Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Implementation of the Transmission Control Protocol(TCP).
 *
 * Version:	$Id: tcp_output.c,v 1.43 1997/04/27 19:24:43 schenk Exp $
 *
 * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche, <flla@stud.uni-sb.de>
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Jorge Cwik, <jorge@laser.satlink.net>
 */

/*
 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
 *				:	Fragmentation on mtu decrease
 *				:	Segment collapse on retransmit
 *				:	AF independence
 *
 *		Linus Torvalds	:	send_delayed_ack
 *		David S. Miller	:	Charge memory using the right skb
 *					during syn/ack processing.
 *
 */

#include <net/tcp.h>

extern int sysctl_tcp_sack;
extern int sysctl_tcp_tsack;
extern int sysctl_tcp_timestamps;
extern int sysctl_tcp_window_scaling;

/* Get rid of any delayed acks, we sent one already.. */
static __inline__ void clear_delayed_acks(struct sock * sk)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	tp->delayed_acks = 0;
	sk->ack_backlog = 0;
	tcp_clear_xmit_timer(sk, TIME_DACK);
}

static __inline__ void update_send_head(struct sock *sk)
{
	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
	
	tp->send_head = tp->send_head->next;
	if (tp->send_head == (struct sk_buff *) &sk->write_queue)
		tp->send_head = NULL;
}

static __inline__ int tcp_snd_test(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int nagle_check = 1;
	int len;

	/*	RFC 1122 - section 4.2.3.4
	 *
	 *	We must queue if
	 *
	 *	a) The right edge of this frame exceeds the window
	 *	b) There are packets in flight and we have a small segment
	 *	   [SWS avoidance and Nagle algorithm]
	 *	   (part of SWS is done on packetization)
	 *	c) We are retransmiting [Nagle]
	 *	d) We have too many packets 'in flight'
	 */
	len = skb->end_seq - skb->seq;
	if (!sk->nonagle && len < (sk->mss >> 1) && tp->packets_out)
		nagle_check = 0;

	return (nagle_check && tp->packets_out < tp->snd_cwnd &&
		!after(skb->end_seq, tp->snd_una + tp->snd_wnd) &&
		tp->retransmits == 0);
}

static __inline__ void tcp_build_options(__u32 *ptr, struct tcp_opt *tp)
{
	/* FIXME: We will still need to do SACK here. */
	if (tp->tstamp_ok) {
		*ptr++ = ntohl((TCPOPT_NOP << 24)
			| (TCPOPT_NOP << 16)
                        | (TCPOPT_TIMESTAMP << 8)
			| TCPOLEN_TIMESTAMP);
		/* WARNING: If HZ is ever larger than 1000 on some system,
	 	 * then we will be violating RFC1323 here because our timestamps
	 	 * will be moving too fast.
		 * FIXME: code TCP so it uses at most ~ 1000 ticks a second?
		 * (I notice alpha is 1024 ticks now). -- erics
	 	 */
		*ptr++ = htonl(jiffies);
		*ptr = htonl(tp->ts_recent);
	}
}

static __inline__ void tcp_update_options(__u32 *ptr, struct tcp_opt *tp)
{
	/* FIXME: We will still need to do SACK here. */
	if (tp->tstamp_ok) {
		*++ptr = htonl(jiffies);
		*++ptr = htonl(tp->ts_recent);
	}
}

/*
 *	This is the main buffer sending routine. We queue the buffer
 *	having checked it is sane seeming.
 */
 
int tcp_send_skb(struct sock *sk, struct sk_buff *skb)
{
	struct tcphdr * th = skb->h.th;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int size;

	/* Length of packet (not counting length of pre-tcp headers). */
	size = skb->len - ((unsigned char *) th - skb->data);

	/* Sanity check it.. */
	if (size < sizeof(struct tcphdr) || size > skb->len) {
		printk(KERN_DEBUG "tcp_send_skb: bad skb "
		       "(skb = %p, data = %p, th = %p, len = %u)\n",
		       skb, skb->data, th, skb->len);
		kfree_skb(skb, FREE_WRITE);
		return 0;
	}

