SLAB(cachep->c_flags)) kmem_cache_free(cache_slabp, slabp); } /* Cal the num objs, wastage, and bytes left over for a given slab size. */ static inline size_t kmem_cache_cal_waste(unsigned long gfporder, size_t size, size_t extra, unsigned long flags, size_t *left_over, unsigned long *num) { size_t wastage = PAGE_SIZE<<gfporder; if (SLAB_OFF_SLAB(flags)) gfporder = 0; else gfporder = slab_align_size; wastage -= gfporder; *num = wastage / size; wastage -= (*num * size); *left_over = wastage; return (wastage + gfporder + (extra * *num)); } /* Create a cache: * Returns a ptr to the cache on success, NULL on failure. * Cannot be called within a int, but can be interrupted. * NOTE: The 'name' is assumed to be memory that is _not_ going to disappear. */ kmem_cache_t * kmem_cache_create(const char *name, size_t size, size_t offset, unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), void (*dtor)(void*, kmem_cache_t *, unsigned long)) { const char *func_nm= KERN_ERR "kmem_create: "; kmem_cache_t *searchp; kmem_cache_t *cachep=NULL; size_t extra; size_t left_over; size_t align; /* Sanity checks... */ #if SLAB_MGMT_CHECKS if (!name) { printk("%sNULL ptr\n", func_nm); goto opps; } if (in_interrupt()) { printk("%sCalled during int - %s\n", func_nm, name); goto opps; } if (size < BYTES_PER_WORD) { printk("%sSize too small %d - %s\n", func_nm, (int) size, name); size = BYTES_PER_WORD; } if (size > ((1<<SLAB_OBJ_MAX_ORDER)*PAGE_SIZE)) { printk("%sSize too large %d - %s\n", func_nm, (int) size, name); goto opps; } if (dtor && !ctor) { /* Decon, but no con - doesn't make sense */ printk("%sDecon but no con - %s\n", func_nm, name); goto opps; } if (offset < 0 || offset > size) { printk("%sOffset weird %d - %s\n", func_nm, (int) offset, name); offset = 0; } #if SLAB_DEBUG_SUPPORT if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { /* No constructor, but inital state check requested */ printk("%sNo con, but init state check requested - %s\n", func_nm, name); flags &= ~SLAB_DEBUG_INITIAL; } if ((flags & SLAB_POISON) && ctor) { /* request for poisoning, but we can't do that with a constructor */ printk("%sPoisoning requested, but con given - %s\n", func_nm, name); flags &= ~SLAB_POISON; } #if 0 if ((flags & SLAB_HIGH_PACK) && ctor) { printk("%sHigh pack requested, but con given - %s\n", func_nm, name); flags &= ~SLAB_HIGH_PACK; } if ((flags & SLAB_HIGH_PACK) && (flags & (SLAB_POISON|SLAB_RED_ZONE))) { printk("%sHigh pack requested, but with poisoning/red-zoning - %s\n", func_nm, name); flags &= ~SLAB_HIGH_PACK; } #endif #endif /* SLAB_DEBUG_SUPPORT */ #endif /* SLAB_MGMT_CHECKS */ /* Always checks flags, a caller might be expecting debug * support which isn't available. */ if (flags & ~SLAB_C_MASK) { printk("%sIllgl flg %lX - %s\n", func_nm, flags, name); flags &= SLAB_C_MASK; } /* Get cache's description obj. */ cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); if (!cachep) goto opps; memset(cachep, 0, sizeof(kmem_cache_t)); /* Check that size is in terms of words. This is needed to avoid * unaligned accesses for some archs when redzoning is used, and makes * sure any on-slab bufctl's are also correctly aligned. */ if (size & (BYTES_PER_WORD-1)) { size += (BYTES_PER_WORD-1); size &= ~(BYTES_PER_WORD-1); printk("%sForcing size word alignment - %s\n", func_nm, name); } cachep->c_org_size = size; #if SLAB_DEBUG_SUPPORT if (flags & SLAB_RED_ZONE) { /* There is no point trying to honour cache alignment when redzoning. */ flags &= ~SLAB_HWCACHE_ALIGN; size += 2*BYTES_PER_WORD; /* words for redzone */ } #endif /* SLAB_DEBUG_SUPPORT */ align = BYTES_PER_WORD; if (flags & SLAB_HWCACHE_ALIGN) align = L1_CACHE_BYTES; /* Determine if the slab management and/or bufclts are 'on' or 'off' slab. */ extra = sizeof(kmem_bufctl_t); if (size < (PAGE_SIZE>>3)) { /* Size is small(ish). Use packing where bufctl size per * obj is low, and slab management is on-slab. */ #if 0 if ((flags & SLAB_HIGH_PACK)) { /* Special high packing for small objects * (mainly for vm_mapping structs, but * others can use it). */ if (size == (L1_CACHE_BYTES/4) || size == (L1_CACHE_BYTES/2) || size == L1_CACHE_BYTES) { /* The bufctl is stored with the object. */ extra = 0; } else flags &= ~SLAB_HIGH_PACK; } #endif } else { /* Size is large, assume best to place the slab management obj * off-slab (should allow better packing of objs). */ flags |= SLAB_CFLGS_OFF_SLAB; if (!