Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
// SPDX-License-Identifier: GPL-2.0
/*
 * Data Access Monitor
 *
 * Author: SeongJae Park <sj@kernel.org>
 */

#define pr_fmt(fmt) "damon: " fmt

#include <linux/damon.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/string.h>

#define CREATE_TRACE_POINTS
#include <trace/events/damon.h>

#ifdef CONFIG_DAMON_KUNIT_TEST
#undef DAMON_MIN_REGION
#define DAMON_MIN_REGION 1
#endif

static DEFINE_MUTEX(damon_lock);
static int nr_running_ctxs;
static bool running_exclusive_ctxs;

static DEFINE_MUTEX(damon_ops_lock);
static struct damon_operations damon_registered_ops[NR_DAMON_OPS];

static struct kmem_cache *damon_region_cache __ro_after_init;

/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
static bool __damon_is_registered_ops(enum damon_ops_id id)
{
	struct damon_operations empty_ops = {};

	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
		return false;
	return true;
}

/**
 * damon_is_registered_ops() - Check if a given damon_operations is registered.
 * @id:	Id of the damon_operations to check if registered.
 *
 * Return: true if the ops is set, false otherwise.
 */
bool damon_is_registered_ops(enum damon_ops_id id)
{
	bool registered;

	if (id >= NR_DAMON_OPS)
		return false;
	mutex_lock(&damon_ops_lock);
	registered = __damon_is_registered_ops(id);
	mutex_unlock(&damon_ops_lock);
	return registered;
}

/**
 * damon_register_ops() - Register a monitoring operations set to DAMON.
 * @ops:	monitoring operations set to register.
 *
 * This function registers a monitoring operations set of valid &struct
 * damon_operations->id so that others can find and use them later.
 *
 * Return: 0 on success, negative error code otherwise.
 */
int damon_register_ops(struct damon_operations *ops)
{
	int err = 0;

	if (ops->id >= NR_DAMON_OPS)
		return -EINVAL;
	mutex_lock(&damon_ops_lock);
	/* Fail for already registered ops */
	if (__damon_is_registered_ops(ops->id)) {
		err = -EINVAL;
		goto out;
	}
	damon_registered_ops[ops->id] = *ops;
out:
	mutex_unlock(&damon_ops_lock);
	return err;
}

/**
 * damon_select_ops() - Select a monitoring operations to use with the context.
 * @ctx:	monitoring context to use the operations.
 * @id:		id of the registered monitoring operations to select.
 *
 * This function finds registered monitoring operations set of @id and make
 * @ctx to use it.
 *
 * Return: 0 on success, negative error code otherwise.
 */
int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
{
	int err = 0;

	if (id >= NR_DAMON_OPS)
		return -EINVAL;

	mutex_lock(&damon_ops_lock);
	if (!__damon_is_registered_ops(id))
		err = -EINVAL;
	else
		ctx->ops = damon_registered_ops[id];
	mutex_unlock(&damon_ops_lock);
	return err;
}

/*
 * Construct a damon_region struct
 *
 * Returns the pointer to the new struct if success, or NULL otherwise
 */
struct damon_region *damon_new_region(unsigned long start, unsigned long end)
{
	struct damon_region *region;

	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
	if (!region)
		return NULL;

	region->ar.start = start;
	region->ar.end = end;
	region->nr_accesses = 0;
	region->nr_accesses_bp = 0;
	INIT_LIST_HEAD(&region->list);

	region->age = 0;
	region->last_nr_accesses = 0;

	return region;
}

void damon_add_region(struct damon_region *r, struct damon_target *t)
{
	list_add_tail(&r->list, &t->regions_list);
	t->nr_regions++;
}

static void damon_del_region(struct damon_region *r, struct damon_target *t)
{
	list_del(&r->list);
	t->nr_regions--;
}

static void damon_free_region(struct damon_region *r)
{
	kmem_cache_free(damon_region_cache, r);
}

void damon_destroy_region(struct damon_region *r, struct damon_target *t)
{
	damon_del_region(r, t);
	damon_free_region(r);
}

/*
 * Check whether a region is intersecting an address range
 *
 * Returns true if it is.
 */
static bool damon_intersect(struct damon_region *r,
		struct damon_addr_range *re)
{
	return !(r->ar.end <= re->start || re->end <= r->ar.start);
}

/*
 * Fill holes in regions with new regions.
 */
static int damon_fill_regions_holes(struct damon_region *first,
		struct damon_region *last, struct damon_target *t)
{
	struct damon_region *r = first;

	damon_for_each_region_from(r, t) {
		struct damon_region *next, *newr;

		if (r == last)
			break;
		next = damon_next_region(r);
		if (r->ar.end != next->ar.start) {
			newr = damon_new_region(r->ar.end, next->ar.start);
			if (!newr)
				return -ENOMEM;
			damon_insert_region(newr, r, next, t);
		}
	}
	return 0;
}