	/* If we have queued a header size packet.. (these crash a few
	 * tcp stacks if ack is not set)
	 * FIXME: What is the equivalent below when we have options?
	 */
	if (size == sizeof(struct tcphdr)) {
		/* If it's got a syn or fin discard. */
		if(!th->syn && !th->fin) {
			printk(KERN_DEBUG "tcp_send_skb: attempt to queue a bogon.\n");
			kfree_skb(skb,FREE_WRITE);
			return 0;
		}
	}

	/* Actual processing. */
	skb->seq = ntohl(th->seq);
	skb->end_seq = skb->seq + size - 4*th->doff;

	skb_queue_tail(&sk->write_queue, skb);

	if (tp->send_head == NULL && tcp_snd_test(sk, skb)) {
		struct sk_buff * buff;

		/* This is going straight out. */
		tp->last_ack_sent = th->ack_seq = htonl(tp->rcv_nxt);
		th->window = htons(tcp_select_window(sk));
		tcp_update_options((__u32 *)(th+1),tp);

		tp->af_specific->send_check(sk, th, size, skb);

		buff = skb_clone(skb, GFP_KERNEL);
		if (buff == NULL)
			goto queue;
		
		clear_delayed_acks(sk);
		skb_set_owner_w(buff, sk);

		tp->snd_nxt = skb->end_seq;
		tp->packets_out++;

		skb->when = jiffies;

		tcp_statistics.TcpOutSegs++;
		tp->af_specific->queue_xmit(buff);

		if (!tcp_timer_is_set(sk, TIME_RETRANS))
			tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);

		return 0;
	}

queue:
	/* Remember where we must start sending. */
	if (tp->send_head == NULL)
		tp->send_head = skb;
	if (tp->packets_out == 0 && !tp->pending) {
		tp->pending = TIME_PROBE0;
		tcp_reset_xmit_timer(sk, TIME_PROBE0, tp->rto);
	}
	return 0;
}

/*
 *	Function to create two new tcp segments.
 *	Shrinks the given segment to the specified size and appends a new
 *	segment with the rest of the packet to the list.
 *	This won't be called frenquently, I hope... 
 */

static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	struct sk_buff *buff;
	struct tcphdr *th, *nth;	
	int nsize;
	int tmp;

	th = skb->h.th;

	/* Size of new segment. */
	nsize = skb->tail - ((unsigned char *)(th)+tp->tcp_header_len) - len;
	if (nsize <= 0) {
		printk(KERN_DEBUG "tcp_fragment: bug size <= 0\n");
		return -1;
	}

	/* Get a new skb... force flag on. */
	buff = sock_wmalloc(sk, nsize + 128 + sk->prot->max_header + 15, 1, 
			    GFP_ATOMIC);
	if (buff == NULL)
		return -1;

	/* Put headers on the new packet. */
	tmp = tp->af_specific->build_net_header(sk, buff);
	if (tmp < 0) {
		kfree_skb(buff, FREE_WRITE);
		return -1;
	}
		
	/* Move the TCP header over. */
	nth = (struct tcphdr *) skb_put(buff, tp->tcp_header_len);
	buff->h.th = nth;
	memcpy(nth, th, tp->tcp_header_len);

	/* FIXME: Make sure this gets tcp options right. */
	
	/* Correct the new header. */
	buff->seq = skb->seq + len;
	buff->end_seq = skb->end_seq;
	nth->seq = htonl(buff->seq);
	nth->check = 0;
	nth->doff  = th->doff;
	
	/* urg data is always an headache */
	if (th->urg) {
		if (th->urg_ptr > len) {
			th->urg = 0;
			nth->urg_ptr -= len;
		} else {
			nth->urg = 0;
		}
	}

	/* Copy data tail to our new buffer. */
	buff->csum = csum_partial_copy(((u8 *)(th)+tp->tcp_header_len) + len,
				       skb_put(buff, nsize),
				       nsize, 0);

	skb->end_seq -= nsize;
	skb_trim(skb, skb->len - nsize);

	/* Remember to checksum this packet afterwards. */
	th->check = 0;
	skb->csum = csum_partial((u8*)(th) + tp->tcp_header_len, skb->tail - ((u8 *) (th)+tp->tcp_header_len),
				 0);

	skb_append(skb, buff);

	return 0;
}

static void tcp_wrxmit_prob(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	/* This is acked data. We can discard it. This cannot currently occur. */
	tp->retransmits = 0;

	printk(KERN_DEBUG "tcp_write_xmit: bug skb in write queue\n");

	update_send_head(sk);

	skb_unlink(skb);	
	kfree_skb(skb, FREE_WRITE);

	if (!sk->dead)
		sk->write_space(sk);
}

static int tcp_wrxmit_frag(struct sock *sk, struct sk_buff *skb, int size)
{
	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
	