(size & ~PAGE_MASK) || size == (PAGE_SIZE/2) || size == (PAGE_SIZE/4) || size == (PAGE_SIZE/8)) { /* To avoid waste the bufctls are off-slab... */ flags |= SLAB_CFLGS_BUFCTL; extra = 0; } /* else slab management is off-slab, but freelist pointers are on. */ } size += extra; if (flags & SLAB_HWCACHE_ALIGN) { /* Need to adjust size so that objs are cache aligned. */ if (size > (L1_CACHE_BYTES/2)) { size_t words = size % L1_CACHE_BYTES; if (words) size += (L1_CACHE_BYTES-words); } else { /* Small obj size, can get at least two per cache line. */ int num_per_line = L1_CACHE_BYTES/size; left_over = L1_CACHE_BYTES - (num_per_line*size); if (left_over) { /* Need to adjust size so objs cache align. */ if (left_over%num_per_line) { /* Odd num of objs per line - fixup. */ num_per_line--; left_over += size; } size += (left_over/num_per_line); } } } else if (!(size%L1_CACHE_BYTES)) { /* Size happens to cache align... */ flags |= SLAB_HWCACHE_ALIGN; align = L1_CACHE_BYTES; } /* Cal size (in pages) of slabs, and the num of objs per slab. * This could be made much more intelligent. For now, try to avoid * using high page-orders for slabs. When the gfp() funcs are more * friendly towards high-order requests, this should be changed. */ do { size_t wastage; unsigned int break_flag = 0; cal_wastage: wastage = kmem_cache_cal_waste(cachep->c_gfporder, size, extra, flags, &left_over, &cachep->c_num); if (!cachep->c_num) goto next; if (break_flag) break; if (SLAB_BUFCTL(flags) && cachep->c_num > bufctl_limit) { /* Oops, this num of objs will cause problems. */ cachep->c_gfporder--; break_flag++; goto cal_wastage; } if (cachep->c_gfporder == SLAB_MAX_GFP_ORDER) break; /* Large num of objs is good, but v. large slabs are currently * bad for the gfp()s. */ if (cachep->c_num <= SLAB_MIN_OBJS_PER_SLAB) { if (cachep->c_gfporder < slab_break_gfp_order) goto next; } /* Stop caches with small objs having a large num of pages. */ if (left_over <= slab_align_size) break; if ((wastage*8) <= (PAGE_SIZE<<cachep->c_gfporder)) break; /* Acceptable internal fragmentation. */ next: cachep->c_gfporder++; } while (1); /* If the slab has been placed off-slab, and we have enough space then * move it on-slab. This is at the expense of any extra colouring. */ if ((flags & SLAB_CFLGS_OFF_SLAB) && !SLAB_BUFCTL(flags) && left_over >= slab_align_size) { flags &= ~SLAB_CFLGS_OFF_SLAB; left_over -= slab_align_size; } /* Offset must be a factor of the alignment. */ offset += (align-1); offset &= ~(align-1); /* Mess around with the offset alignment. */ if (!left_over) { offset = 0; } else if (left_over < offset) { offset = align; if (flags & SLAB_HWCACHE_ALIGN) { if (left_over < offset) offset = 0; } else { /* Offset is BYTES_PER_WORD, and left_over is at * least BYTES_PER_WORD. */ if (left_over >= (BYTES_PER_WORD*2)) { offset >>= 1; if (left_over >= (BYTES_PER_WORD*4)) offset >>= 1; } } } else if (!offset) { /* No offset requested, but space enough - give one. */ offset = left_over/align; if (flags & SLAB_HWCACHE_ALIGN) { if (offset >= 8) { /* A large number of colours - use a larger alignment. */ align <<= 1; } } else { if (offset >= 10) { align <<= 1; if (offset >= 16) align <<= 1; } } offset = align; } #if 0 printk("%s: Left_over:%d Align:%d Size:%d\n", name, left_over, offset, size); #endif if ((cachep->c_align = (unsigned long) offset)) cachep->c_colour = (left_over/offset); cachep->c_colour_next = cachep->c_colour; /* If the bufctl's are on-slab, c_offset does not include the size of bufctl. */ if (!SLAB_BUFCTL(flags)) size -= sizeof(kmem_bufctl_t); else cachep->c_index_cachep = kmem_find_general_cachep(cachep->c_num*sizeof(kmem_bufctl_t)); cachep->c_offset = (unsigned long) size; cachep->c_freep = kmem_slab_end(cachep); cachep->c_firstp = kmem_slab_end(cachep); cachep->c_lastp = kmem_slab_end(cachep); cachep->c_flags = flags; cachep->c_ctor = ctor; cachep->c_dtor = dtor; cachep->c_magic = SLAB_C_MAGIC; cachep->c_name = name; /* Simply point to the name. */ spin_lock_init(&cachep->c_spinlock); /* Need the semaphore to access the chain. */ down(&cache_chain_sem); searchp = &cache_cache; do { /* The name field