Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | Configuring version 3.5.4 (for Linux) with some most common soundcards ====================================================================== IMPORTANT! This document covers only cards that were "known" when this driver version was released. Please look at http://www.4front-tech.com/ossfree for info about cards introduced recently. The following covers mainly the "old" configuration method (make config). Most of it is valid for the "new" configuration (make menuconfig/xconfig) too. Cards having some kind of loadable "microcode" such as PSS, SM Wave, AudioTrix Pro and Maui/Tropez must be configured using the old method. The new one will not work with them. When using make xconfig and/or make menuconfig, you should carefully check each sound configuration option (particularly "Support for /dev/dsp and /dev/audio"). Cards that are not (fully) supported by this driver --------------------------------------------------- There are many soundcards which don't work with this driver version (v3.5). Support for some of them is expected to be available during/after summer 1996 (in version 3.6). Please check http://www.4front-tech.com/ossfree for latest news. Please don't mail me and ask about these cards. The unsupported cards are: - All PnP soundcards (SB PnP, GUS PnP, Soundscape PnP etc.) Schedule for availability of PnP soundcard support in OSS/Free depends on progress made by kernel PnP team (probably in Linux 2.1.xx versions). With Linux 2.0.x versions there are two ways to get PnP soundcards to work: - Use isapnptools, DOS, Win95 or PnP aware BIOS to wake up the card before starting the sound driver. See "Configuring PnP soundcards" below for some hints. - Support for SB PnP and GUS PnP is present in OSS/Linux (the commercial version of this driver). - Mwave soundcards and motherboards (Version 3.6 or 3.7. Depends on how fast I get suitable documents for Mwave). - Emu8k (SB 32/AWE) (Probably not _before_ summer 97. I know the unofficial AWE programmers guide so don't send me more copies of it). - Diamond Edge 3D (ASAP. In practice this may take relatively long time). - Compaq Deskpro (Version 3.5.4-beta6 (already released)) - Sound Galaxy Washington/Waverider (Audio features already in OSS/Linux (OSS/Free soon). Can't promise the waverider synth since availability of chip specs is uncertain). - Yamaha OPL4 (on cards having _RAM_ for samples) (Late 96?. Works as OPL3 with current driver versions) How to use sound without recompiling kernel and/or sound driver --------------------------------------------------------------- There is commercial sound driver which should be released during Apr 96. It comes in precompiled form and doesn't require recompiling of kernel. See http://www.4Front-tech.com/uss.html for more info. Configuring PnP cards --------------------- New versions of most soundcards use so called ISA PnP protocol for soft configuring their I/O, IRQ, DMA and shared memory resources. Currently at least cards made by Creative Technology (SB32 and SB32AWE PnP), Gravis (GUS PnP and GUS PnP Pro), Ensoniq (Soundscape PnP) and Aztech (some Sound Galaxy models) use PnP technology. The CS4232 audio chip by Crystal Semiconductor (Intel Atlantis, HP Pavilion and many other motherboards) is also based on PnP technology but there is a "native" driver available for it (see information about CS4232 later in this document). PnP soundcards (as well as most other PnP ISA cards) are not supported by version 3.5 of this driver (Linux 1.3.xx and Linux 2.0.x). Proper support for them should be released during spring 96 (see http://www.4front-tech.com/ossfree for latest info). There is a method to get most of the PnP cards to work. The basic method is the following: 1) Boot DOS so that card's DOS drivers have chance to initialize the card. 2) _Cold_ boot to Linux by using "loadlin.exe". Hitting ctrl-alt-del works with older machines but causes hard reset of all cards on latest (Pentium) machines. 3) If you have sound driver in Linux configured properly, the card should work now. "Proper" means here that I/O, IRQ and DMA settings are the same than in DOS. The hard part is to find which settings were used. See documentation of your card for more info. Windows 95 could work as well as DOS but running loadlin may be somehow difficult. Probably you should "shut down" your machine to MS-DOS mode before running it. Some machines have BIOS utility for setting PnP resources. This is a good way to configure some cards. In this case you don't need to boot DOS/Win95 prior starting Linux. Another way to initialize PnP cards without DOS/Win95 is a Linux based PnP isolation tool. When writing this there is a pre alpha test version of such tool available from ftp://ftp.demon.co.uk/pub/unix/linux/utils. The file is called isapnptools-*. Please note that this tool is just a temporary solution which may be incompatible with future kernel versions having proper support for PnP cards. There are bugs in setting DMA channels in earlier versions of isapnptools so at least version 1.6 is required with soundcards. You can find latest version of isapnptools from ftp://ftp.demon.co.uk/pub/unix/linux/utils/ These two methods don't work with GUS PnP which requires some additional initialization (cards DOS/Win95 driver does it). Read this before trying to configure the driver ----------------------------------------------- There are currently many cards that work with this driver. Some of the cards have native support while others work since they emulate some other card (usually SB, MSS/WSS and/or MPU401). The following cards have native support in the driver. Detailed instructions for configuring these cards will be given later in this document. Pro Audio Spectrum 16 (PAS16) and compatibles: Pro Audio Spectrum 16 Pro Audio Studio 16 Logitech Sound Man 16 NOTE! The original Pro Audio Spectrum as well as the PAS+ are not and will not be supported by the driver. Media Vision Jazz16 based cards Pro Sonic 16 Logitech SoundMan Wave (Other Jazz based cards should work but I don't have any