Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// SPDX-License-Identifier: GPL-2.0
/*
 * 64-bit Periodic Interval Timer driver
 *
 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
 *
 * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
 */

#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>

#define MCHP_PIT64B_CR			0x00	/* Control Register */
#define MCHP_PIT64B_CR_START		BIT(0)
#define MCHP_PIT64B_CR_SWRST		BIT(8)

#define MCHP_PIT64B_MR			0x04	/* Mode Register */
#define MCHP_PIT64B_MR_CONT		BIT(0)
#define MCHP_PIT64B_MR_ONE_SHOT		(0)
#define MCHP_PIT64B_MR_SGCLK		BIT(3)
#define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)

#define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */

#define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */

#define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
#define MCHP_PIT64B_IER_PERIOD		BIT(0)

#define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */

#define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */

#define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */

#define MCHP_PIT64B_PRES_MAX		0x10
#define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
#define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
#define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
#define MCHP_PIT64B_DEF_FREQ		5000000UL	/* 5 MHz */

#define MCHP_PIT64B_NAME		"pit64b"

/**
 * struct mchp_pit64b_timer - PIT64B timer data structure
 * @base: base address of PIT64B hardware block
 * @pclk: PIT64B's peripheral clock
 * @gclk: PIT64B's generic clock
 * @mode: precomputed value for mode register
 */
struct mchp_pit64b_timer {
	void __iomem	*base;
	struct clk	*pclk;
	struct clk	*gclk;
	u32		mode;
};

/**
 * struct mchp_pit64b_clkevt - PIT64B clockevent data structure
 * @timer: PIT64B timer
 * @clkevt: clockevent
 */
struct mchp_pit64b_clkevt {
	struct mchp_pit64b_timer	timer;
	struct clock_event_device	clkevt;
};

#define clkevt_to_mchp_pit64b_timer(x) \
	((struct mchp_pit64b_timer *)container_of(x,\
		struct mchp_pit64b_clkevt, clkevt))

/**
 * struct mchp_pit64b_clksrc - PIT64B clocksource data structure
 * @timer: PIT64B timer
 * @clksrc: clocksource
 */
struct mchp_pit64b_clksrc {
	struct mchp_pit64b_timer	timer;
	struct clocksource		clksrc;
};

#define clksrc_to_mchp_pit64b_timer(x) \
	((struct mchp_pit64b_timer *)container_of(x,\
		struct mchp_pit64b_clksrc, clksrc))

/* Base address for clocksource timer. */
static void __iomem *mchp_pit64b_cs_base;
/* Default cycles for clockevent timer. */
static u64 mchp_pit64b_ce_cycles;
/* Delay timer. */
static struct delay_timer mchp_pit64b_dt;

static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
{
	unsigned long	flags;
	u32		low, high;

	raw_local_irq_save(flags);

	/*
	 * When using a 64 bit period TLSB must be read first, followed by the
	 * read of TMSB. This sequence generates an atomic read of the 64 bit
	 * timer value whatever the lapse of time between the accesses.
	 */
	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);

	raw_local_irq_restore(flags);

	return (((u64)high << 32) | low);
}

static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
				     u64 cycles, u32 mode, u32 irqs)
{
	u32 low, high;

	low = cycles & MCHP_PIT64B_LSBMASK;
	high = cycles >> 32;

	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
}

static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
{
	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
		clk_disable_unprepare(timer->gclk);
	clk_disable_unprepare(timer->pclk);
}

static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
{
	clk_prepare_enable(timer->pclk);
	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
		clk_prepare_enable(timer->gclk);
}

static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
{
	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);

	mchp_pit64b_suspend(timer);
}

static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
{
	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);

	mchp_pit64b_resume(timer);
	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
}

static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
{
	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
}

static u64 notrace mchp_pit64b_sched_read_clk(void)
{
	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
}

static unsigned long notrace mchp_pit64b_dt_read(void)
{
	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
}

static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
{
	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);

	if (!clockevent_state_detached(cedev))
		mchp_pit64b_suspend(timer);

	return 0;
}

static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
{
	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);

	if (clockevent_state_shutdown(cedev))
		mchp_pit64b_resume(timer);

	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
			  MCHP_PIT64B_IER_PERIOD);

	return 0;
}

static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev)
{
	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);

	if (clockevent_state_shutdown(cedev))
		mchp_pit64b_resume(timer);

	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT,
			  MCHP_PIT64B_IER_PERIOD);

	return 0;
}

static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
					     struct clock_event_device *cedev)
{
	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);

	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
			  MCHP_PIT64B_IER_PERIOD);

	return 0;
}

static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
{
	struct mchp_pit64b_clkevt *irq_data = dev_id;

	/* Need to clear the interrupt. */
	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);

	irq_data->clkevt.event_handler(&irq_data->clkevt);

	return IRQ_HANDLED;
}

static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
					    u32 max_rate)
{
	u32 tmp;

	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
		tmp = clk_rate / (*pres + 1);
		if (tmp <= max_rate)
			break;
	}

	/* Use the biggest prescaler if we didn't match one. */
	if (*pres == MCHP_PIT64B_PRES_MAX)
		*pres = MCHP_PIT64B_PRES_MAX - 1;
}