is constant - no lock needed. */ if (!strcmp(searchp->c_name, name)) { printk("%sDup name - %s\n", func_nm, name); break; } searchp = searchp->c_nextp; } while (searchp != &cache_cache); /* There is no reason to lock our new cache before we * link it in - no one knows about it yet... */ cachep->c_nextp = cache_cache.c_nextp; cache_cache.c_nextp = cachep; up(&cache_chain_sem); opps: return cachep; } /* Shrink a cache. Releases as many slabs as possible for a cache. * It is expected this function will be called by a module when it is * unloaded. The cache is _not_ removed, this creates too many problems and * the cache-structure does not take up much room. A module should keep its * cache pointer(s) in unloaded memory, so when reloaded it knows the cache * is available. To help debugging, a zero exit status indicates all slabs * were released. */ int kmem_cache_shrink(kmem_cache_t *cachep) { kmem_cache_t *searchp; kmem_slab_t *slabp; int ret; if (!cachep) { printk(KERN_ERR "kmem_shrink: NULL ptr\n"); return 2; } if (in_interrupt()) { printk(KERN_ERR "kmem_shrink: Called during int - %s\n", cachep->c_name); return 2; } /* Find the cache in the chain of caches. */ down(&cache_chain_sem); /* Semaphore is needed. */ searchp = &cache_cache; for (;searchp->c_nextp != &cache_cache; searchp = searchp->c_nextp) { if (searchp->c_nextp != cachep) continue; /* Accessing clock_searchp is safe - we hold the mutex. */ if (cachep == clock_searchp) clock_searchp = cachep->c_nextp; goto found; } up(&cache_chain_sem); printk(KERN_ERR "kmem_shrink: Invalid cache addr %p\n", cachep); return 2; found: /* Release the semaphore before getting the cache-lock. This could * mean multiple engines are shrinking the cache, but so what. */ up(&cache_chain_sem); spin_lock_irq(&cachep->c_spinlock); /* If the cache is growing, stop shrinking. */ while (!cachep->c_growing) { slabp = cachep->c_lastp; if (slabp->s_inuse || slabp == kmem_slab_end(cachep)) break; kmem_slab_unlink(slabp); spin_unlock_irq(&cachep->c_spinlock); kmem_slab_destroy(cachep, slabp); spin_lock_irq(&cachep->c_spinlock); } ret = 1; if (cachep->c_lastp == kmem_slab_end(cachep)) ret--; /* Cache is empty. */ spin_unlock_irq(&cachep->c_spinlock); return ret; } /* Get the memory for a slab management obj. */ static inline kmem_slab_t * kmem_cache_slabmgmt(kmem_cache_t *cachep, void *objp, int local_flags) { kmem_slab_t *slabp; if (SLAB_OFF_SLAB(cachep->c_flags)) { /* Slab management obj is off-slab. */ slabp = kmem_cache_alloc(cache_slabp, local_flags); } else { /* Slab management at end of slab memory, placed so that * the position is 'coloured'. */ void *end; end = objp + (cachep->c_num * cachep->c_offset); if (!SLAB_BUFCTL(cachep->c_flags)) end += (cachep->c_num * sizeof(kmem_bufctl_t)); slabp = (kmem_slab_t *) L1_CACHE_ALIGN((unsigned long)end); } if (slabp) { slabp->s_inuse = 0; slabp->s_dma = 0; slabp->s_index = NULL; } return slabp; } static inline void kmem_cache_init_objs(kmem_cache_t * cachep, kmem_slab_t * slabp, void *objp, unsigned long ctor_flags) { kmem_bufctl_t **bufpp = &slabp->s_freep; unsigned long num = cachep->c_num-1; do { #if SLAB_DEBUG_SUPPORT if (cachep->c_flags & SLAB_RED_ZONE) { *((unsigned long*)(objp)) = SLAB_RED_MAGIC1; objp += BYTES_PER_WORD; *((unsigned long*)(objp+cachep->c_org_size)) = SLAB_RED_MAGIC1; } #endif /* SLAB_DEBUG_SUPPORT */ /* Constructors are not allowed to allocate memory from the same cache * which they are a constructor for. Otherwise, deadlock. * They must also be threaded. */ if (cachep->c_ctor) cachep->c_ctor(objp, cachep, ctor_flags); #if SLAB_DEBUG_SUPPORT else if (cachep->c_flags & SLAB_POISON) { /* need to poison the objs */ kmem_poison_obj(cachep, objp); } if (cachep->c_flags & SLAB_RED_ZONE) { if (*((unsigned long*)(objp+cachep->c_org_size)) != SLAB_RED_MAGIC1) { *((unsigned long*)(objp+cachep->c_org_size)) = SLAB_RED_MAGIC1; printk(KERN_ERR "kmem_init_obj: Bad rear redzone " "after constructor - %s\n", cachep->c_name); } objp -= BYTES_PER_WORD; if (*((unsigned long*)(objp)) != SLAB_RED_MAGIC1) { *((unsigned long*)(objp)) = SLAB_RED_MAGIC1; printk(KERN_ERR "kmem_init_obj: Bad front redzone " "after constructor - %s\n", cachep->c_name); } } #endif /* SLAB_DEBUG_SUPPORT */ objp += cachep->c_offset; if (!slabp->s_index) { *bufpp = objp; objp += sizeof(kmem_bufctl_t); } else *bufpp = &slabp->s_index[num]; bufpp = &(*bufpp)->buf_nextp; } while (num--); *bufpp = NULL; } /* Grow (by 1) the number of slabs within a cache. This is called by * kmem_cache_alloc() when there are no active objs left in a cache. */ static int kmem_cache_grow(kmem_cache_t * cachep, int flags) { kmem_slab_t *slabp; struct page *page; void *objp; size_t offset; unsigned int dma, local_flags; unsigned long ctor_flags; unsigned long save_flags; /* Be lazy and only check for valid flags here, * keeping it out of the critical path in kmem_cache_alloc(). */ if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) { printk(KERN_WARNING "kmem_grow: Illegal flgs %X (correcting) - %s\n", flags, cachep->c_name); flags &= (SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW); } if (flags & SLAB_NO_GROW) return 0; /* The test for missing atomic flag is performed here, rather than * the more obvious place, simply to reduce the critical path length * in kmem_cache_alloc(). If a caller is slightly mis-behaving they * will eventually be caught here (where it matters). */ if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC) { printk(KERN_ERR "kmem_grow: Called nonatomically from int - %s\n", cachep->c_name); flags &= ~SLAB_LEVEL_MASK; flags |= SLAB_ATOMIC; } ctor_flags = SLAB_CTOR_CONSTRUCTOR; local_flags = (flags & SLAB_LEVEL_MASK); if (local_flags == SLAB_ATOMIC) { /* Not allowed to sleep. Need to tell a constructor about * this - it might need to know... */ ctor_flags |= SLAB_CTOR_ATOMIC; } /* About to mess with non-constant members - lock. */ spin_lock_irqsave(&cachep->c_spinlock, save_flags); /* Get colour for the slab, and cal the next value. */ if (!(offset = cachep->c_colour_next--)) cachep->c_colour_next = cachep->c_colour; offset *= cachep->c_align; cachep->c_dflags = SLAB_CFLGS_GROWN; cachep->c_growing++; re_try: spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); /* A series of memory allocations for a new slab. * Neither the cache-chain semaphore, or cache-lock, are * held, but the incrementing c_growing prevents this * this cache from being reaped or shrunk. * Note: The cache could be selected in for reaping in * kmem_cache_reap(), but when the final test is made the * growing value will be seen. */ /* Get mem for the objs. */ if (!(objp = kmem_getpages(cachep, flags, &dma))) goto failed; /* Get slab management. */ if (!(slabp = kmem_cache_slabmgmt(cachep, objp+offset, local_flags))) goto opps1; if (dma) slabp->s_dma = 1; if (SLAB_BUFCTL(cachep->c_flags)) { slabp->s_index = kmem_cache_alloc(cachep->c_index_cachep, local_flags); if (!slabp->s_index) goto opps2; } /* Nasty!!!!!! I hope this is OK. */ dma = 1 << cachep->c_gfporder; page = &mem_map[MAP_NR(objp)]; do { SLAB_SET_PAGE_CACHE(page, cachep); SLAB_SET_PAGE_SLAB(page, slabp); PageSetSlab(page); page++; } while (--dma); slabp->s_offset = offset; /* It will fit... */ objp += offset; /* Address of first object. */ slabp->s_mem = objp; /* For on-slab bufctls, c_offset is the distance between the start of * an obj and its related bufctl. For off-slab bufctls, c_offset is * the distance between objs in the slab. */ kmem_cache_init_objs(cachep, slabp, objp, ctor_flags); spin_lock_irq(&cachep->c_spinlock); /* Make slab active. */ slabp->s_magic = SLAB_MAGIC_ALLOC; kmem_slab_link_end(cachep, slabp); if (cachep->c_freep == kmem_slab_end(cachep)) cachep->c_freep = slabp; SLAB_STATS_INC_GROWN(cachep); cachep->c_failures = 0; cachep->c_growing--; spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); return 1; opps2: if (SLAB_OFF_SLAB(cachep->c_flags)) kmem_cache_free(cache_slabp, slabp); opps1: kmem_freepages(cachep, objp); failed: spin_lock_irq(&cachep->c_spinlock); if (local_flags != SLAB_ATOMIC && cachep->c_gfporder) { /* For large order (>0) slabs, we try again. * Needed because the gfp() functions are not good at giving * out contiguous pages unless pushed (but do not push too hard). */ if (cachep->c_failures++ < 4 && cachep->c_freep == kmem_slab_end(cachep)) goto re_try; cachep->c_failures = 1; /* Memory is low, don't try as hard next time. */ } cachep->c_growing--; spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); return 0; } static void kmem_report_alloc_err(const