/*
 * damon_set_regions() - Set regions of a target for given address ranges.
 * @t:		the given target.
 * @ranges:	array of new monitoring target ranges.
 * @nr_ranges:	length of @ranges.
 *
 * This function adds new regions to, or modify existing regions of a
 * monitoring target to fit in specific ranges.
 *
 * Return: 0 if success, or negative error code otherwise.
 */
int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
		unsigned int nr_ranges)
{
	struct damon_region *r, *next;
	unsigned int i;
	int err;

	/* Remove regions which are not in the new ranges */
	damon_for_each_region_safe(r, next, t) {
		for (i = 0; i < nr_ranges; i++) {
			if (damon_intersect(r, &ranges[i]))
				break;
		}
		if (i == nr_ranges)
			damon_destroy_region(r, t);
	}

	r = damon_first_region(t);
	/* Add new regions or resize existing regions to fit in the ranges */
	for (i = 0; i < nr_ranges; i++) {
		struct damon_region *first = NULL, *last, *newr;
		struct damon_addr_range *range;

		range = &ranges[i];
		/* Get the first/last regions intersecting with the range */
		damon_for_each_region_from(r, t) {
			if (damon_intersect(r, range)) {
				if (!first)
					first = r;
				last = r;
			}
			if (r->ar.start >= range->end)
				break;
		}
		if (!first) {
			/* no region intersects with this range */
			newr = damon_new_region(
					ALIGN_DOWN(range->start,
						DAMON_MIN_REGION),
					ALIGN(range->end, DAMON_MIN_REGION));
			if (!newr)
				return -ENOMEM;
			damon_insert_region(newr, damon_prev_region(r), r, t);
		} else {
			/* resize intersecting regions to fit in this range */
			first->ar.start = ALIGN_DOWN(range->start,
					DAMON_MIN_REGION);
			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);

			/* fill possible holes in the range */
			err = damon_fill_regions_holes(first, last, t);
			if (err)
				return err;
		}
	}
	return 0;
}

struct damos_filter *damos_new_filter(enum damos_filter_type type,
		bool matching)
{
	struct damos_filter *filter;

	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
	if (!filter)
		return NULL;
	filter->type = type;
	filter->matching = matching;
	INIT_LIST_HEAD(&filter->list);
	return filter;
}

void damos_add_filter(struct damos *s, struct damos_filter *f)
{
	list_add_tail(&f->list, &s->filters);
}

static void damos_del_filter(struct damos_filter *f)
{
	list_del(&f->list);
}

static void damos_free_filter(struct damos_filter *f)
{
	kfree(f);
}

void damos_destroy_filter(struct damos_filter *f)
{
	damos_del_filter(f);
	damos_free_filter(f);
}

/* initialize private fields of damos_quota and return the pointer */
static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
{
	quota->total_charged_sz = 0;
	quota->total_charged_ns = 0;
	quota->esz = 0;
	quota->charged_sz = 0;
	quota->charged_from = 0;
	quota->charge_target_from = NULL;
	quota->charge_addr_from = 0;
	return quota;
}

struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
			enum damos_action action,
			unsigned long apply_interval_us,
			struct damos_quota *quota,
			struct damos_watermarks *wmarks)
{
	struct damos *scheme;

	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
	if (!scheme)
		return NULL;
	scheme->pattern = *pattern;
	scheme->action = action;
	scheme->apply_interval_us = apply_interval_us;
	/*
	 * next_apply_sis will be set when kdamond starts.  While kdamond is
	 * running, it will also updated when it is added to the DAMON context,
	 * or damon_attrs are updated.
	 */
	scheme->next_apply_sis = 0;
	INIT_LIST_HEAD(&scheme->filters);
	scheme->stat = (struct damos_stat){};
	INIT_LIST_HEAD(&scheme->list);

	scheme->quota = *(damos_quota_init_priv(quota));

	scheme->wmarks = *wmarks;
	scheme->wmarks.activated = true;

	return scheme;
}

static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
{
	unsigned long sample_interval = ctx->attrs.sample_interval ?
		ctx->attrs.sample_interval : 1;
	unsigned long apply_interval = s->apply_interval_us ?
		s->apply_interval_us : ctx->attrs.aggr_interval;

	s->next_apply_sis = ctx->passed_sample_intervals +
		apply_interval / sample_interval;
}

void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
{
	list_add_tail(&s->list, &ctx->schemes);
	damos_set_next_apply_sis(s, ctx);
}

static void damon_del_scheme(struct damos *s)
{
	list_del(&s->list);
}

static void damon_free_scheme(struct damos *s)
{
	kfree(s);
}

void damon_destroy_scheme(struct damos *s)
{
	struct damos_filter *f, *next;

	damos_for_each_filter_safe(f, next, s)
		damos_destroy_filter(f);
	damon_del_scheme(s);
	damon_free_scheme(s);
}