reports about them). Sound Blasters SB 1.0 to 2.0 SB Pro SB 16 NOTE! The ASP chip and the EMU synth of AWE32 are not supported since their manufacturer doesn't release information about the card. However, both SB16ASP and AWE32 work with the driver just like a SB16. Also see the comment about some unsupported cards at the end of this file. (The OPL3 FM chip of SB32/AWE works but you cannot hear it). SB16 compatible cards by other manufacturers than Creative. You have been fooled since there are no SB16 compatible cards on the market (Feb 96). It's likely that your card is compatible just with SB Pro but there is also a non-SB- compatible 16 bit mode. Usually it's MSS/WSS but it could also be a proprietary one like MV Jazz16 or ESS ES688. Gravis Ultrasound (GUS) GUS GUS + the 16 bit option GUS MAX GUS ACE (No MIDI port and audio recording) GUS PnP (Partially supported) MPU-401 and compatibles The driver works both with the full (intelligent mode) MPU-401 cards (such as MPU IPC-T and MQX-32M) and with the UART only dumb MIDI ports. MPU-401 is currently the most common MIDI interface. Most soundcards are compatible with it. However, don't enable MPU401 mode blindly. Many cards with native support in the driver have their own MPU401 driver. Enabling the standard one will cause a conflict with these cards. So check if your card is in the list of supported cards before enabling MPU401. Windows Sound System (MSS/WSS) Even when Microsoft has discontinued their own Sound System card they managed to make it a standard. MSS compatible cards are based on a codec chip which is easily available from at least two manufacturers (AD1848 by Analog Devices and CS4231/CS4248 by Crystal Semiconductor). Currently most soundcards are based on one of the MSS compatible codec chips. The CS4231 is used in the high quality cards such as GUS MAX, MediaTrix AudioTrix Pro and TB Tropez (GUS MAX is not MSS compatible). Having a AD1848, CS4248 or CS4231 codec chip on the card is a good sign. Even if the card is not MSS compatible, it could be easy to write support for it. Note also that most MSS compatible cards require special boot time initialization which may not be present in the driver. Also, some MSS compatible cards have native support. Enabling the MSS support with these cards is likely to cause a conflict. So check if your card is listed in this file before enabling the MSS support. 6850 UART MIDI This UART chip is used in the MIDI interface of some (rare) soundcards. It's supported by the driver in case you need it. Yamaha FM synthesizers (OPL2, OPL3 and OPL4) Most soundcards have a FM synthesizer chip. The OPL2 is a 2 operator chip used in the original AdLib card. Currently it's used only in the cheapest (8 bit mono) cards. The OPL3 is a 4 operator FM chip which provides better sound quality and/or more available voices than the OPL2. The OPL4 is a new chip that has an OPL3 and a wave table synthesizer packed onto the same chip. The driver supports just the OPL3 mode directly. Most cards with an OPL4 (like SM Wave and AudioTrix Pro) support the OPL4 mode using MPU401 emulation. Writing a native OPL4 support is difficult since Yamaha doesn't give information about their sample ROM chip. Enable the generic OPL2/OPL3 FM synthesizer support if your card has a FM chip made by Yamaha. Don't enable it if your card has a software (TRS) based FM emulator. PSS based cards (AD1848 + ADSP-2115 + Echo ESC614 ASIC) Analog Devices and Echo Speech have together defined a soundcard architecture based on the above chips. The DSP chip is used for emulation of SB Pro, FM and General MIDI/MT32. There are several cards based on this architecture. The most known ones are Orchid SW32 and Cardinal DSP16. The driver supports downloading DSP algorithms to these cards. MediaTrix AudioTrix Pro The ATP card is built around a CS4231 codec and an OPL4 synthesizer chips. The OPL4 mode is supported by a microcontroller running a General MIDI emulator. There is also a SB 1.5 compatible playback mode. Ensoniq SoundScape and compatibles Ensoniq has designed a soundcard architecture based on the OTTO synthesizer chip used in their professional MIDI synthesizers. Several companies (including Ensoniq, Reveal and Spea) are selling cards based on this architecture. NOTE! The new PnP SoundScape is not supported yet. MAD16 and Mozart based cards The Mozart (OAK OTI-601), MAD16 (OPTi 82C928), MAD16 Pro (OPTi 82C929) and OPTi 82C930 interface chips are used in many different soundcards, including some cards by Reveal miro and Turtle Beach (Tropez). The purpose of these chips is to connect other audio components to the PC bus. The interface chip performs address decoding for the other chips. NOTE! Tropez Plus is not MAD16 but CS4232 based. Audio Excel DSP16 Support for this card was written by Riccardo Faccetti (riccardo@cdc8g5.cdc.polimi.it). See aedsp16.c for more info. (This driver is not functional in version 3.5 of this driver. A patch should be made available during April 96 (sunsite.unc.edu)). Crystal CS4232 based cards such as AcerMagic S23, TB Tropez _Plus_ and many PC motherboards (Compaq, HP, Intel, ...) CS4232 is a PnP multimedia chip which contains a CS3231A codec, SB and MPU401 emulations. There is support for OPL3 too. This is a temporary driver which uses the chip in non PnP mode (The final driver should be included in version 3.6 of the driver). Unfortunately the MPU401 mode doesn't work (I don't know how to initialize it). Turtle Beach Maui and Tropez This driver version supports sample, patch and program loading commands described in the Maui/Tropez User's manual. There is now full initialization support too. The audio side of the Tropez is based on the MAD16 chip (see above). Jumpers and software configuration ---------------------------------- Some of the earliest soundcards were jumper configurable. You have to configure the driver use I/O, IRQ and DMA settings that match the jumpers. Just few 8 bit cards are fully jumper configurable (SB 1.x/2.x, SB Pro and clones). Some cards made by Aztech have an EEPROM which contains the config