char *str, kmem_cache_t * cachep) { if (cachep) SLAB_STATS_INC_ERR(cachep); /* this is atomic */ printk(KERN_ERR "kmem_alloc: %s (name=%s)\n", str, cachep ? cachep->c_name : "unknown"); } static void kmem_report_free_err(const char *str, const void *objp, kmem_cache_t * cachep) { if (cachep) SLAB_STATS_INC_ERR(cachep); printk(KERN_ERR "kmem_free: %s (objp=%p, name=%s)\n", str, objp, cachep ? cachep->c_name : "unknown"); } /* Search for a slab whose objs are suitable for DMA. * Note: since testing the first free slab (in __kmem_cache_alloc()), * ints must not have been enabled, or the cache-lock released! */ static inline kmem_slab_t * kmem_cache_search_dma(kmem_cache_t * cachep) { kmem_slab_t *slabp = cachep->c_freep->s_nextp; for (; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) { if (!(slabp->s_dma)) continue; kmem_slab_unlink(slabp); kmem_slab_link_free(cachep, slabp); cachep->c_freep = slabp; break; } return slabp; } #if SLAB_DEBUG_SUPPORT /* Perform extra freeing checks. Currently, this check is only for caches * that use bufctl structures within the slab. Those which use bufctl's * from the internal cache have a reasonable check when the address is * searched for. Called with the cache-lock held. */ static void * kmem_extra_free_checks(kmem_cache_t * cachep, kmem_bufctl_t *search_bufp, kmem_bufctl_t *bufp, void * objp) { if (SLAB_BUFCTL(cachep->c_flags)) return objp; /* Check slab's freelist to see if this obj is there. */ for (; search_bufp; search_bufp = search_bufp->buf_nextp) { if (search_bufp != bufp) continue; return NULL; } return objp; } #endif /* SLAB_DEBUG_SUPPORT */ /* Called with cache lock held. */ static inline void kmem_cache_full_free(kmem_cache_t *cachep, kmem_slab_t *slabp) { if (slabp->s_nextp->s_inuse) { /* Not at correct position. */ if (cachep->c_freep == slabp) cachep->c_freep = slabp->s_nextp; kmem_slab_unlink(slabp); kmem_slab_link_end(cachep, slabp); } } /* Called with cache lock held. */ static inline void kmem_cache_one_free(kmem_cache_t *cachep, kmem_slab_t *slabp) { if (slabp->s_nextp->s_inuse == cachep->c_num) { kmem_slab_unlink(slabp); kmem_slab_link_free(cachep, slabp); } cachep->c_freep = slabp; } /* Returns a ptr to an obj in the given cache. */ static inline void * __kmem_cache_alloc(kmem_cache_t *cachep, int flags) { kmem_slab_t *slabp; kmem_bufctl_t *bufp; void *objp; unsigned long save_flags; /* Sanity check. */ if (!cachep) goto nul_ptr; spin_lock_irqsave(&cachep->c_spinlock, save_flags); try_again: /* Get slab alloc is to come from. */ slabp = cachep->c_freep; /* Magic is a sanity check _and_ says if we need a new slab. */ if (slabp->s_magic != SLAB_MAGIC_ALLOC) goto alloc_new_slab; /* DMA requests are 'rare' - keep out of the critical path. */ if (flags & SLAB_DMA) goto search_dma; try_again_dma: SLAB_STATS_INC_ALLOCED(cachep); SLAB_STATS_INC_ACTIVE(cachep); SLAB_STATS_SET_HIGH(cachep); slabp->s_inuse++; bufp = slabp->s_freep; slabp->s_freep = bufp->buf_nextp; if (slabp->s_freep) { ret_obj: if (!slabp->s_index) { bufp->buf_slabp = slabp; objp = ((void*)bufp) - cachep->c_offset; finished: /* The lock is not needed by the red-zone or poison ops, and the * obj has been removed from the slab. Should be safe to drop * the lock here. */ spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); #if SLAB_DEBUG_SUPPORT if (cachep->c_flags & SLAB_RED_ZONE) goto red_zone; ret_red: if ((cachep->c_flags & SLAB_POISON) && kmem_check_poison_obj(cachep, objp)) kmem_report_alloc_err("Bad poison", cachep); #endif /* SLAB_DEBUG_SUPPORT */ return objp; } /* Update index ptr. */ objp = ((bufp-slabp->s_index)*cachep->c_offset) + slabp->s_mem; bufp->buf_objp = objp; goto finished; } cachep->c_freep = slabp->s_nextp; goto ret_obj; #if SLAB_DEBUG_SUPPORT red_zone: /* Set alloc red-zone, and check old one. */ if (xchg((unsigned long *)objp, SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1) kmem_report_alloc_err("Bad front redzone", cachep); objp += BYTES_PER_WORD; if (xchg((unsigned long *)(objp+cachep->c_org_size), SLAB_RED_MAGIC2) != SLAB_RED_MAGIC1) kmem_report_alloc_err("Bad rear redzone", cachep); goto ret_red; #endif /* SLAB_DEBUG_SUPPORT */ search_dma: if (slabp->s_dma || (slabp = kmem_cache_search_dma(cachep))!