/*
 * Construct a damon_target struct
 *
 * Returns the pointer to the new struct if success, or NULL otherwise
 */
struct damon_target *damon_new_target(void)
{
	struct damon_target *t;

	t = kmalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return NULL;

	t->pid = NULL;
	t->nr_regions = 0;
	INIT_LIST_HEAD(&t->regions_list);
	INIT_LIST_HEAD(&t->list);

	return t;
}

void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
{
	list_add_tail(&t->list, &ctx->adaptive_targets);
}

bool damon_targets_empty(struct damon_ctx *ctx)
{
	return list_empty(&ctx->adaptive_targets);
}

static void damon_del_target(struct damon_target *t)
{
	list_del(&t->list);
}

void damon_free_target(struct damon_target *t)
{
	struct damon_region *r, *next;

	damon_for_each_region_safe(r, next, t)
		damon_free_region(r);
	kfree(t);
}

void damon_destroy_target(struct damon_target *t)
{
	damon_del_target(t);
	damon_free_target(t);
}

unsigned int damon_nr_regions(struct damon_target *t)
{
	return t->nr_regions;
}

struct damon_ctx *damon_new_ctx(void)
{
	struct damon_ctx *ctx;

	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return NULL;

	init_completion(&ctx->kdamond_started);

	ctx->attrs.sample_interval = 5 * 1000;
	ctx->attrs.aggr_interval = 100 * 1000;
	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;

	ctx->passed_sample_intervals = 0;
	/* These will be set from kdamond_init_intervals_sis() */
	ctx->next_aggregation_sis = 0;
	ctx->next_ops_update_sis = 0;

	mutex_init(&ctx->kdamond_lock);

	ctx->attrs.min_nr_regions = 10;
	ctx->attrs.max_nr_regions = 1000;

	INIT_LIST_HEAD(&ctx->adaptive_targets);
	INIT_LIST_HEAD(&ctx->schemes);

	return ctx;
}

static void damon_destroy_targets(struct damon_ctx *ctx)
{
	struct damon_target *t, *next_t;

	if (ctx->ops.cleanup) {
		ctx->ops.cleanup(ctx);
		return;
	}

	damon_for_each_target_safe(t, next_t, ctx)
		damon_destroy_target(t);
}

void damon_destroy_ctx(struct damon_ctx *ctx)
{
	struct damos *s, *next_s;

	damon_destroy_targets(ctx);

	damon_for_each_scheme_safe(s, next_s, ctx)
		damon_destroy_scheme(s);

	kfree(ctx);
}

static unsigned int damon_age_for_new_attrs(unsigned int age,
		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
{
	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
}

/* convert access ratio in bp (per 10,000) to nr_accesses */
static unsigned int damon_accesses_bp_to_nr_accesses(
		unsigned int accesses_bp, struct damon_attrs *attrs)
{
	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
}

/* convert nr_accesses to access ratio in bp (per 10,000) */
static unsigned int damon_nr_accesses_to_accesses_bp(
		unsigned int nr_accesses, struct damon_attrs *attrs)
{
	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
}

static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
{
	return damon_accesses_bp_to_nr_accesses(
			damon_nr_accesses_to_accesses_bp(
				nr_accesses, old_attrs),
			new_attrs);
}

static void damon_update_monitoring_result(struct damon_region *r,
		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
{
	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
			old_attrs, new_attrs);
	r->nr_accesses_bp = r->nr_accesses * 10000;
	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
}

/*
 * region->nr_accesses is the number of sampling intervals in the last
 * aggregation interval that access to the region has found, and region->age is
 * the number of aggregation intervals that its access pattern has maintained.
 * For the reason, the real meaning of the two fields depend on current
 * sampling interval and aggregation interval.  This function updates
 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
 */
static void damon_update_monitoring_results(struct damon_ctx *ctx,
		struct damon_attrs *new_attrs)
{
	struct damon_attrs *old_attrs = &ctx->attrs;
	struct damon_target *t;
	struct damon_region *r;

	/* if any interval is zero, simply forgive conversion */
	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
			!new_attrs->sample_interval ||
			!new_attrs->aggr_interval)
		return;

	damon_for_each_target(t, ctx)
		damon_for_each_region(r, t)
			damon_update_monitoring_result(
					r, old_attrs, new_attrs);
}

/**
 * damon_set_attrs() - Set attributes for the monitoring.
 * @ctx:		monitoring context
 * @attrs:		monitoring attributes
 *
 * This function should be called while the kdamond is not running, or an
 * access check results aggregation is not ongoing (e.g., from
 * &struct damon_callback->after_aggregation or
 * &struct damon_callback->after_wmarks_check callbacks).
 *
 * Every time interval is in micro-seconds.
 *
 * Return: 0 on success, negative error code otherwise.
 */
int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
{
	unsigned long sample_interval = attrs->sample_interval ?
		attrs->sample_interval : 1;
	struct damos *s;

	if (attrs->min_nr_regions < 3)
		return -EINVAL;
	if (attrs->min_nr_regions > attrs->max_nr_regions)
		return -EINVAL;
	if (attrs->sample_interval > attrs->aggr_interval)
		return -EINVAL;