info. These cards behave much like hardware jumpered cards. Most cards have jumper for the base I/O address but other parameters are software configurable. Sometimes there are few other jumpers too. Latest cards are fully software configurable or they are PnP ISA compatible. There are no jumpers on the board. The driver handles software configurable cards automatically. Just configure the driver to use I/O, IRQ and DMA settings which are known to work. You could usually use the same values than with DOS and/or Windows. Using different settings is possible but not recommended since it may cause some trouble (for example when warm booting from an OS to another or when installing new hardware to the machine). Sound driver sets the soft configurable parameters of the card automatically during boot. Usually you don't need to run any extra initialization programs when booting Linux but there are some exceptions. See the card specific instructions (below) for more info. The drawback of software configuration is that the driver needs to know how the card must be initialized. It cannot initialize unknown cards even if they are otherwise compatible with some other cards (like SB, MPU401 or Windows Sound System). What if your card was not listed above? --------------------------------------- The first thing to do is to look at the major IC chips on the card. Many of the latest soundcards are based on some standard chips. If you are lucky, all of them could be supported by the driver. The most common ones are the OPTi MAD16, Mozart, SoundScape (Ensoniq) and the PSS architectures listed above. Also look at the end of this file for list of unsupported cards and the ones which could be supported later. The last resort is to send _exact_ name and model information of the card to me together with a list of the major IC chips (manufactured, model) to me. I could then try to check if your card looks like something familiar. There are much more cards in the word than listed above. The first thing to do with these cards is to check if they emulate some other card/interface such as SB, MSS and/or MPU401. In this case there is a chance to get the card to work by booting DOS before starting Linux (boot DOS, hit ctrl-alt-del and boot Linux without hard resetting the machine). In this method the DOS based driver initializes the hardware to use a known I/O, IRQ and DMA settings. If sound driver is configured to use the same settings, everything should work OK. Configuring sound driver (with Linux) ===================================== Sound driver is currently a part of Linux kernel distribution. The driver files are located in directory /usr/src/linux/drivers/sound. **************************************************************************** * ALWAYS USE THE SOUND DRIVER VERSION WHICH IS DISTRIBUTED WITH * * THE KERNEL SOURCE PACKAGE YOU ARE USING. SOME ALPHA AND BETA TEST * * VERSIONS CAN BE INSTALLED FROM A SEPARATELY DISTRIBUTED PACKAGE * * BUT CHECK THAT THE PACKAGE IS NOT MUCH OLDER (OR NEWER) THAN THE * * KERNEL YOU ARE USING. IT'S POSSIBLE THAT THE KERNEL/DRIVER * * INTERFACE CHANGES BETWEEN KERNEL RELEASES WHICH MAY CAUSE SOME * * INCOMPATIBILITY PROBLEMS. * * * * IN CASE YOU INSTALL A SEPARATELY DISTRIBUTED SOUND DRIVER VERSION, * * BE SURE TO REMOVE OR RENAME THE OLD SOUND DRIVER DIRECTORY BEFORE * * INSTALLING THE NEW ONE. LEAVING OLD FILES TO THE SOUND DRIVER * * DIRECTORY _WILL_ CAUSE PROBLEMS WHEN THE DRIVER IS USED OR * * COMPILED. * **************************************************************************** To configure the driver, run "make config" in the kernel source directory (/usr/src/linux). Answer y to the question about Sound card support (after questions about mouse, CD-ROM, ftape, etc. supports). Sound config options will then be asked after some additional questions. After configuring the kernel and sound driver, run "make dep" and compile the kernel following instructions in the kernel README. The sound driver configuration dialog ------------------------------------- All config information of the sound driver is written to file linux/drivers/sound/local.h. You may save the old version is this file and use it again in case you want to use the same config later. In this case just answer n to each question made by the sound config program and put the original local.h back before running "make dep". Don't do this if the version number of the sound driver has changed. In this case you have to enter the configuration information again. If you already have the sound driver installed, consult printout of "cat /dev/sndstat" when configuring the driver again. It gives the I/O, IRQ and DMA settings you have used earlier. The sound config program (linux/drivers/sound/configure) starts by making some yes/no questions. Be careful when answering to these questions since answering y to a question may prevent some later ones from being asked. For example don't answer y to the first question (PAS16) if you don't really have a PAS16. Don't enable more cards than you really need since they just consume memory. Also some drivers (like MPU401) may conflict with your SCSI controller and prevent kernel from booting. If you card was in the list of supported cards (above), please look at the card specific config instructions (later in this file) before starting to configure. Some cards must be configured in way which is not obvious. So here is the beginning of the config dialog. Answer 'y' or 'n' to these questions. The default answer is shown so that (y/n) means 'y' by default and (n/y) means 'n'. To use the default value, just hit ENTER. But be careful since using the default _doesn't_ guarantee anything. Note also that all questions may not be asked. The configuration program may disable some questions depending on the earlier choices. It may also select some options automatically as well. "ProAudioSpectrum 16 support", - Answer 'y'_ONLY_ if you have a Pro Audio Spectrum _16_, Pro Audio Studio 16 or Logitech SoundMan 16 (be sure that you read the above list correctly). Don't answer 'y' if you have some other