=kmem_slab_end(cachep)) goto try_again_dma; alloc_new_slab: /* Either out of slabs, or magic number corruption. */ if (slabp == kmem_slab_end(cachep)) { /* Need a new slab. Release the lock before calling kmem_cache_grow(). * This allows objs to be released back into the cache while growing. */ spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); if (kmem_cache_grow(cachep, flags)) { /* Someone may have stolen our objs. Doesn't matter, we'll * just come back here again. */ spin_lock_irq(&cachep->c_spinlock); goto try_again; } /* Couldn't grow, but some objs may have been freed. */ spin_lock_irq(&cachep->c_spinlock); if (cachep->c_freep != kmem_slab_end(cachep)) goto try_again; } else { /* Very serious error - maybe panic() here? */ kmem_report_alloc_err("Bad slab magic (corrupt)", cachep); } spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); err_exit: return NULL; nul_ptr: kmem_report_alloc_err("NULL ptr", NULL); goto err_exit; } /* Release an obj back to its cache. If the obj has a constructed state, * it should be in this state _before_ it is released. */ static inline void __kmem_cache_free(kmem_cache_t *cachep, const void *objp) { kmem_slab_t *slabp; kmem_bufctl_t *bufp; unsigned long save_flags; /* Basic sanity checks. */ if (!cachep || !objp) goto null_addr; #if SLAB_DEBUG_SUPPORT /* A verify func is called without the cache-lock held. */ if (cachep->c_flags & SLAB_DEBUG_INITIAL) goto init_state_check; finished_initial: if (cachep->c_flags & SLAB_RED_ZONE) goto red_zone; return_red: #endif /* SLAB_DEBUG_SUPPORT */ spin_lock_irqsave(&cachep->c_spinlock, save_flags); if (SLAB_BUFCTL(cachep->c_flags)) goto bufctl; bufp = (kmem_bufctl_t *)(objp+cachep->c_offset); /* Get slab for the object. */ #if 0 /* _NASTY_IF/ELSE_, but avoids a 'distant' memory ref for some objects. * Is this worth while? XXX */ if (cachep->c_flags & SLAB_HIGH_PACK) slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(bufp)]); else #endif slabp = bufp->buf_slabp; check_magic: if (slabp->s_magic != SLAB_MAGIC_ALLOC) /* Sanity check. */ goto bad_slab; #if SLAB_DEBUG_SUPPORT if (cachep->c_flags & SLAB_DEBUG_FREE) goto extra_checks; passed_extra: #endif /* SLAB_DEBUG_SUPPORT */ if (slabp->s_inuse) { /* Sanity check. */ SLAB_STATS_DEC_ACTIVE(cachep); slabp->s_inuse--; bufp->buf_nextp = slabp->s_freep; slabp->s_freep = bufp; if (bufp->buf_nextp) { if (slabp->s_inuse) { /* (hopefully) The most common case. */ finished: #if SLAB_DEBUG_SUPPORT if (cachep->c_flags & SLAB_POISON) { if (cachep->c_flags & SLAB_RED_ZONE) objp += BYTES_PER_WORD; kmem_poison_obj(cachep, objp); } #endif /* SLAB_DEBUG_SUPPORT */ spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); return; } kmem_cache_full_free(cachep, slabp); goto finished; } kmem_cache_one_free(cachep, slabp); goto finished; } /* Don't add to freelist. */ spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); kmem_report_free_err("free with no active objs", objp, cachep); return; bufctl: /* No 'extra' checks are performed for objs stored this way, finding * the obj is check enough. */ slabp = SLAB_GET_PAGE_SLAB(&mem_map[MAP_NR(objp)]); bufp = &slabp->s_index[(objp - slabp->s_mem)/cachep->c_offset]; if (bufp->buf_objp == objp) goto check_magic; spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); kmem_report_free_err("Either bad obj addr or double free", objp, cachep); return; #if SLAB_DEBUG_SUPPORT init_state_check: /* Need to call the slab's constructor so the * caller can perform a verify of its state (debugging). */ cachep->c_ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); goto finished_initial; extra_checks: if (!kmem_extra_free_checks(cachep, slabp->s_freep, bufp, objp)) { spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); kmem_report_free_err("Double free detected during checks", objp, cachep); return; } goto passed_extra; red_zone: /* We do not hold the cache-lock while checking the red-zone. */ objp -= BYTES_PER_WORD; if (xchg((unsigned long *)objp, SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) { /* Either write before start of obj, or a double free. */ kmem_report_free_err("Bad front redzone", objp, cachep); } if (xchg((unsigned long *)(objp+cachep->c_org_size+BYTES_PER_WORD), SLAB_RED_MAGIC1) != SLAB_RED_MAGIC2) { /* Either write past end of obj, or a