	SOCK_DEBUG(sk, "tcp_write_xmit: frag needed size=%d mss=%d\n",
		   size, sk->mss);

	if (tcp_fragment(sk, skb, sk->mss)) {
		/* !tcp_frament Failed! */
		tp->send_head = skb;
		tp->packets_out--;
		return -1;
	} else {
		/* If tcp_fragment succeded then
		 * the send head is the resulting
		 * fragment
		 */
		tp->send_head = skb->next;
	}
	return 0;
}

/*
 * 	This routine writes packets to the network.
 *	It advances the send_head.
 *	This happens as incoming acks open up the remote window for us.
 */
 
void tcp_write_xmit(struct sock *sk)
{
	struct sk_buff *skb;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	u16 rcv_wnd;
	int sent_pkts = 0;

	/* The bytes will have to remain here. In time closedown will
	 * empty the write queue and all will be happy.
	 */
	if(sk->zapped)
		return;

	/*	Anything on the transmit queue that fits the window can
	 *	be added providing we are:
	 *
	 *	a) following SWS avoidance [and Nagle algorithm]
	 *	b) not exceeding our congestion window.
	 *	c) not retransmiting [Nagle]
	 */
	rcv_wnd = htons(tcp_select_window(sk));
	while((skb = tp->send_head) && tcp_snd_test(sk, skb)) {
		struct tcphdr *th;
		struct sk_buff *buff;
		int size;

		/* See if we really need to send the packet. (debugging code) */
		if (!after(skb->end_seq, tp->snd_una)) {
			tcp_wrxmit_prob(sk, skb);
			continue;
		}

		/*	Put in the ack seq and window at this point rather
		 *	than earlier, in order to keep them monotonic.
		 *	We really want to avoid taking back window allocations.
		 *	That's legal, but RFC1122 says it's frowned on.
		 *	Ack and window will in general have changed since
		 *	this packet was put on the write queue.
		 */
		th = skb->h.th;
		size = skb->len - (((unsigned char *) th) - skb->data);
		if (size - (th->doff << 2) > sk->mss) {
			if (tcp_wrxmit_frag(sk, skb, size))
				break;
		}

		tp->last_ack_sent = th->ack_seq = htonl(tp->rcv_nxt);
		th->window = rcv_wnd;
		tcp_update_options((__u32 *)(th+1),tp);

		tp->af_specific->send_check(sk, th, size, skb);

#ifdef TCP_DEBUG
		if (before(skb->end_seq, tp->snd_nxt))
			printk(KERN_DEBUG "tcp_write_xmit:"
			       " sending already sent seq\n");
#endif

		buff = skb_clone(skb, GFP_ATOMIC);
		if (buff == NULL)
			break;

		/* Advance the send_head.  This one is going out. */
		update_send_head(sk);
		clear_delayed_acks(sk);

		tp->packets_out++;
		skb_set_owner_w(buff, sk);

		tp->snd_nxt = skb->end_seq;

		skb->when = jiffies;

		sent_pkts = 1;
		tp->af_specific->queue_xmit(buff);
	}

	if (sent_pkts && !tcp_timer_is_set(sk, TIME_RETRANS))
		tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);
}



