Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | // SPDX-License-Identifier: GPL-2.0 /* * 64-bit Periodic Interval Timer driver * * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries * * Author: Claudiu Beznea <claudiu.beznea@microchip.com> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> #define MCHP_PIT64B_CR 0x00 /* Control Register */ #define MCHP_PIT64B_CR_START BIT(0) #define MCHP_PIT64B_CR_SWRST BIT(8) #define MCHP_PIT64B_MR 0x04 /* Mode Register */ #define MCHP_PIT64B_MR_CONT BIT(0) #define MCHP_PIT64B_MR_ONE_SHOT (0) #define MCHP_PIT64B_MR_SGCLK BIT(3) #define MCHP_PIT64B_MR_PRES GENMASK(11, 8) #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */ #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */ #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */ #define MCHP_PIT64B_IER_PERIOD BIT(0) #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */ #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */ #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */ #define MCHP_PIT64B_PRES_MAX 0x10 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0) #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8)) #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8) #define MCHP_PIT64B_DEF_FREQ 5000000UL /* 5 MHz */ #define MCHP_PIT64B_NAME "pit64b" /** * struct mchp_pit64b_timer - PIT64B timer data structure * @base: base address of PIT64B hardware block * @pclk: PIT64B's peripheral clock * @gclk: PIT64B's generic clock * @mode: precomputed value for mode register */ struct mchp_pit64b_timer { void __iomem *base; struct clk *pclk; struct clk *gclk; u32 mode; }; /** * struct mchp_pit64b_clkevt - PIT64B clockevent data structure * @timer: PIT64B timer * @clkevt: clockevent */ struct mchp_pit64b_clkevt { struct mchp_pit64b_timer timer; struct clock_event_device clkevt; }; #define clkevt_to_mchp_pit64b_timer(x) \ ((struct mchp_pit64b_timer *)container_of(x,\ struct mchp_pit64b_clkevt, clkevt)) /** * struct mchp_pit64b_clksrc - PIT64B clocksource data structure * @timer: PIT64B timer * @clksrc: clocksource */ struct mchp_pit64b_clksrc { struct mchp_pit64b_timer timer; struct clocksource clksrc; }; #define clksrc_to_mchp_pit64b_timer(x) \ ((struct mchp_pit64b_timer *)container_of(x,\ struct mchp_pit64b_clksrc, clksrc)) /* Base address for clocksource timer. */ static void __iomem *mchp_pit64b_cs_base; /* Default cycles for clockevent timer. */ static u64 mchp_pit64b_ce_cycles; static inline u64 mchp_pit64b_cnt_read(void __iomem *base) { unsigned long flags; u32 low, high; raw_local_irq_save(flags); /* * When using a 64 bit period TLSB must be read first, followed by the * read of TMSB. This sequence generates an atomic read of the 64 bit * timer value whatever the lapse of time between the accesses. */ low = readl_relaxed(base + MCHP_PIT64B_TLSBR); high = readl_relaxed(base + MCHP_PIT64B_TMSBR); raw_local_irq_restore(flags); return (((u64)high << 32) | low); } static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer, u64 cycles, u32 mode, u32 irqs) { u32 low, high; low = cycles & MCHP_PIT64B_LSBMASK; high = cycles >> 32; writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR); writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR); writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR); writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER); writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR); } static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer) { writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); if (timer->mode & MCHP_PIT64B_MR_SGCLK) clk_disable_unprepare(timer->gclk); clk_disable_unprepare(timer->pclk); } static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer) { clk_prepare_enable(timer->pclk); if (timer->mode & MCHP_PIT64B_MR_SGCLK) clk_prepare_enable(timer->gclk); } static void mchp_pit64b_clksrc_suspend(struct clocksource *cs) { struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); mchp_pit64b_suspend(timer); } static void mchp_pit64b_clksrc_resume(struct clocksource *cs) { struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); } static u64 mchp_pit64b_clksrc_read(struct clocksource *cs) { return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); } static u64 notrace mchp_pit64b_sched_read_clk(void) { return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); } static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); if (!clockevent_state_detached(cedev)) mchp_pit64b_suspend(timer); return 0; } static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); if (clockevent_state_shutdown(cedev)) mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT, MCHP_PIT64B_IER_PERIOD); return 0; } static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); if (clockevent_state_shutdown(cedev)) mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT, MCHP_PIT64B_IER_PERIOD); return 0; } static int mchp_pit64b_clkevt_set_next_event(unsigned long evt, struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT, MCHP_PIT64B_IER_PERIOD); return 0; } static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id) { struct mchp_pit64b_clkevt *irq_data = dev_id; /* Need to clear the interrupt. */ readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR); irq_data->clkevt.event_handler(&irq_data->clkevt); return IRQ_HANDLED; } static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate, u32 max_rate) { u32 tmp; for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) { tmp = clk_rate / (*pres + 1); if (tmp <= max_rate) break; } /* Use the biggest prescaler if we didn't match one. */ if (*pres == MCHP_PIT64B_PRES_MAX) *pres = MCHP_PIT64B_PRES_MAX - 1; } /** * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at * runtime; this includes prescaler and SGCLK bit * @timer: pointer to pit64b timer to init * @max_rate: maximum rate that timer's