double free. */ kmem_report_free_err("Bad rear redzone", objp, cachep); } goto return_red; #endif /* SLAB_DEBUG_SUPPORT */ bad_slab: /* Slab doesn't contain the correct magic num. */ if (slabp->s_magic == SLAB_MAGIC_DESTROYED) { /* Magic num says this is a destroyed slab. */ kmem_report_free_err("free from inactive slab", objp, cachep); } else kmem_report_free_err("Bad obj addr", objp, cachep); spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); #if 1 /* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */ *(int *) 0 = 0; #endif return; null_addr: kmem_report_free_err("NULL ptr", objp, cachep); return; } void * kmem_cache_alloc(kmem_cache_t *cachep, int flags) { return __kmem_cache_alloc(cachep, flags); } void kmem_cache_free(kmem_cache_t *cachep, void *objp) { __kmem_cache_free(cachep, objp); } void * kmalloc(size_t size, int flags) { cache_sizes_t *csizep = cache_sizes; for (; csizep->cs_size; csizep++) { if (size > csizep->cs_size) continue; return __kmem_cache_alloc(csizep->cs_cachep, flags); } printk(KERN_ERR "kmalloc: Size (%lu) too large\n", (unsigned long) size); return NULL; } void kfree(const void *objp) { struct page *page; int nr; if (!objp) goto null_ptr; nr = MAP_NR(objp); if (nr >= max_mapnr) goto bad_ptr; /* Assume we own the page structure - hence no locking. * If someone is misbehaving (for example, calling us with a bad * address), then access to the page structure can race with the * kmem_slab_destroy() code. Need to add a spin_lock to each page * structure, which would be useful in threading the gfp() functions.... */ page = &mem_map[nr]; if (PageSlab(page)) { kmem_cache_t *cachep; /* Here, we again assume the obj address is good. * If it isn't, and happens to map onto another * general cache page which has no active objs, then * we race. */ cachep = SLAB_GET_PAGE_CACHE(page); if (cachep && (cachep->c_flags & SLAB_CFLGS_GENERAL)) { __kmem_cache_free(cachep, objp); return; } } bad_ptr: printk(KERN_ERR "kfree: Bad obj %p\n", objp); #if 1 /* FORCE A KERNEL DUMP WHEN THIS HAPPENS. SPEAK IN ALL CAPS. GET THE CALL CHAIN. */ *(int *) 0 = 0; #endif null_ptr: return; } void kfree_s(const void *objp, size_t size) { struct page *page; int nr; if (!objp) goto null_ptr; nr = MAP_NR(objp); if (nr >= max_mapnr) goto null_ptr; /* See comment in kfree() */ page = &mem_map[nr]; if (PageSlab(page)) { kmem_cache_t *cachep; /* See comment in kfree() */ cachep = SLAB_GET_PAGE_CACHE(page); if (cachep && cachep->c_flags & SLAB_CFLGS_GENERAL) { if (size <= cachep->c_org_size) { /* XXX better check */ __kmem_cache_free(cachep, objp); return; } } } null_ptr: printk(KERN_ERR "kfree_s: Bad obj %p\n", objp); return; } kmem_cache_t * kmem_find_general_cachep(size_t size) { cache_sizes_t *csizep = cache_sizes; /* This function could be moved to the header file, and * made inline so consumers can quickly determine what * cache pointer they require. */ for (; csizep->cs_size; csizep++) { if (size > csizep->cs_size) continue; break; } return csizep->cs_cachep; } /* Called from try_to_free_page(). * This function _cannot_ be called within a int, but it * can be interrupted. */ void kmem_cache_reap(int gfp_mask) { kmem_slab_t *slabp; kmem_cache_t *searchp; kmem_cache_t *best_cachep; unsigned int scan; unsigned int reap_level; if (in_interrupt()) { printk("kmem_cache_reap() called within int!\n"); return; } /* We really need a test semaphore op so we can avoid sleeping when * !wait is true. */ down(&cache_chain_sem); scan = 10; reap_level = 0; best_cachep = NULL; searchp = clock_searchp; do { unsigned int full_free; unsigned int dma_flag; /* It's safe to test this without holding the cache-lock. */ if (searchp->c_flags & SLAB_NO_REAP) goto next; spin_lock_irq(&searchp->c_spinlock); if (searchp->c_growing) goto next_unlock; if (searchp->c_dflags & SLAB_CFLGS_GROWN) { searchp->c_dflags &= ~SLAB_CFLGS_GROWN; goto next_unlock; } /* Sanity check for corruption of static values. */ if (searchp->c_inuse || searchp->c_magic != SLAB_C_MAGIC) { spin_unlock_irq(&searchp->c_spinlock); printk(KERN_ERR "kmem_reap: Corrupted cache struct for %s\n", searchp->c_name); goto next; } dma_flag = 0; full_free = 0; /* Count the fully free slabs. There should not be not many, * since we are holding the cache lock. */ slabp = searchp->c_lastp; while (!slabp->s_inuse && slabp != kmem_slab_end(searchp)) { slabp = slabp->s_prevp; full_free++; if (slabp->s_dma) dma_flag++; } spin_unlock_irq(&searchp->c_spinlock); if ((gfp_mask & GFP_DMA) && !dma_flag) goto next; if (full_free) { if (full_free >= 10) { best_cachep = searchp; break; } /* Try to avoid slabs with constructors and/or * more than one page per slab (as it can be difficult * to get high orders from gfp()). */ if (full_free >= reap_level) { reap_level = full_free; best_cachep = searchp; } } goto next; next_unlock: spin_unlock_irq(&searchp->c_spinlock); next: searchp = searchp->c_nextp; } while (--scan && searchp != clock_searchp); clock_searchp = searchp; up(&cache_chain_sem); if (!best_cachep) { /* couldn't find anything to reap */ return; } spin_lock_irq(&best_cachep->c_spinlock); while (!best_cachep->c_growing && !(slabp = best_cachep->c_lastp)->s_inuse && slabp != kmem_slab_end(best_cachep)) { if (gfp_mask & GFP_DMA) { do { if (slabp->s_dma) goto good_dma; slabp = slabp->s_prevp; } while (!slabp->s_inuse && slabp != kmem_slab_end(best_cachep)); /* Didn't found a DMA slab (there was a free one - * must have been become active). */ goto dma_fail; good_dma: } if (slabp == best_cachep->c_freep) best_cachep->c_freep = slabp->s_nextp; kmem_slab_unlink(slabp); SLAB_STATS_INC_REAPED(best_cachep); /* Safe to drop the lock. The slab is no longer linked to the * cache. */ spin_unlock_irq(&best_cachep->c_spinlock); kmem_slab_destroy(best_cachep, slabp); spin_lock_irq(&best_cachep->c_spinlock); } dma_fail: spin_unlock_irq(&best_cachep->c_spinlock); return; } #if SLAB_SELFTEST /* A few v. simple tests */ static void kmem_self_test(void) { kmem_cache_t *test_cachep; printk(KERN_INFO "kmem_test() - start\n"); test_cachep = kmem_cache_create("test-cachep", 16, 0, SLAB_RED_ZONE|SLAB_POISON, NULL, NULL); if (test_cachep) { char *objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL); if (objp) { /* Write in front and past end, red-zone test. */ *(objp-1) = 1; *(objp+16) = 1; kmem_cache_free(test_cachep, objp); /* Mess up poisoning. */ *objp = 10; objp = kmem_cache_alloc(test_cachep, SLAB_KERNEL); kmem_cache_free(test_cachep, objp); /* Mess up poisoning (again). */ *objp = 10; kmem_cache_shrink(test_cachep); } } printk(KERN_INFO "kmem_test() - finished\n"); } #endif /* SLAB_SELFTEST */ #if defined(CONFIG_PROC_FS) /* /proc/slabinfo * cache-name num-active-objs total-objs num-active-slabs total-slabs num-pages-per-slab */ int get_slabinfo(char *buf) { kmem_cache_t *cachep; kmem_slab_t *slabp; unsigned long active_objs; unsigned long save_flags; unsigned long num_slabs; unsigned long num_objs; int len=0; #if SLAB_STATS unsigned long active_slabs; #endif /* SLAB_STATS */ __save_flags(save_flags); /* Output format version, so at least we can change it without _too_ * many complaints. */ #if SLAB_STATS len = sprintf(buf, "slabinfo - version: 1.0 (statistics)\n"); #else len = sprintf(buf, "slabinfo - version: 1.0\n"); #endif /* SLAB_STATS */ down(&cache_chain_sem); cachep = &cache_cache; do { #if SLAB_STATS active_slabs = 0; #endif /* SLAB_STATS */ num_slabs = active_objs = 0; spin_lock_irq(&cachep->c_spinlock); for (slabp = cachep->c_firstp; slabp != kmem_slab_end(cachep); slabp = slabp->s_nextp) { active_objs += slabp->s_inuse; num_slabs++; #if SLAB_STATS if (slabp->s_inuse) active_slabs++; #endif /* SLAB_STATS */ } num_objs = cachep->c_num*num_slabs; #if SLAB_STATS { unsigned long errors; unsigned long high = cachep->c_high_mark; unsigned long grown = cachep->c_grown; unsigned long reaped = cachep->c_reaped; unsigned long allocs = cachep->c_num_allocations; errors = (unsigned long) atomic_read(&cachep->c_errors); spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); len += sprintf(buf+len, "%-16s %6lu %6lu %4lu %4lu %4lu %6lu %7lu %5lu %4lu %4lu\n", cachep->c_name, active_objs, num_objs, active_slabs, num_slabs, (1<<cachep->c_gfporder)*num_slabs, high, allocs, grown, reaped, errors); } #else spin_unlock_irqrestore(&cachep->c_spinlock, save_flags); len += sprintf(buf+len, "%-17s %6lu %6lu\n", cachep->c_name, active_objs, num_objs); #endif /* SLAB_STATS */ } while ((cachep = cachep->c_nextp) != &cache_cache); up(&cache_chain_sem); return len; } #endif /* CONFIG_PROC_FS */ |