/* This function returns the amount that we can raise the
 * usable window based on the following constraints
 *  
 * 1. The window can never be shrunk once it is offered (RFC 793)
 * 2. We limit memory per socket
 *
 * RFC 1122:
 * "the suggested [SWS] avoidance algoritm for the receiver is to keep
 *  RECV.NEXT + RCV.WIN fixed until:
 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
 *
 * i.e. don't raise the right edge of the window until you can raise
 * it at least MSS bytes.
 *
 * Unfortunately, the recomended algorithm breaks header prediction,
 * since header prediction assumes th->window stays fixed.
 *
 * Strictly speaking, keeping th->window fixed violates the receiver
 * side SWS prevention criteria. The problem is that under this rule
 * a stream of single byte packets will cause the right side of the
 * window to always advance by a single byte.
 * 
 * Of course, if the sender implements sender side SWS prevention
 * then this will not be a problem.
 * 
 * BSD seems to make the following compromise:
 * 
 *	If the free space is less than the 1/4 of the maximum
 *	space available and the free space is less than 1/2 mss,
 *	then set the window to 0.
 *	Otherwise, just prevent the window from shrinking
 *	and from being larger than the largest representable value.
 *
 * This prevents incremental opening of the window in the regime
 * where TCP is limited by the speed of the reader side taking
 * data out of the TCP receive queue. It does nothing about
 * those cases where the window is constrained on the sender side
 * because the pipeline is full.
 *
 * BSD also seems to "accidentally" limit itself to windows that are a
 * multiple of MSS, at least until the free space gets quite small.
 * This would appear to be a side effect of the mbuf implementation.
 * Combining these two algorithms results in the observed behavior
 * of having a fixed window size at almost all times.
 *
 * Below we obtain similar behavior by forcing the offered window to
 * a multiple of the mss when it is feasible to do so.
 *
 * FIXME: In our current implementation the value returned by sock_rpsace(sk)
 * is the total space we have allocated to the socket to store skbuf's.
 * The current design assumes that up to half of that space will be
 * taken by headers, and the remaining space will be available for TCP data.
 * This should be accounted for correctly instead.
 */
unsigned short tcp_select_window(struct sock *sk)
{
	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
	int mss = sk->mss;
	long free_space = sock_rspace(sk)/2;
	long window, cur_win;

	if (tp->window_clamp) {
		free_space = min(tp->window_clamp, free_space);
		mss = min(tp->window_clamp, mss);
	} else
		printk(KERN_DEBUG "Clamp failure. Water leaking.\n");

	if (mss < 1) {
		mss = 1;
		printk(KERN_DEBUG "tcp_select_window: mss fell to 0.\n");
	}
	
	/* compute the actual window i.e.
	 * old_window - received_bytes_on_that_win
	 */
	cur_win = tp->rcv_wnd - (tp->rcv_nxt - tp->rcv_wup);
	window  = tp->rcv_wnd;

	if (cur_win < 0) {
		cur_win = 0;
		printk(KERN_DEBUG "TSW: win < 0 w=%d 1=%u 2=%u\n",
		       tp->rcv_wnd, tp->rcv_nxt, tp->rcv_wup);
	}

	if (free_space < sk->rcvbuf/4 && free_space < mss/2)
		window = 0;

	/* Get the largest window that is a nice multiple of mss.
	 * Window clamp already applied above.
	 * If our current window offering is within 1 mss of the
	 * free space we just keep it. This prevents the divide
	 * and multiply from happening most of the time.
	 * We also don't do any window rounding when the free space
	 * is too small.
	 */
	if (window < free_space - mss && free_space > mss)
		window = (free_space/mss)*mss;

	/* Never shrink the offered window */
	if (window < cur_win)
		window = cur_win;

	tp->rcv_wnd = window;
	tp->rcv_wup = tp->rcv_nxt;
	return window >> tp->rcv_wscale;	/* RFC1323 scaling applied */
}

#if 0
/* Old algorithm for window selection */
unsigned short tcp_select_window(struct sock *sk)
{
	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
	int mss = sk->mss;
	long free_space = sock_rspace(sk);
	long window, cur_win, usable;

	if (tp->window_clamp) {
		free_space = min(tp->window_clamp, free_space);
		mss = min(tp->window_clamp, mss);
	}
	
	/* compute the actual window i.e.
	 * old_window - received_bytes_on_that_win
	 */
	cur_win = tp->rcv_wnd - (tp->rcv_nxt - tp->rcv_wup);
	window  = tp->rcv_wnd;

	if (cur_win < 0) {
		cur_win = 0;
		printk(KERN_DEBUG "TSW: win < 0 w=%d 1=%u 2=%u\n",
		       tp->rcv_wnd, tp->rcv_nxt, tp->rcv_wup);
	}