card made by Media Vision or Logitech since they are not PAS16 compatible. NOTE! Since 3.5-beta10 you need to enable SB support (next question) if you want to use the SB emulation of PAS16. It's also possible to the emulation if you want to use a true SB card together with PAS16 (there is another question about this that is asked later). "Sound Blaster support", - Answer 'y' if you have an original SB card made by Creative Labs or a full 100% hardware compatible clone (like Thunderboard or SM Games). If your card was in the list of supported cards (above), please look at the card specific instructions later in this file before answering this question. For an unknown card you may answer 'y' if the card claims to be SB compatible. Enable this option also with PAS16 (changed since v3.5-beta9). Don't enable SB if you have a MAD16 or Mozart compatible card. "Generic OPL2/OPL3 FM synthesizer support", - Answer 'y' if your card has a FM chip made by Yamaha (OPL2/OPL3/OPL4). Answering 'y' is usually a safe and recommended choice. However some cards may have software (TSR) FM emulation. Enabling FM support with these cards may cause trouble. However I don't currently know such cards. "Gravis Ultrasound support", - Answer 'y' if you have GUS or GUS MAX. Answer 'n' if you don't have GUS since the GUS driver consumes much memory. Currently I don't have experiences with the GUS ACE so I don't know what to answer with it. "MPU-401 support (NOT for SB16)", - Be careful with this question. The MPU401 interface is supported by almost any soundcard today. However some natively supported cards have their own driver for MPU401. Enabling the MPU401 option with these cards will cause a conflict. Also enabling MPU401 on a system that doesn't really have a MPU401 could cause some trouble. If your card was in the list of supported cards (above), please look at the card specific instructions later in this file. It's safe to answer 'y' if you have a true MPU401 MIDI interface card. "6850 UART Midi support", - It's safe to answer 'n' to this question in all cases. The 6850 UART interface is so rarely used. "PSS (ECHO-ADI2111) support", - Answer 'y' only if you have Orchid SW32, Cardinal DSP16 or some other card based on the PSS chipset (AD1848 codec + ADSP-2115 DSP chip + Echo ESC614 ASIC CHIP). "16 bit sampling option of GUS (_NOT_ GUS MAX)", - Answer 'y' if you have installed the 16 bit sampling daughtercard to your GUS. Answer 'n' if you have GUS MAX. Enabling this option disables GUS MAX support. "GUS MAX support", - Answer 'y' only if you have a GUS MAX. "Microsoft Sound System support", - Again think carefully before answering 'y' to this question. It's safe to answer 'y' in case you have the original Windows Sound System card made by Microsoft or Aztech SG 16 Pro (or NX16 Pro). Also you may answer 'y' in case your card was not listed earlier in this file. For cards having native support in the driver, consult the card specific instructions later in this file. Some drivers have their own MSS support and enabling this option will cause a conflict. "Ensoniq Soundscape support", - Answer 'y' if you have a soundcard based on the Ensoniq SoundScape chipset. Such cards are being manufactured at least by Ensoniq, Spea and Reveal (note that Reveal makes other cards also). "MediaTrix AudioTrix Pro support", - Answer 'y' if you have the AudioTrix Pro. "Support for MAD16 and/or Mozart based cards", - Answer y if your card has a Mozart (OAK OTI-601) or MAD16 (OPTi 82C928, 82C929 or 82C930) audio interface chip. These chips are currently quite common so it's possible that many no-name cards have one of them. In addition the MAD16 chip is used in some cards made by known manufacturers such as Turtle Beach (Tropez), Reveal (some models) and Diamond (some recent models). "Support for TB Maui" - This enables TB Maui specific initialization. Works with TB Maui and TB Tropez (may not work with Tropez Plus). "Audio Excel DSP 16 initialization support", - Don't know much about this card. Look at aedsp16.c for more info. Then the configuration program asks some y/n questions about the higher level services. It's recommended to answer 'y' to each of these questions. Answer 'n' only if you know you will not need the option. "/dev/dsp and /dev/audio supports (usually required)", - Answering 'n' disables /dev/dsp and /dev/audio. Answer 'y'. "MIDI interface support", - Answering 'n' disables /dev/midi## devices and access to any MIDI ports using /dev/sequencer and /dev/music. This option also affects any MPU401 and/or General MIDI compatible devices. "FM synthesizer (YM3812/OPL-3) support", - Answer 'y' here. "/dev/sequencer support", - Answering 'n' disables /dev/sequencer and /dev/music. Entering the I/O, IRQ and DMA config parameters ----------------------------------------------- After the above questions the configuration program prompts for the card specific configuration information. Usually just a set of I/O address, IRQ and DMA numbers are asked. With some cards the program asks for some files to be used during initialization of the card. For example many cards have a DSP chip or microprocessor which must be initialized by downloading a program (microcode) file to the card. In some cases this file is written to a .h file by the config program and then included to the driver during compile. Instructions for answering these questions are given in the next section. Card specific information ========================= This section gives additional instructions about configuring some cards. Please refer manual of your card for valid I/O, IRQ and DMA numbers. Using the same settings with DOS/Windows and Linux is recommended. Using different values could cause some problems when switching between different operating systems. Sound Blasters (the original ones by Creative) --------------------------------------------- It's possible to configure these cards to use different I/O, IRQ and DMA settings. Since the available settings have changed between various models, you have to consult manual of your card for the proper ones. It's a good