	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
		attrs->aggr_interval / sample_interval;
	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
		attrs->ops_update_interval / sample_interval;

	damon_update_monitoring_results(ctx, attrs);
	ctx->attrs = *attrs;

	damon_for_each_scheme(s, ctx)
		damos_set_next_apply_sis(s, ctx);

	return 0;
}

/**
 * damon_set_schemes() - Set data access monitoring based operation schemes.
 * @ctx:	monitoring context
 * @schemes:	array of the schemes
 * @nr_schemes:	number of entries in @schemes
 *
 * This function should not be called while the kdamond of the context is
 * running.
 */
void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
			ssize_t nr_schemes)
{
	struct damos *s, *next;
	ssize_t i;

	damon_for_each_scheme_safe(s, next, ctx)
		damon_destroy_scheme(s);
	for (i = 0; i < nr_schemes; i++)
		damon_add_scheme(ctx, schemes[i]);
}

/**
 * damon_nr_running_ctxs() - Return number of currently running contexts.
 */
int damon_nr_running_ctxs(void)
{
	int nr_ctxs;

	mutex_lock(&damon_lock);
	nr_ctxs = nr_running_ctxs;
	mutex_unlock(&damon_lock);

	return nr_ctxs;
}

/* Returns the size upper limit for each monitoring region */
static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
{
	struct damon_target *t;
	struct damon_region *r;
	unsigned long sz = 0;

	damon_for_each_target(t, ctx) {
		damon_for_each_region(r, t)
			sz += damon_sz_region(r);
	}

	if (ctx->attrs.min_nr_regions)
		sz /= ctx->attrs.min_nr_regions;
	if (sz < DAMON_MIN_REGION)
		sz = DAMON_MIN_REGION;

	return sz;
}

static int kdamond_fn(void *data);

/*
 * __damon_start() - Starts monitoring with given context.
 * @ctx:	monitoring context
 *
 * This function should be called while damon_lock is hold.
 *
 * Return: 0 on success, negative error code otherwise.
 */
static int __damon_start(struct damon_ctx *ctx)
{
	int err = -EBUSY;

	mutex_lock(&ctx->kdamond_lock);
	if (!ctx->kdamond) {
		err = 0;
		reinit_completion(&ctx->kdamond_started);
		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
				nr_running_ctxs);
		if (IS_ERR(ctx->kdamond)) {
			err = PTR_ERR(ctx->kdamond);
			ctx->kdamond = NULL;
		} else {
			wait_for_completion(&ctx->kdamond_started);
		}
	}
	mutex_unlock(&ctx->kdamond_lock);

	return err;
}

/**
 * damon_start() - Starts the monitorings for a given group of contexts.
 * @ctxs:	an array of the pointers for contexts to start monitoring
 * @nr_ctxs:	size of @ctxs
 * @exclusive:	exclusiveness of this contexts group
 *
 * This function starts a group of monitoring threads for a group of monitoring
 * contexts.  One thread per each context is created and run in parallel.  The
 * caller should handle synchronization between the threads by itself.  If
 * @exclusive is true and a group of threads that created by other
 * 'damon_start()' call is currently running, this function does nothing but
 * returns -EBUSY.
 *
 * Return: 0 on success, negative error code otherwise.
 */
int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
{
	int i;
	int err = 0;

	mutex_lock(&damon_lock);
	if ((exclusive && nr_running_ctxs) ||
			(!exclusive && running_exclusive_ctxs)) {
		mutex_unlock(&damon_lock);
		return -EBUSY;
	}

	for (i = 0; i < nr_ctxs; i++) {
		err = __damon_start(ctxs[i]);
		if (err)
			break;
		nr_running_ctxs++;
	}
	if (exclusive && nr_running_ctxs)
		running_exclusive_ctxs = true;
	mutex_unlock(&damon_lock);

	return err;
}

/*
 * __damon_stop() - Stops monitoring of a given context.
 * @ctx:	monitoring context
 *
 * Return: 0 on success, negative error code otherwise.
 */
static int __damon_stop(struct damon_ctx *ctx)
{
	struct task_struct *tsk;

	mutex_lock(&ctx->kdamond_lock);
	tsk = ctx->kdamond;
	if (tsk) {
		get_task_struct(tsk);
		mutex_unlock(&ctx->kdamond_lock);
		kthread_stop_put(tsk);
		return 0;
	}
	mutex_unlock(&ctx->kdamond_lock);

	return -EPERM;
}

/**
 * damon_stop() - Stops the monitorings for a given group of contexts.
 * @ctxs:	an array of the pointers for contexts to stop monitoring
 * @nr_ctxs:	size of @ctxs
 *
 * Return: 0 on success, negative error code otherwise.
 */
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
{
	int i, err = 0;

	for (i = 0; i < nr_ctxs; i++) {
		/* nr_running_ctxs is decremented in kdamond_fn */
		err = __damon_stop(ctxs[i]);
		if (err)
			break;
	}
	return err;
}