	/* RFC 1122:
	 * "the suggested [SWS] avoidance algoritm for the receiver is to keep
	 *  RECV.NEXT + RCV.WIN fixed until:
	 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
	 *
	 * i.e. don't raise the right edge of the window until you can raise
	 * it at least MSS bytes.
	 */

	usable = free_space - cur_win;
	if (usable < 0)
		usable = 0;

	if (window < usable) {
		/*	Window is not blocking the sender
		 *	and we have enough free space for it
		 */
		if (cur_win > (sk->mss << 1))
			goto out;
	}
       	
	if (window >= usable) {
		/*	We are offering too much, cut it down... 
		 *	but don't shrink the window
		 */
		window = max(usable, cur_win);
	} else {
		while ((usable - window) >= mss)
			window += mss;
	}
out:
	tp->rcv_wnd = window;
	tp->rcv_wup = tp->rcv_nxt;
	return window;
}
#endif

static int tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	struct tcphdr *th1, *th2;
	int size1, size2, avail;
	struct sk_buff *buff = skb->next;

	th1 = skb->h.th;

	if (th1->urg)
		return -1;

	avail = skb_tailroom(skb);

	/* Size of TCP payload. */
	size1 = skb->tail - ((u8 *) (th1)+(th1->doff<<2));
	
	th2 = buff->h.th;
	size2 = buff->tail - ((u8 *) (th2)+(th2->doff<<2)); 

	if (size2 > avail || size1 + size2 > sk->mss )
		return -1;

	/* Ok.  We will be able to collapse the packet. */
	skb_unlink(buff);
	memcpy(skb_put(skb, size2), ((char *) th2) + (th2->doff << 2), size2);
	
	/* Update sizes on original skb, both TCP and IP. */
	skb->end_seq += size2;
	if (th2->urg) {
		th1->urg = 1;
		th1->urg_ptr = th2->urg_ptr + size1;
	}

	/* ... and off you go. */
	kfree_skb(buff, FREE_WRITE);
	tp->packets_out--;

	/* Header checksum will be set by the retransmit procedure
	 * after calling rebuild header.
	 */
	th1->check = 0;
	skb->csum = csum_partial((u8*)(th1)+(th1->doff<<2), size1 + size2, 0);
	return 0;
}


/*
 *	A socket has timed out on its send queue and wants to do a
 *	little retransmitting.
 *	retransmit_head can be different from the head of the write_queue
 *	if we are doing fast retransmit.
 */

void tcp_do_retransmit(struct sock *sk, int all)
{
	struct sk_buff * skb;
	int ct=0;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	if (tp->retrans_head == NULL)
		tp->retrans_head = skb_peek(&sk->write_queue);

	if (tp->retrans_head == tp->send_head)
		tp->retrans_head = NULL;
	
	while ((skb = tp->retrans_head) != NULL) {
		struct sk_buff *buff;
		struct tcphdr *th;
		int tcp_size;
		int size;

		/* In general it's OK just to use the old packet.  However we
		 * need to use the current ack and window fields.  Urg and
		 * urg_ptr could possibly stand to be updated as well, but we
		 * don't keep the necessary data.  That shouldn't be a problem,
		 * if the other end is doing the right thing.  Since we're
		 * changing the packet, we have to issue a new IP identifier.
		 */

		th = skb->h.th;

		tcp_size = skb->tail - ((unsigned char *)(th)+tp->tcp_header_len);

		if (tcp_size > sk->mss) {
			if (tcp_fragment(sk, skb, sk->mss)) {
				printk(KERN_DEBUG "tcp_fragment failed\n");
				return;
			}
			tp->packets_out++;
		}

		if (!th->syn &&
		    tcp_size < (sk->mss >> 1) &&
		    skb->next != tp->send_head &&
		    skb->next != (struct sk_buff *)&sk->write_queue)
			tcp_retrans_try_collapse(sk, skb);

		if (tp->af_specific->rebuild_header(sk, skb)) {
#ifdef TCP_DEBUG
			printk(KERN_DEBUG "tcp_do_rebuild_header failed\n");
#endif
			break;
		}

		SOCK_DEBUG(sk, "retransmit sending\n");

		/* Update ack and window. */
		tp->last_ack_sent = th->ack_seq = htonl(tp->rcv_nxt);
		th->window = ntohs(tcp_select_window(sk));
		tcp_update_options((__u32 *)(th+1),tp);

		size = skb->tail - (unsigned char *) th;
		tp->af_specific->send_check(sk, th, size, skb);

		skb->when = jiffies;

		buff = skb_clone(skb, GFP_ATOMIC);
		if (buff == NULL)
			break;

		skb_set_owner_w(buff, sk);

		clear_delayed_acks(sk);
		tp->af_specific->queue_xmit(buff);
		