idea to use the same values than with DOS/Windows. With SB and SB Pro it's the only choice. SB16 has software selectable IRQ and DMA channels but using different values with DOS and Linux is likely to cause troubles. The DOS driver is not able to reset the card properly after warm boot from Linux if Linux has used different IRQ or DMA values. The original (steam) Sound Blaster (versions 1.x and 2.x) use always DMA1. There is no way to change it. The SB16 needs two DMA channels. A 8 bit one (1 or 3) is required for 8 bit operation and a 16 bit one (5, 6 or 7) for the 16 bit mode. In theory it's possible to use just one (8 bit) DMA channel by answering the 8 bit one when the configuration program asks for the 16 bit one. This may work in some systems but is likely to cause terrible noise on some other systems. NOTE! Don't enable the SM Games option (asked by the configuration program) if you are not 101% sure that your card is a Logitech Soundman Games (not a SM Wave or SM16). SB Clones --------- First of all: There are no SB16 clones. There are SB Pro clones with a 16 bit mode which is not SB16 compatible. The most likely alternative is that the 16 bit mode means MSS/WSS. There are just few fully 100% hardware SB or SB Pro compatible cards. I know just Thunderboard and SM Games. Other cards require some kind of hardware initialization before they become SB compatible. Check if your card was listed in the beginning of this file. In this case you should follow instructions for your card later in this file. For other not fully SB clones you may try initialization using DOS in the following way: - Boot DOS so that the card specific driver gets run. - Hit ctrl-alt-del (or use loadlin) to boot Linux. Don't switch off power or press the reset button. - If you use the same I/O, IRQ and DMA settings in Linux, the card should work. If your card is both SB and MSS compatible, I recommend using the MSS mode. Most cards of this kind are not able to work in the SB and the MSS mode simultaneously. Using the MSS mode provides 16 bit recording and playback. ProAudioSpectrum 16 and compatibles ----------------------------------- PAS16 has a SB emulation chip which can be used together with the native (16 bit) mode of the card. To enable this emulation you should configure the driver to have SB support too (this has been changed since version 3.5-beta9 of this driver). With current driver versions it's also possible to use PAS16 together with another SB compatible card. In this case you should configure SB support for the other card and to disable the SB emulation of PAS16 (there is a separate questions about this). With PAS16 you can use two audio device files at the same time. /dev/dsp (and /dev/audio) is connected to the 8/16 bit native codec and the /dev/dsp1 (and /dev/audio1) is connected to the SB emulation (8 bit mono only). Gravis Ultrasound ----------------- There are many different revisions of the Ultrasound card (GUS). The earliest ones (pre 3.7) don't have a hardware mixer. With these cards the driver uses a software emulation for synth and pcm playbacks. It's also possible to switch some of the inputs (line in, mic) off by setting mixer volume of the channel level below 10%. For recording you have to select the channel as a recording source and to use volume above 10%. GUS 3.7 has a hardware mixer. GUS MAX and the 16 bit sampling daughtercard have a CS4231 codec chip which also contains a mixer. Configuring GUS is simple. Just enable the GUS support and GUS MAX or the 16 bit daughtercard if you have them. Note that enabling the daughter card disables GUS MAX driver. NOTE for owners of the 16 bit daughtercard: By default the daughtercard uses /dev/dsp (and /dev/audio). Command "ln -sf /dev/dsp1 /dev/dsp" selects the daughter card as the default device. With just the standard GUS enabled the configuration program prompts for the I/O, IRQ and DMA numbers for the card. Use the same values than with DOS. With the daughter card option enabled you will be prompted for the I/O, IRQ and DMA numbers for the daughter card. You have to use different I/O and DMA values than for the standard GUS. The daughter card permits simultaneous recording and playback. Use /dev/dsp (the daughtercard) for recording and /dev/dsp1 (GUS GF1) for playback. GUS MAX uses the same I/O address and IRQ settings than the original GUS (GUS MAX = GUS + a CS4231 codec). In addition an extra DMA channel may be used. Using two DMA channels permits simultaneous playback using two devices (dev/dsp0 and /dev/dsp1). The second DMA channel is required for full duplex audio. To enable the second DMA channels, give a valid DMA channel when the config program asks for the GUS MAX DMA (entering -1 disables the second DMA). Using 16 bit DMA channels (5,6 or 7) is recommended. If you have problems in recording with GUS MAX, you could try to use just one 8 bit DMA channel. Recording will not work with one DMA channel if it's a 16 bit one. Microphone input of GUS MAX is connected to mixer in little bit nonstandard way. There is actually two microphone volume controls. Normal "mic" controls only recording level. Mixer control "speaker" is used to control volume of microphone signal connected directly to line/speaker out. So just decrease volume of "speaker" if you have problems with microphone feedback. GUS ACE works too but any attempt to record or to use the MIDI port will fail. GUS PnP (with RAM) is partially supported but it needs to be initialized using DOS or isapnptools before starting the driver. MPU401 and Windows Sound System ------------------------------- Again. Don't enable these options in case your card is listed somewhere else in this file. Configuring these cards is obvious (or it should be). With MSS you should probably enable the OPL3 synth also since most MSS compatible cards have it. However check that this is true before enabling OPL3. Sound driver supports more than one MPU401 compatible cards at the same time but the config program asks config info for just the first of them. Adding the second or third MPU interfaces must