/*
 * Reset the aggregated monitoring results ('nr_accesses' of each region).
 */
static void kdamond_reset_aggregated(struct damon_ctx *c)
{
	struct damon_target *t;
	unsigned int ti = 0;	/* target's index */

	damon_for_each_target(t, c) {
		struct damon_region *r;

		damon_for_each_region(r, t) {
			trace_damon_aggregated(ti, r, damon_nr_regions(t));
			r->last_nr_accesses = r->nr_accesses;
			r->nr_accesses = 0;
		}
		ti++;
	}
}

static void damon_split_region_at(struct damon_target *t,
				  struct damon_region *r, unsigned long sz_r);

static bool __damos_valid_target(struct damon_region *r, struct damos *s)
{
	unsigned long sz;
	unsigned int nr_accesses = r->nr_accesses_bp / 10000;

	sz = damon_sz_region(r);
	return s->pattern.min_sz_region <= sz &&
		sz <= s->pattern.max_sz_region &&
		s->pattern.min_nr_accesses <= nr_accesses &&
		nr_accesses <= s->pattern.max_nr_accesses &&
		s->pattern.min_age_region <= r->age &&
		r->age <= s->pattern.max_age_region;
}

static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
		struct damon_region *r, struct damos *s)
{
	bool ret = __damos_valid_target(r, s);

	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
		return ret;

	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
}

/*
 * damos_skip_charged_region() - Check if the given region or starting part of
 * it is already charged for the DAMOS quota.
 * @t:	The target of the region.
 * @rp:	The pointer to the region.
 * @s:	The scheme to be applied.
 *
 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
 * action would applied to only a part of the target access pattern fulfilling
 * regions.  To avoid applying the scheme action to only already applied
 * regions, DAMON skips applying the scheme action to the regions that charged
 * in the previous charge window.
 *
 * This function checks if a given region should be skipped or not for the
 * reason.  If only the starting part of the region has previously charged,
 * this function splits the region into two so that the second one covers the
 * area that not charged in the previous charge widnow and saves the second
 * region in *rp and returns false, so that the caller can apply DAMON action
 * to the second one.
 *
 * Return: true if the region should be entirely skipped, false otherwise.
 */
static bool damos_skip_charged_region(struct damon_target *t,
		struct damon_region **rp, struct damos *s)
{
	struct damon_region *r = *rp;
	struct damos_quota *quota = &s->quota;
	unsigned long sz_to_skip;

	/* Skip previously charged regions */
	if (quota->charge_target_from) {
		if (t != quota->charge_target_from)
			return true;
		if (r == damon_last_region(t)) {
			quota->charge_target_from = NULL;
			quota->charge_addr_from = 0;
			return true;
		}
		if (quota->charge_addr_from &&
				r->ar.end <= quota->charge_addr_from)
			return true;

		if (quota->charge_addr_from && r->ar.start <
				quota->charge_addr_from) {
			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
					r->ar.start, DAMON_MIN_REGION);
			if (!sz_to_skip) {
				if (damon_sz_region(r) <= DAMON_MIN_REGION)
					return true;
				sz_to_skip = DAMON_MIN_REGION;
			}
			damon_split_region_at(t, r, sz_to_skip);
			r = damon_next_region(r);
			*rp = r;
		}
		quota->charge_target_from = NULL;
		quota->charge_addr_from = 0;
	}
	return false;
}

static void damos_update_stat(struct damos *s,
		unsigned long sz_tried, unsigned long sz_applied)
{
	s->stat.nr_tried++;
	s->stat.sz_tried += sz_tried;
	if (sz_applied)
		s->stat.nr_applied++;
	s->stat.sz_applied += sz_applied;
}

static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
		struct damon_region *r, struct damos_filter *filter)
{
	bool matched = false;
	struct damon_target *ti;
	int target_idx = 0;
	unsigned long start, end;

	switch (filter->type) {
	case DAMOS_FILTER_TYPE_TARGET:
		damon_for_each_target(ti, ctx) {
			if (ti == t)
				break;
			target_idx++;
		}
		matched = target_idx == filter->target_idx;
		break;
	case DAMOS_FILTER_TYPE_ADDR:
		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);