		/* Count retransmissions. */
		ct++;
		sk->prot->retransmits++;
		tcp_statistics.TcpRetransSegs++;

		/* Only one retransmit requested. */
		if (!all)
			break;

		/* This should cut it off before we send too many packets. */
		if (ct >= tp->snd_cwnd)
			break;

		/* Advance the pointer. */
		tp->retrans_head = skb->next;
		if ((tp->retrans_head == tp->send_head) ||
		    (tp->retrans_head == (struct sk_buff *) &sk->write_queue))
			tp->retrans_head = NULL;
	}
}

/*
 *	Send a fin.
 */

void tcp_send_fin(struct sock *sk)
{
	struct tcphdr *th =(struct tcphdr *)&sk->dummy_th;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);	
	struct tcphdr *t1;
	struct sk_buff *buff;
	int tmp;
	
	buff = sock_wmalloc(sk, BASE_ACK_SIZE + tp->tcp_header_len, 1, GFP_KERNEL);
	if (buff == NULL) {
		/* FIXME: This is a disaster if it occurs. */
		printk(KERN_INFO "tcp_send_fin: Impossible malloc failure");
		return;
	}

	/* Administrivia. */
	buff->csum = 0;

	/* Put in the IP header and routing stuff. */
	tmp = tp->af_specific->build_net_header(sk, buff);
	if (tmp < 0) {
		int t;

  		/* FIXME: We must not throw this out. Eventually we must
                 * put a FIN into the queue, otherwise it never gets queued.
  		 */
		kfree_skb(buff, FREE_WRITE);
		sk->write_seq++;
		t = del_timer(&sk->timer);
		if (t)
			add_timer(&sk->timer);
		else
			tcp_reset_msl_timer(sk, TIME_CLOSE, TCP_TIMEWAIT_LEN);
		return;
	}
	
	/* We ought to check if the end of the queue is a buffer and
	 * if so simply add the fin to that buffer, not send it ahead.
	 */
	t1 =(struct tcphdr *)skb_put(buff,tp->tcp_header_len);
	buff->h.th =  t1;
	tcp_build_options((__u32 *)(t1+1),tp);

	memcpy(t1, th, sizeof(*t1));
	buff->seq = sk->write_seq;
	sk->write_seq++;
	buff->end_seq = sk->write_seq;
	t1->seq = htonl(buff->seq);
	t1->ack_seq = htonl(tp->rcv_nxt);
	t1->window = htons(tcp_select_window(sk));
	t1->fin = 1;

	tp->af_specific->send_check(sk, t1, tp->tcp_header_len, buff);

	/* The fin can only be transmited after the data. */
	skb_queue_tail(&sk->write_queue, buff);
 	if (tp->send_head == NULL) {
		struct sk_buff *skb1;

		tp->packets_out++;
		tp->snd_nxt = sk->write_seq;
		buff->when = jiffies;

		skb1 = skb_clone(buff, GFP_KERNEL);
		if (skb1) {
			skb_set_owner_w(skb1, sk);
			tp->af_specific->queue_xmit(skb1);
		}

                if (!tcp_timer_is_set(sk, TIME_RETRANS))
			tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);
	}
}

/* WARNING: This routine must only be called when we have already sent
 * a SYN packet that crossed the incoming SYN that caused this routine
 * to get called. If this assumption fails then the initial rcv_wnd
 * and rcv_wscale values will not be correct.
 */
int tcp_send_synack(struct sock *sk)
{
	struct tcp_opt * tp = &(sk->tp_pinfo.af_tcp);
	struct sk_buff * skb;	
	struct sk_buff * buff;
	struct tcphdr *th;
	int tmp;
	
	skb = sock_wmalloc(sk, MAX_SYN_SIZE, 1, GFP_ATOMIC);
	if (skb == NULL) 
		return -ENOMEM;

	tmp = tp->af_specific->build_net_header(sk, skb);
	if (tmp < 0) {
		kfree_skb(skb, FREE_WRITE);
		return tmp;
	}

	th =(struct tcphdr *) skb_put(skb, sizeof(struct tcphdr));
	skb->h.th = th;
	memset(th, 0, sizeof(struct tcphdr));

	th->syn = 1;
	th->ack = 1;

	th->source = sk->dummy_th.source;
	th->dest = sk->dummy_th.dest;
	       
	skb->seq = tp->snd_una;
	skb->end_seq = skb->seq + 1 /* th->syn */ ;
	th->seq = ntohl(skb->seq);