be done manually by editing sound/local.h (after running the config program). Add defines for MPU2_BASE & MPU2_IRQ (and MPU3_BASE & MPU3_IRQ) to the file. CAUTION! The default I/O base of Adaptec AHA-1542 SCSI controller is 0x330 which is also the default of the MPU401 driver. Don't configure the sound driver to use 0x330 as the MPU401 base if you have a AHA1542. The kernel will not boot if you make this mistake. PSS --- Even the PSS cards are compatible with SB, MSS and MPU401, you must not enable these options when configuring the driver. The configuration program handles these options itself. (You may use the SB, MPU and MSS options together with PSS if you have another card on the system). The PSS driver enables MSS and MPU401 modes of the card. SB is not enabled since it doesn't work concurrently with MSS. The driver loads also a DSP algorithm which is used to for the general MIDI emulation. The algorithm file (.ld) is read by the config program and written to a file included when the pss.c is compiled. For this reason the config program asks if you want to download the file. Use the genmidi.ld file distributed with the DOS/Windows drivers of the card (don't use the mt32.ld). With some cards the file is called 'synth.ld'. You must have access to the file when configuring the driver. The easiest way is to mount the DOS partition containing the file with Linux. It's possible to load your own DSP algorithms and run them with the card. Look at the directory pss_test of snd-util-3.0.tar.gz for more info. AudioTrix Pro ------------- You have to enable the OPL3 and SB (not SB Pro or SB16) drivers in addition to the native AudioTrix driver. Don't enable MSS or MPU drivers. Configuring ATP is little bit tricky since it uses so many I/O, IRQ and DMA numbers. Using the same values than with DOS/Win is a good idea. Don't attempt to use the same IRQ or DMA channels twice. The SB mode of ATP is implemented so the the ATP driver just enables SB in the proper address. The SB driver handles the rest. You have to configure both the SB driver and the SB mode of ATP to use the same IRQ, DMA and I/O settings. Also the ATP has a microcontroller for the General MIDI emulation (OPL4). For this reason the driver asks for the name of a file containing the microcode (TRXPRO.HEX). This file is usually located in the directory where the DOS drivers were installed. You must have access to this file when configuring the driver. If you have the effects daughtercard, it must be initialized by running the setfx program of snd-util-3.0.tar.gz package. This step is not required when using the (future) binary distribution version of the driver. Ensoniq SoundScape ------------------ NOTE! The new PnP SoundScape is not supported yet. The SoundScape driver handles initialization of MSS and MPU supports itself so you don't need to enable other drivers than SoundScape (enable also the /dev/dsp, /dev/sequencer and MIDI supports). !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!! !!!! !!!!! NOTE! Before version 3.5-beta6 there WERE two sets of audio !!!! !!!!! device files (/dev/dsp0 and /dev/dsp1). The first one WAS !!!! !!!!! used only for card initialization and the second for audio !!!! !!!!! purposes. It WAS required to change /dev/dsp (a symlink) to !!!! !!!!! point to /dev/dsp1. !!!! !!!!! !!!! !!!!! This is not required with OSS versions 3.5-beta6 and later !!!! !!!!! since there is now just one audio device file. Please !!!! !!!!! change /dev/dsp to point back to /dev/dsp0 if you are !!!! !!!!! upgrading from an earlier driver version using !!!! !!!!! (cd /dev;rm dsp;ln -s dsp0 dsp). !!!! !!!!! !!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! The configuration program asks one DMA channel and two interrupts. One IRQ and one DMA is used by the MSS codec. The second IRQ is required for the MPU401 mode (you have to use different IRQs for both purposes). There were earlier two DMA channels for SoundScape but the current driver version requires just one. The SoundScape card has a Motorola microcontroller which must initialized _after_ boot (the driver doesn't initialize it during boot). The initialization is done by running the 'ssinit' program which is distributed in the snd-util-3.0.tar.gz package. You have to edit two defines in the ssinit.c and then compile the program. You may run ssinit manually (after each boot) or add it to /etc/rc.d/rc.local. The ssinit program needs the microcode file that comes with the DOS/Windows driver of the card. You will need to use version 1.30.00 or later of the microcode file (sndscape.co0 or sndscape.co1 depending on your card model). THE OLD sndscape.cod WILL NOT WORK. IT WILL HANG YOUR MACHINE. The only way to get the new microcode file is to download and install the DOS/Windows driver from ftp://ftp.ensoniq.com/pub. Then you have to select the proper microcode file to use: soundscape.co0 is the right one for most cards and sndscape.co1 is for few (older) cards made by Reveal and/or Spea. The driver has capability to detect the card version during boot. Look at the boot log messages in /var/adm/messages and locate the sound driver initialization message for the SoundScape card. If the driver displays string <Ensoniq Soundscape (old)>, you have an old card and you will need to use sndscape.co1. For other cards use soundscape.co0. New Soundscape revisions such as Elite and PnP use code files with higher numbers (.co2, .co3, etc.). Check /var/adm/messages after running ssinit. The driver prints the board version after downloading the microcode file. That version number must match the number in the name of the microcode file (extension). Running ssinit with a wrong version of the sndscape.co? file is not dangerous as long as you don't try to use a file called sndscape.cod. If you have initialized the card using a wrong microcode file (sounds are terrible), just modify ssinit.c to use another microcode file and try again. It's possible to use an earlier version of sndscape.co[01] but it may sound weird. MAD16 (Pro) and Mozart ---------------------- You need to enable just