clock could use * * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate * could be changed via clock APIs. The chosen clock (pclk or gclk) could be * divided by the internal PIT64B's divider. * * This function, first tries to use GCLK by requesting the desired rate from * PMC and then using the internal PIT64B prescaler, if any, to reach the * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware) * then the function falls back on using PCLK as clock source for PIT64B timer * choosing the highest prescaler in case it doesn't locate one to match the * requested frequency. * * Below is presented the PIT64B block in relation with PMC: * * PIT64B * PMC +------------------------------------+ * +----+ | +-----+ | * | |-->gclk -->|-->| | +---------+ +-----+ | * | | | | MUX |--->| Divider |->|timer| | * | |-->pclk -->|-->| | +---------+ +-----+ | * +----+ | +-----+ | * | ^ | * | sel | * +------------------------------------+ * * Where: * - gclk rate <= pclk rate/3 * - gclk rate could be requested from PMC * - pclk rate is fixed (cannot be requested from PMC) */ static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer, unsigned long max_rate) { unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX; long gclk_round = 0; u32 pres, best_pres = 0; pclk_rate = clk_get_rate(timer->pclk); if (!pclk_rate) return -EINVAL; timer->mode = 0; /* Try using GCLK. */ gclk_round = clk_round_rate(timer->gclk, max_rate); if (gclk_round < 0) goto pclk; if (pclk_rate / gclk_round < 3) goto pclk; mchp_pit64b_pres_compute(&pres, gclk_round, max_rate); best_diff = abs(gclk_round / (pres + 1) - max_rate); best_pres = pres; if (!best_diff) { timer->mode |= MCHP_PIT64B_MR_SGCLK; clk_set_rate(timer->gclk, gclk_round); goto done; } pclk: /* Check if requested rate could be obtained using PCLK. */ mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate); diff = abs(pclk_rate / (pres + 1) - max_rate); if (best_diff > diff) { /* Use PCLK. */ best_pres = pres; } else { /* Use GCLK. */ timer->mode |= MCHP_PIT64B_MR_SGCLK; clk_set_rate(timer->gclk, gclk_round); } done: timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres); pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n", timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres, timer->mode & MCHP_PIT64B_MR_SGCLK ? gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1)); return 0; } static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer, u32 clk_rate) { struct mchp_pit64b_clksrc *cs; int ret; cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return -ENOMEM; mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); mchp_pit64b_cs_base = timer->base; cs->timer.base = timer->base; cs->timer.pclk = timer->pclk; cs->timer.gclk = timer->gclk; cs->timer.mode = timer->mode; cs->clksrc.name = MCHP_PIT64B_NAME; cs->clksrc.mask = CLOCKSOURCE_MASK(64); cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; cs->clksrc.rating = 210; cs->clksrc.read = mchp_pit64b_clksrc_read; cs->clksrc.suspend = mchp_pit64b_clksrc_suspend; cs->clksrc.resume = mchp_pit64b_clksrc_resume; ret = clocksource_register_hz(&cs->clksrc, clk_rate); if (ret) { pr_debug("clksrc: Failed to register PIT64B clocksource!\n"); /* Stop timer. */ mchp_pit64b_suspend(timer); kfree(cs); return ret; } sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate); return 0; } static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer, u32 clk_rate, u32 irq) { struct mchp_pit64b_clkevt *ce; int ret; ce = kzalloc(sizeof(*ce), GFP_KERNEL); if (!ce) return -ENOMEM; mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ); ce->timer.base = timer->base; ce->timer.pclk = timer->pclk; ce->timer.gclk = timer->gclk; ce->timer.mode = timer->mode; ce->clkevt.name = MCHP_PIT64B_NAME; ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; ce->clkevt.rating = 150; ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown; ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic; ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot; ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event; ce->clkevt.cpumask = cpumask_of(0); ce->clkevt.irq = irq; ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER, "pit64b_tick", ce); if (ret) { pr_debug("clkevt: Failed to setup PIT64B IRQ\n"); kfree(ce); return ret; } clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX); return 0; } static int __init mchp_pit64b_dt_init_timer(struct device_node *node, bool clkevt) { struct mchp_pit64b_timer timer; unsigned long clk_rate; u32 irq = 0; int ret; /* Parse DT node. */ timer.pclk = of_clk_get_by_name(node, "pclk"); if (IS_ERR(timer.pclk)) return PTR_ERR(timer.pclk); timer.gclk = of_clk_get_by_name(node, "gclk"); if (IS_ERR(timer.gclk)) return PTR_ERR(timer.gclk); timer.base = of_iomap(node, 0); if (!timer.base) return -ENXIO; if (clkevt) { irq = irq_of_parse_and_map(node, 0); if (!irq) { ret = -ENODEV; goto io_unmap; } } /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */ ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ); if (ret) goto irq_unmap; if (timer.mode & MCHP_PIT64B_MR_SGCLK) clk_rate = clk_get_rate(timer.gclk); else clk_rate = clk_get_rate(timer.pclk); clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1); if (clkevt) ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq); else ret = mchp_pit64b_init_clksrc(&timer, clk_rate); if (ret) goto irq_unmap; return 0; irq_unmap: irq_dispose_mapping(irq); io_unmap: iounmap(timer.base); return ret; } static int __init mchp_pit64b_dt_init(struct device_node *node) { static int inits; switch (inits++) { case 0: /* 1st request, register clockevent. */ return mchp_pit64b_dt_init_timer(node, true); case 1: /* 2nd request, register clocksource. */ return mchp_pit64b_dt_init_timer(node, false); } /* The rest, don't care. */ return -EINVAL; } TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init); |