	/* This is a resend of a previous SYN, now with an ACK.
	 * we must reuse the previously offered window.
	 */
	th->window = htons(tp->rcv_wnd);

	tp->last_ack_sent = th->ack_seq = htonl(tp->rcv_nxt);

	tmp = tcp_syn_build_options(skb, sk->mss,
		tp->sack_ok, tp->tstamp_ok,
		tp->wscale_ok,tp->rcv_wscale);
	skb->csum = 0;
	th->doff = (sizeof(*th) + tmp)>>2;

	tp->af_specific->send_check(sk, th, sizeof(*th)+tmp, skb);

	skb_queue_tail(&sk->write_queue, skb);
	
	buff = skb_clone(skb, GFP_ATOMIC);
	if (buff) {
		skb_set_owner_w(buff, sk);

		tp->packets_out++;
		skb->when = jiffies;

		tp->af_specific->queue_xmit(buff);
		tcp_statistics.TcpOutSegs++;

		tcp_reset_xmit_timer(sk, TIME_RETRANS, TCP_TIMEOUT_INIT);
	}
	return 0;
}

/*
 *	Set up the timers for sending a delayed ack..
 *
 *      rules for delaying an ack:
 *      - delay time <= 0.5 HZ
 *      - must send at least every 2 full sized packets
 *      - we don't have a window update to send
 */

void tcp_send_delayed_ack(struct sock * sk, int max_timeout)
{
	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
	unsigned long timeout, now;

	/* Calculate new timeout. */
	now = jiffies;
	timeout = tp->ato;

	if (timeout > max_timeout ||
	    ((tp->rcv_nxt - tp->rcv_wup) > (sk->mss << 2)))
		timeout = now;
	else
		timeout += now;

	/* Use new timeout only if there wasn't a older one earlier. */
	if (!del_timer(&tp->delack_timer) || timeout < tp->delack_timer.expires)
		tp->delack_timer.expires = timeout;

	add_timer(&tp->delack_timer);
}



/*
 *	This routine sends an ack and also updates the window. 
 */
 
void tcp_send_ack(struct sock *sk)
{
	struct sk_buff *buff;
	struct tcp_opt *tp=&(sk->tp_pinfo.af_tcp);
	struct tcphdr *th;
	int tmp;

	if(sk->zapped)
		return;	/* We have been reset, we may not send again. */

	/* We need to grab some memory, and put together an ack,
	 * and then put it into the queue to be sent.
	 * FIXME: is it better to waste memory here and use a
	 * constant sized ACK?
	 */
	buff = sock_wmalloc(sk, BASE_ACK_SIZE + tp->tcp_header_len, 1, GFP_ATOMIC);
	if (buff == NULL) {
		/*	Force it to send an ack. We don't have to do this
		 *	(ACK is unreliable) but it's much better use of
		 *	bandwidth on slow links to send a spare ack than
		 *	resend packets.
		 */
		tcp_send_delayed_ack(sk, HZ/2);
		return;
	}

	clear_delayed_acks(sk);

	/* Assemble a suitable TCP frame. */
	buff->csum = 0;

	/* Put in the IP header and routing stuff. */
	tmp = tp->af_specific->build_net_header(sk, buff);
	if (tmp < 0) {
		kfree_skb(buff, FREE_WRITE);
		return;
	}

	th = (struct tcphdr *)skb_put(buff,tp->tcp_header_len);
	memcpy(th, &sk->dummy_th, sizeof(struct tcphdr));
	tcp_build_options((__u32 *)(th+1),tp);

	/* Swap the send and the receive. */
	th->window	= ntohs(tcp_select_window(sk));
	th->seq		= ntohl(tp->snd_nxt);
	tp->last_ack_sent = th->ack_seq	= ntohl(tp->rcv_nxt);