		/* inside the range */
		if (start <= r->ar.start && r->ar.end <= end) {
			matched = true;
			break;
		}
		/* outside of the range */
		if (r->ar.end <= start || end <= r->ar.start) {
			matched = false;
			break;
		}
		/* start before the range and overlap */
		if (r->ar.start < start) {
			damon_split_region_at(t, r, start - r->ar.start);
			matched = false;
			break;
		}
		/* start inside the range */
		damon_split_region_at(t, r, end - r->ar.start);
		matched = true;
		break;
	default:
		return false;
	}

	return matched == filter->matching;
}

static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
		struct damon_region *r, struct damos *s)
{
	struct damos_filter *filter;

	damos_for_each_filter(filter, s) {
		if (__damos_filter_out(ctx, t, r, filter))
			return true;
	}
	return false;
}

static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
		struct damon_region *r, struct damos *s)
{
	struct damos_quota *quota = &s->quota;
	unsigned long sz = damon_sz_region(r);
	struct timespec64 begin, end;
	unsigned long sz_applied = 0;
	int err = 0;
	/*
	 * We plan to support multiple context per kdamond, as DAMON sysfs
	 * implies with 'nr_contexts' file.  Nevertheless, only single context
	 * per kdamond is supported for now.  So, we can simply use '0' context
	 * index here.
	 */
	unsigned int cidx = 0;
	struct damos *siter;		/* schemes iterator */
	unsigned int sidx = 0;
	struct damon_target *titer;	/* targets iterator */
	unsigned int tidx = 0;
	bool do_trace = false;

	/* get indices for trace_damos_before_apply() */
	if (trace_damos_before_apply_enabled()) {
		damon_for_each_scheme(siter, c) {
			if (siter == s)
				break;
			sidx++;
		}
		damon_for_each_target(titer, c) {
			if (titer == t)
				break;
			tidx++;
		}
		do_trace = true;
	}

	if (c->ops.apply_scheme) {
		if (quota->esz && quota->charged_sz + sz > quota->esz) {
			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
					DAMON_MIN_REGION);
			if (!sz)
				goto update_stat;
			damon_split_region_at(t, r, sz);
		}
		if (damos_filter_out(c, t, r, s))
			return;
		ktime_get_coarse_ts64(&begin);
		if (c->callback.before_damos_apply)
			err = c->callback.before_damos_apply(c, t, r, s);
		if (!err) {
			trace_damos_before_apply(cidx, sidx, tidx, r,
					damon_nr_regions(t), do_trace);
			sz_applied = c->ops.apply_scheme(c, t, r, s);
		}
		ktime_get_coarse_ts64(&end);
		quota->total_charged_ns += timespec64_to_ns(&end) -
			timespec64_to_ns(&begin);
		quota->charged_sz += sz;
		if (quota->esz && quota->charged_sz >= quota->esz) {
			quota->charge_target_from = t;
			quota->charge_addr_from = r->ar.end + 1;
		}
	}
	if (s->action != DAMOS_STAT)
		r->age = 0;

update_stat:
	damos_update_stat(s, sz, sz_applied);
}

static void damon_do_apply_schemes(struct damon_ctx *c,
				   struct damon_target *t,
				   struct damon_region *r)
{
	struct damos *s;

	damon_for_each_scheme(s, c) {
		struct damos_quota *quota = &s->quota;

		if (c->passed_sample_intervals != s->next_apply_sis)
			continue;

		if (!s->wmarks.activated)
			continue;

		/* Check the quota */
		if (quota->esz && quota->charged_sz >= quota->esz)
			continue;

		if (damos_skip_charged_region(t, &r, s))
			continue;

		if (!damos_valid_target(c, t, r, s))
			continue;

		damos_apply_scheme(c, t, r, s);
	}
}

/*
 * damon_feed_loop_next_input() - get next input to achieve a target score.
 * @last_input	The last input.
 * @score	Current score that made with @last_input.
 *
 * Calculate next input to achieve the target score, based on the last input
 * and current score.  Assuming the input and the score are positively
 * proportional, calculate how much compensation should be added to or
 * subtracted from the last input as a proportion of the last input.  Avoid
 * next input always being zero by setting it non-zero always.  In short form
 * (assuming support of float and signed calculations), the algorithm is as
 * below.
 *
 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
 *
 * For simple implementation, we assume the target score is always 10,000.  The
 * caller should adjust @score for this.
 *
 * Returns next input that assumed to achieve the target score.
 */
static unsigned long damon_feed_loop_next_input(unsigned long last_input,
		unsigned long score)
{
	const unsigned long goal = 10000;
	unsigned long score_goal_diff = max(goal, score) - min(goal, score);
	unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal;
	unsigned long compensation = last_input * score_goal_diff_bp / 10000;
	/* Set minimum input as 10000 to avoid compensation be zero */
	const unsigned long min_input = 10000;

	if (goal > score)
		return last_input + compensation;
	if (last_input > compensation + min_input)
		return last_input - compensation;
	return min_input;
}