the MAD16 /Mozart support when configuring the driver. _Don't_ enable SB, MPU401 or MSS. However you will need the /dev/audio, /dev/sequencer and MIDI supports. Mozart and OPTi 82C928 (the original MAD16) chips don't support MPU401 mode so enter just 0 when the configuration program asks the MPU/MIDI I/O base. The MAD16 Pro (OPTi 82C929) and 82C930 chips have MPU401 mode. TB Tropez is based on the 82C929 chip. It has two MIDI ports. The one connected to the MAD16 chip is the second one (there is a second MIDI connector/pins somewhere??). If you have not connected the second MIDI port, just disable the MIDI port of MAD16. The 'Maui' compatible synth of Tropez is jumper configurable and not connected to the MAD16 chip. It can be used by enabling the stand alone MPU401 support but you have to initialize it by using the MS-DOS SNDSETUP program. Some MAD16 based cards may cause feedback, whistle or terrible noise if the line3 mixer channel is turned too high. This happens at least with Shuttle Sound System. Current driver versions set volume of line3 low enough so this should not be a problem. If you have a MAD16 card which have an OPL4 (FM + Wave table) synthesizer chip (_not_ an OPL3), you have to append a line containing #define MAD16_OPL4 to the file linux/drivers/sound/local.h (after running make config). MAD16 cards having a CS4231 codec support full duplex mode. This mode can be enabled by configuring the card to use two DMA channels. Possible DMA channel pairs are: 0&1, 1&0 and 3&0. MV Jazz (ProSonic) ------------------ The Jazz16 driver is just a hack made to the SB Pro driver. However it works fairly well. You have to enable SB, SB Pro (_not_ SB16) and MPU401 supports when configuring the driver. The configuration program asks later if you want support for MV Jazz16 based cards (after asking SB base address). Answer 'y' here and the driver asks the second (16 bit) DMA channel. The Jazz16 driver uses the MPU401 driver in a way which will cause problems if you have another MPU401 compatible card. In this case you must give address of the Jazz16 based MPU401 interface when the config program prompts for the MPU401 information. Then look at the MPU401 specific section for instructions about configuring more than one MPU401 cards. Logitech Soundman Wave ---------------------- Read the above MV Jazz specific instructions first. The Logitech SoundMan Wave (don't confuse with the SM16 or SM Games) is a MV Jazz based card which has an additional OPL4 based wave table synthesizer. The OPL4 chip is handled by an on board microcontroller which must be initialized during boot. The config program asks if you have a SM Wave immediately after asking the second DMA channel of jazz16. If you answer 'y', the config program will ask name of the file containing code to be loaded to the microcontroller. The file is usually called MIDI0001.BIN and it's located in the DOS/Windows driver directory. The file may also be called as TSUNAMI.BIN or something else (older cards?). The OPL4 synth will be inaccessible without loading the microcontroller code. Also remember to enable SB MPU401 support if you want to use the OPL4 mode. (Don't enable the 'normal' MPU401 device as with some earlier driver versions (pre 3.5-alpha8)). NOTE! Don't answer 'y' when the driver asks about SM Games support (the next question after the MIDI0001.BIN name). However answering 'y' doesn't cause damage your computer so don't panic. Sound Galaxies -------------- There are many different Sound Galaxy cards made by Aztech. The 8 bit ones are fully SB or SB Pro compatible and there should be no problems with them. The older 16 bit cards (SG Pro16, SG NX Pro16, Nova and Lyra) have an EEPROM chip for storing the configuration data. There is a microcontroller which initializes the card to match the EEPROM settings when the machine is powered on. These cards actually behave just like they have jumpers for all of the settings. Configure driver for MSS, MPU, SB/SB Pro and OPL3 supports with these cards. The config program asks if you want support for the mixer of SG NX Pro. Answer 'y' to these questions if you have one of the above 8 or 16 bit Aztech cards. There are some new Sound Galaxies in the market. I have no experience with them so read the card's manual carefully. ESS ES1688 and ES688 'AudioDrive' based cards --------------------------------------------- Support for these two ESS chips is embedded in the SB driver. Configure these cards just like SB. Enable the 'SB MPU401 MIDI port' if you want to use MIDI features of ES1688. ES688 doesn't have MPU mode so you don't need to enable it (the driver uses normal SB MIDI automatically with ES688). NOTE! ESS cards are not compatible with MSS/WSS. Reveal cards ------------ There are several different cards made/marketed by Reveal. Some of them are compatible with SoundScape and some use the MAD16 chip. You may have to look at the card and try to identify origin of the card. Diamond ------- The oldest (Sierra Aria based) soundcards made by Diamond are not supported (they may work if the card is initialized using DOS). The recent (LX?) models are based on the MAD16 chip which is supported by the driver. Audio Excel DSP16 ----------------- Support for this card is currently not functional. A new driver for it should be available later this year. PCMCIA cards ------------ Sorry, can't help. Some cards may work and some don't. TI TM4000M notebooks -------------------- These computers have a built in sound support based on the Jazz chipset. Look at the instructions for MV Jazz (above). It's also important to note that there is something wrong with the mouse port and sound at least on some TM models. Don't enable the "C&T 82C710 mouse port support" when configuring Linux. Having it enabled is likely to cause mysterious problems and kernel failures when sound is used. miroSOUND --------- The miroSOUND PCM12 has been used successfully. This card is based on the MAD16, OPL4, and CS4231A chips and everything said in the section about MAD16 cards applies here, too. The only major difference between the PCM12 