  	/* Fill in the packet and send it. */
	tp->af_specific->send_check(sk, th, tp->tcp_header_len, buff);

	SOCK_DEBUG(sk, "\rtcp_send_ack: seq %x ack %x\n",
		   tp->snd_nxt, tp->rcv_nxt);

	tp->af_specific->queue_xmit(buff);
  	tcp_statistics.TcpOutSegs++;
}

/*
 *	This routine sends a packet with an out of date sequence
 *	number. It assumes the other end will try to ack it.
 */

void tcp_write_wakeup(struct sock *sk)
{
	struct sk_buff *buff, *skb;
	struct tcphdr *t1;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int tmp;

	if (sk->zapped)
		return;	/* After a valid reset we can send no more. */

	/*	Write data can still be transmitted/retransmitted in the
	 *	following states.  If any other state is encountered, return.
	 *	[listen/close will never occur here anyway]
	 */
	if (sk->state != TCP_ESTABLISHED && 
	    sk->state != TCP_CLOSE_WAIT &&
	    sk->state != TCP_FIN_WAIT1 && 
	    sk->state != TCP_LAST_ACK &&
	    sk->state != TCP_CLOSING)
		return;

	if (before(tp->snd_nxt, tp->snd_una + tp->snd_wnd) && (skb=tp->send_head)) {
		struct tcphdr *th;
		unsigned long win_size;

		/* We are probing the opening of a window
	    	 * but the window size is != 0
	    	 * must have been a result SWS avoidance ( sender )
	    	 */
		win_size = tp->snd_wnd - (tp->snd_nxt - tp->snd_una);
		if (win_size < skb->end_seq - skb->seq) {
			if (tcp_fragment(sk, skb, win_size)) {
				printk(KERN_DEBUG "tcp_write_wakeup: "
				       "fragment failed\n");
				return;
			}
		}

		th = skb->h.th;
		tp->af_specific->send_check(sk, th, th->doff * 4 + win_size, skb);
		buff = skb_clone(skb, GFP_ATOMIC);
		if (buff == NULL)
			return;

		skb_set_owner_w(buff, sk);
		tp->packets_out++;

		clear_delayed_acks(sk);

		if (!tcp_timer_is_set(sk, TIME_RETRANS))
			tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);

		skb->when = jiffies;
		update_send_head(sk);
		tp->snd_nxt = skb->end_seq;
	} else {
		buff = sock_wmalloc(sk, MAX_ACK_SIZE, 1, GFP_ATOMIC);
		if (buff == NULL) 
			return;

		buff->csum = 0;

		/* Put in the IP header and routing stuff. */
		tmp = tp->af_specific->build_net_header(sk, buff);
		if (tmp < 0) {
			kfree_skb(buff, FREE_WRITE);
			return;
		}

		t1 = (struct tcphdr *) skb_put(buff, sizeof(struct tcphdr));
		memcpy(t1,(void *) &sk->dummy_th, sizeof(*t1));
		/* FIXME: should zero window probes have SACK and/or TIMESTAMP data?
		 * If so we have to tack them on here.
		 */

		/*	Use a previous sequence.
		 *	This should cause the other end to send an ack.
		 */
	 
		t1->seq = htonl(tp->snd_nxt-1);
/*		t1->fin = 0;	-- We are sending a 'previous' sequence, and 0 bytes of data - thus no FIN bit */
		t1->ack_seq = htonl(tp->rcv_nxt);
		t1->window = htons(tcp_select_window(sk));

		/* Value from dummy_th may be larger. */
		t1->doff = sizeof(struct tcphdr)/4;

		tp->af_specific->send_check(sk, t1, sizeof(*t1), buff);
	}

	/* Send it. */
	tp->af_specific->queue_xmit(buff);
	tcp_statistics.TcpOutSegs++;
}

/*
 *	A window probe timeout has occurred.
 *	If window is not closed send a partial packet
 *	else a zero probe.
 */

void tcp_send_probe0(struct sock *sk)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	if (sk->zapped)
		return; /* After a valid reset we can send no more. */

	tcp_write_wakeup(sk);
	tp->pending = TIME_PROBE0;
	tp->backoff++;
	tp->probes_out++;
	tcp_reset_xmit_timer (sk, TIME_PROBE0, 
			      min(tp->rto << tp->backoff, 120*HZ));
}