/* Shouldn't be called if quota->ms, quota->sz, and quota->get_score unset */
static void damos_set_effective_quota(struct damos_quota *quota)
{
	unsigned long throughput;
	unsigned long esz;

	if (!quota->ms && !quota->get_score) {
		quota->esz = quota->sz;
		return;
	}

	if (quota->get_score) {
		quota->esz_bp = damon_feed_loop_next_input(
				max(quota->esz_bp, 10000UL),
				quota->get_score(quota->get_score_arg));
		esz = quota->esz_bp / 10000;
	}

	if (quota->ms) {
		if (quota->total_charged_ns)
			throughput = quota->total_charged_sz * 1000000 /
				quota->total_charged_ns;
		else
			throughput = PAGE_SIZE * 1024;
		if (quota->get_score)
			esz = min(throughput * quota->ms, esz);
		else
			esz = throughput * quota->ms;
	}

	if (quota->sz && quota->sz < esz)
		esz = quota->sz;

	quota->esz = esz;
}

static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
{
	struct damos_quota *quota = &s->quota;
	struct damon_target *t;
	struct damon_region *r;
	unsigned long cumulated_sz;
	unsigned int score, max_score = 0;

	if (!quota->ms && !quota->sz && !quota->get_score)
		return;

	/* New charge window starts */
	if (time_after_eq(jiffies, quota->charged_from +
				msecs_to_jiffies(quota->reset_interval))) {
		if (quota->esz && quota->charged_sz >= quota->esz)
			s->stat.qt_exceeds++;
		quota->total_charged_sz += quota->charged_sz;
		quota->charged_from = jiffies;
		quota->charged_sz = 0;
		damos_set_effective_quota(quota);
	}

	if (!c->ops.get_scheme_score)
		return;

	/* Fill up the score histogram */
	memset(quota->histogram, 0, sizeof(quota->histogram));
	damon_for_each_target(t, c) {
		damon_for_each_region(r, t) {
			if (!__damos_valid_target(r, s))
				continue;
			score = c->ops.get_scheme_score(c, t, r, s);
			quota->histogram[score] += damon_sz_region(r);
			if (score > max_score)
				max_score = score;
		}
	}

	/* Set the min score limit */
	for (cumulated_sz = 0, score = max_score; ; score--) {
		cumulated_sz += quota->histogram[score];
		if (cumulated_sz >= quota->esz || !score)
			break;
	}
	quota->min_score = score;
}

static void kdamond_apply_schemes(struct damon_ctx *c)
{
	struct damon_target *t;
	struct damon_region *r, *next_r;
	struct damos *s;
	unsigned long sample_interval = c->attrs.sample_interval ?
		c->attrs.sample_interval : 1;
	bool has_schemes_to_apply = false;

	damon_for_each_scheme(s, c) {
		if (c->passed_sample_intervals != s->next_apply_sis)
			continue;

		if (!s->wmarks.activated)
			continue;

		has_schemes_to_apply = true;

		damos_adjust_quota(c, s);
	}

	if (!has_schemes_to_apply)
		return;

	damon_for_each_target(t, c) {
		damon_for_each_region_safe(r, next_r, t)
			damon_do_apply_schemes(c, t, r);
	}

	damon_for_each_scheme(s, c) {
		if (c->passed_sample_intervals != s->next_apply_sis)
			continue;
		s->next_apply_sis +=
			(s->apply_interval_us ? s->apply_interval_us :
			 c->attrs.aggr_interval) / sample_interval;
	}
}

/*
 * Merge two adjacent regions into one region
 */
static void damon_merge_two_regions(struct damon_target *t,
		struct damon_region *l, struct damon_region *r)
{
	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);

	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
			(sz_l + sz_r);
	l->nr_accesses_bp = l->nr_accesses * 10000;
	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
	l->ar.end = r->ar.end;
	damon_destroy_region(r, t);
}

/*
 * Merge adjacent regions having similar access frequencies
 *
 * t		target affected by this merge operation
 * thres	'->nr_accesses' diff threshold for the merge
 * sz_limit	size upper limit of each region
 */
static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
				   unsigned long sz_limit)
{
	struct damon_region *r, *prev = NULL, *next;

	damon_for_each_region_safe(r, next, t) {
		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
			r->age = 0;
		else
			r->age++;

		if (prev && prev->ar.end == r->ar.start &&
		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
			damon_merge_two_regions(t, prev, r);
		else
			prev = r;
	}
}

/*
 * Merge adjacent regions having similar access frequencies
 *
 * threshold	'->nr_accesses' diff threshold for the merge
 * sz_limit	size upper limit of each region
 *
 * This function merges monitoring target regions which are adjacent and their
 * access frequencies are similar.  This is for minimizing the monitoring
 * overhead under the dynamically changeable access pattern.  If a merge was
 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
 */
static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
				  unsigned long sz_limit)
{
	struct damon_target *t;

	damon_for_each_target(t, c)
		damon_merge_regions_of(t, threshold, sz_limit);
}

/*
 * Split a region in two
 *
 * r		the region to be split
 * sz_r		size of the first sub-region that will be made
 */
static void damon_split_region_at(struct damon_target *t,
				  struct damon_region *r, unsigned long sz_r)
{
	struct damon_region *new;