/**
 * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at
 *			     runtime; this includes prescaler and SGCLK bit
 * @timer: pointer to pit64b timer to init
 * @max_rate: maximum rate that timer's clock could use
 *
 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
 * divided by the internal PIT64B's divider.
 *
 * This function, first tries to use GCLK by requesting the desired rate from
 * PMC and then using the internal PIT64B prescaler, if any, to reach the
 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
 * then the function falls back on using PCLK as clock source for PIT64B timer
 * choosing the highest prescaler in case it doesn't locate one to match the
 * requested frequency.
 *
 * Below is presented the PIT64B block in relation with PMC:
 *
 *                                PIT64B
 *  PMC             +------------------------------------+
 * +----+           |   +-----+                          |
 * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
 * |    |           |   | MUX |--->| Divider |->|timer|  |
 * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
 * +----+           |   +-----+                          |
 *                  |      ^                             |
 *                  |     sel                            |
 *                  +------------------------------------+
 *
 * Where:
 *	- gclk rate <= pclk rate/3
 *	- gclk rate could be requested from PMC
 *	- pclk rate is fixed (cannot be requested from PMC)
 */
static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
					unsigned long max_rate)
{
	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
	long gclk_round = 0;
	u32 pres, best_pres = 0;

	pclk_rate = clk_get_rate(timer->pclk);
	if (!pclk_rate)
		return -EINVAL;

	timer->mode = 0;

	/* Try using GCLK. */
	gclk_round = clk_round_rate(timer->gclk, max_rate);
	if (gclk_round < 0)
		goto pclk;

	if (pclk_rate / gclk_round < 3)
		goto pclk;

	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
	best_diff = abs(gclk_round / (pres + 1) - max_rate);
	best_pres = pres;

	if (!best_diff) {
		timer->mode |= MCHP_PIT64B_MR_SGCLK;
		clk_set_rate(timer->gclk, gclk_round);
		goto done;
	}

pclk:
	/* Check if requested rate could be obtained using PCLK. */
	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
	diff = abs(pclk_rate / (pres + 1) - max_rate);

	if (best_diff > diff) {
		/* Use PCLK. */
		best_pres = pres;
	} else {
		/* Use GCLK. */
		timer->mode |= MCHP_PIT64B_MR_SGCLK;
		clk_set_rate(timer->gclk, gclk_round);
	}

done:
	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);

	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
		timer->mode & MCHP_PIT64B_MR_SGCLK ?
		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));

	return 0;
}

static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
					  u32 clk_rate)
{
	struct mchp_pit64b_clksrc *cs;
	int ret;

	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return -ENOMEM;

	mchp_pit64b_resume(timer);
	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);

	mchp_pit64b_cs_base = timer->base;

	cs->timer.base = timer->base;
	cs->timer.pclk = timer->pclk;
	cs->timer.gclk = timer->gclk;
	cs->timer.mode = timer->mode;
	cs->clksrc.name = MCHP_PIT64B_NAME;
	cs->clksrc.mask = CLOCKSOURCE_MASK(64);
	cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
	cs->clksrc.rating = 210;
	cs->clksrc.read = mchp_pit64b_clksrc_read;
	cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
	cs->clksrc.resume = mchp_pit64b_clksrc_resume;

	ret = clocksource_register_hz(&cs->clksrc, clk_rate);
	if (ret) {
		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");

		/* Stop timer. */
		mchp_pit64b_suspend(timer);
		kfree(cs);

		return ret;
	}

	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);

	mchp_pit64b_dt.read_current_timer = mchp_pit64b_dt_read;
	mchp_pit64b_dt.freq = clk_rate;
	register_current_timer_delay(&mchp_pit64b_dt);

	return 0;
}

static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
					  u32 clk_rate, u32 irq)
{
	struct mchp_pit64b_clkevt *ce;
	int ret;

	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
	if (!ce)
		return -ENOMEM;

	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);

	ce->timer.base = timer->base;
	ce->timer.pclk = timer->pclk;
	ce->timer.gclk = timer->gclk;
	ce->timer.mode = timer->mode;
	ce->clkevt.name = MCHP_PIT64B_NAME;
	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
	ce->clkevt.rating = 150;
	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
	ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot;
	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
	ce->clkevt.cpumask = cpumask_of(0);
	ce->clkevt.irq = irq;

	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
			  "pit64b_tick", ce);
	if (ret) {
		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
		kfree(ce);
		return ret;
	}

	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);

	return 0;
}

static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
					    bool clkevt)
{
	struct mchp_pit64b_timer timer;
	unsigned long clk_rate;
	u32 irq = 0;
	int ret;

	/* Parse DT node. */
	timer.pclk = of_clk_get_by_name(node, "pclk");
	if (IS_ERR(timer.pclk))
		return PTR_ERR(timer.pclk);

	timer.gclk = of_clk_get_by_name(node, "gclk");
	if (IS_ERR(timer.gclk))
		return PTR_ERR(timer.gclk);

	timer.base = of_iomap(node, 0);
	if (!timer.base)
		return -ENXIO;

	if (clkevt) {
		irq = irq_of_parse_and_map(node, 0);
		if (!irq) {
			ret = -ENODEV;
			goto io_unmap;
		}
	}

	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
	ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ);
	if (ret)
		goto irq_unmap;

	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
		clk_rate = clk_get_rate(timer.gclk);
	else
		clk_rate = clk_get_rate(timer.pclk);
	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);

	if (clkevt)
		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
	else
		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);

	if (ret)
		goto irq_unmap;

	return 0;

irq_unmap:
	irq_dispose_mapping(irq);
io_unmap:
	iounmap(timer.base);

	return ret;
}

static int __init mchp_pit64b_dt_init(struct device_node *node)
{
	static int inits;

	switch (inits++) {
	case 0:
		/* 1st request, register clockevent. */
		return mchp_pit64b_dt_init_timer(node, true);
	case 1:
		/* 2nd request, register clocksource. */
		return mchp_pit64b_dt_init_timer(node, false);
	}

	/* The rest, don't care. */
	return -EINVAL;
}

TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);