and other MAD16 cards is that instead of the mixer in the CS4231 codec a separate mixer controlled by an on-board 80C32 microcontroller is used. Control of the mixer takes place via the ACI (miro's audio control interface) protocol that is implemented in a separate lowlevel driver. Make sure you compile this ACI driver together with the normal MAD16 support when you use a miroSOUND PCM12 card. The ACI mixer is controlled by /dev/mixer and the CS4231 mixer by /dev/mixer2. You usually don't want to change anything on the CS4231 mixer. The miroSOUND PCM12 is capable of full duplex operation (simultaneous PCM replay and recording), which allows you to implement nice real-time signal processing audio effect software and network telephones. The ACI mixer has to be configured into a special "solo" mode for duplex operation in order to avoid feedback caused by the mixer (input hears output signal). See lowlevel/aci.c for details on the ioctl() for activating the "solo" mode. The following configuration parameters have worked fine for the PCM12 in Markus Kuhn's system, many other configurations might work, too: MAD16_BASE=0x530, MAD16_IRQ=11, MAD16_DMA=3, MAD16_DMA2=0, MAD16_MPU_BASE=0x330, MAD16_MPU_IRQ=10, DSP_BUFFSIZE=65536, SELECTED_SOUND_OPTIONS=0x00281000. The miroSOUND PCM1 pro and the PCM20 are very similar to the PCM12. Perhaps the same ACI driver also works for these cards, however this has never actually been tested. The PCM20 contains a radio tuner, which is also controlled by ACI. This radio tuner is currently not supported by the ACI driver, but documentation for it was provided by miro and ACI tuner support could easily be added if someone is really interested. Compaq Deskpro XL ----------------- The builtin sound hardware of Compaq Deskpro XL is now supported. You need to configure the driver with MSS and OPL3 supports enabled. In addition you need to manually edit linux/drivers/sound/local.h and to add a line containing "#define DESKPROXL" if you used make menuconfig/xconfig. Others? ------- Since there are so many different soundcards, it's likely that I have forgotten to mention many of them. Please inform me if you know yet another card which works with Linux, please inform me (or is anybody else willing to maintain a database of supported cards (just like in XF86)?). Cards not supported yet ======================= Please check which version of sound driver you are using before complaining that your card is not supported. It's possible that you are using a driver version which was released months before your card was introduced. Driver's release date is listed after its version number in "cat /dev/sndstat" printout and in file linux/drivers/sound/soundvers.h. First of all. There is an easy way to make most soundcards to work with Linux. Just use the DOS based driver to initialize the card to a _known_ state. Then use loadlin.exe to boot Linux. If Linux is configured to use the same I/O, IRQ and DMA numbers than DOS, the card could work. (ctrl-alt-del can be used in place of loadlin.exe but it doesn't work with new motherboards). This method works also with all/most PnP soundcards. Don't get fooled with SB compatibility. Most cards are compatible with SB but that may require a TSR which is not possible with Linux. If the card is compatible with MSS, it's a better choice. Some cards don't work in the SB and MSS modes at the same time. Then there are cards which are no longer manufactured and/or which are relatively rarely used (such as the 8 bit ProAudioSpectrum models). It's extremely unlikely that such cards never get supported. Adding support for a new card requires much work and increases time required in maintaining the driver (some changes need to be done to all low level drivers and be tested too, maybe with multiple operating systems). For this reason I have made a decision to not support obsolete cards. It's possible that someone else makes a separately distributed driver (diffs) for the card. Version v3.6 will be much more modular so making separately distributed drivers will be easier with it. (The bad news is that v3.6 will not be available before summer -96). Writing a driver for a new card is not possible if there are no programming information available about the card. If you don't find your new card from this file, look from the home page (http://www.4front-tech.com/ossfree). Then please contact manufacturer of the card and ask if they have (or are willing to) released technical details of the card. Do this before contacting me. I can only answer 'no' if there are no programming information available. I have made decision to not accept code based on reverse engineering to the driver. There are three main reasons: First I don't want to break relationships to sound card manufacturers. The second reason is that maintaining and supporting a driver without any specs will be a pain. The third reason is that companies have freedom to refuse selling their products to other than Windows users. Some companies don't give low level technical information about their products to public or at least their require signing a NDA. It's not possible to implement a freeware driver for them. However it's possible that support for such cards become available in the commercial version of this driver (see http://www.4Front-tech.com/uss.html for more info). There are some common audio chipsets that are not supported yet. For example Sierra Aria and IBM Mwave. It's possible that these architectures get some support in future but I can't make any promises. Just look at the home page (http://www.4front-tech.com/ossfree/new_cards.html) for latest info. Information about unsupported soundcards and chipsets is welcome as well as free copies of soundcards, SDKs and operating systems. If you have any corrections and/or comments, please contact me. Hannu Savolainen hannu@4front-tech.com Personal home page: http://www.4front-tech.com/hannu.html www home page of OSS/Free: http://www.4front-tech.com/ossfree www home page of commercial Open Sound System drivers: http://www.4front-tech.com/oss.html |