	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
	if (!new)
		return;

	r->ar.end = new->ar.start;

	new->age = r->age;
	new->last_nr_accesses = r->last_nr_accesses;
	new->nr_accesses_bp = r->nr_accesses_bp;
	new->nr_accesses = r->nr_accesses;

	damon_insert_region(new, r, damon_next_region(r), t);
}

/* Split every region in the given target into 'nr_subs' regions */
static void damon_split_regions_of(struct damon_target *t, int nr_subs)
{
	struct damon_region *r, *next;
	unsigned long sz_region, sz_sub = 0;
	int i;

	damon_for_each_region_safe(r, next, t) {
		sz_region = damon_sz_region(r);

		for (i = 0; i < nr_subs - 1 &&
				sz_region > 2 * DAMON_MIN_REGION; i++) {
			/*
			 * Randomly select size of left sub-region to be at
			 * least 10 percent and at most 90% of original region
			 */
			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
					sz_region / 10, DAMON_MIN_REGION);
			/* Do not allow blank region */
			if (sz_sub == 0 || sz_sub >= sz_region)
				continue;

			damon_split_region_at(t, r, sz_sub);
			sz_region = sz_sub;
		}
	}
}

/*
 * Split every target region into randomly-sized small regions
 *
 * This function splits every target region into random-sized small regions if
 * current total number of the regions is equal or smaller than half of the
 * user-specified maximum number of regions.  This is for maximizing the
 * monitoring accuracy under the dynamically changeable access patterns.  If a
 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
 * it.
 */
static void kdamond_split_regions(struct damon_ctx *ctx)
{
	struct damon_target *t;
	unsigned int nr_regions = 0;
	static unsigned int last_nr_regions;
	int nr_subregions = 2;

	damon_for_each_target(t, ctx)
		nr_regions += damon_nr_regions(t);

	if (nr_regions > ctx->attrs.max_nr_regions / 2)
		return;

	/* Maybe the middle of the region has different access frequency */
	if (last_nr_regions == nr_regions &&
			nr_regions < ctx->attrs.max_nr_regions / 3)
		nr_subregions = 3;

	damon_for_each_target(t, ctx)
		damon_split_regions_of(t, nr_subregions);

	last_nr_regions = nr_regions;
}

/*
 * Check whether current monitoring should be stopped
 *
 * The monitoring is stopped when either the user requested to stop, or all
 * monitoring targets are invalid.
 *
 * Returns true if need to stop current monitoring.
 */
static bool kdamond_need_stop(struct damon_ctx *ctx)
{
	struct damon_target *t;

	if (kthread_should_stop())
		return true;

	if (!ctx->ops.target_valid)
		return false;

	damon_for_each_target(t, ctx) {
		if (ctx->ops.target_valid(t))
			return false;
	}

	return true;
}

static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
{
	switch (metric) {
	case DAMOS_WMARK_FREE_MEM_RATE:
		return global_zone_page_state(NR_FREE_PAGES) * 1000 /
		       totalram_pages();
	default:
		break;
	}
	return -EINVAL;
}

/*
 * Returns zero if the scheme is active.  Else, returns time to wait for next
 * watermark check in micro-seconds.
 */
static unsigned long damos_wmark_wait_us(struct damos *scheme)
{
	unsigned long metric;

	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
		return 0;

	metric = damos_wmark_metric_value(scheme->wmarks.metric);
	/* higher than high watermark or lower than low watermark */
	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
		if (scheme->wmarks.activated)
			pr_debug("deactivate a scheme (%d) for %s wmark\n",
					scheme->action,
					metric > scheme->wmarks.high ?
					"high" : "low");
		scheme->wmarks.activated = false;
		return scheme->wmarks.interval;
	}

	/* inactive and higher than middle watermark */
	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
			!scheme->wmarks.activated)
		return scheme->wmarks.interval;

	if (!scheme->wmarks.activated)
		pr_debug("activate a scheme (%d)\n", scheme->action);
	scheme->wmarks.activated = true;
	return 0;
}

static void kdamond_usleep(unsigned long usecs)
{
	/* See Documentation/timers/timers-howto.rst for the thresholds */
	if (usecs > 20 * USEC_PER_MSEC)
		schedule_timeout_idle(usecs_to_jiffies(usecs));
	else
		usleep_idle_range(usecs, usecs + 1);
}

/* Returns negative error code if it's not activated but should return */
static int kdamond_wait_activation(struct damon_ctx *ctx)
{
	struct damos *s;
	unsigned long wait_time;
	unsigned long min_wait_time = 0;
	bool init_wait_time = false;

	while (!kdamond_need_stop(ctx)) {
		damon_for_each_scheme(s, ctx) {
			wait_time = damos_wmark_wait_us(s);
			if (!init_wait_time || wait_time < min_wait_time) {
				init_wait_time = true;
				min_wait_time = wait_time;
			}
		}
		if (!min_wait_time)
			return 0;

		kdamond_usleep(min_wait_time);

		if (ctx->callback.after_wmarks_check &&
				ctx->callback.after_wmarks_check(ctx))
			break;
	}
	return -EBUSY;
}

static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
{
	unsigned long sample_interval = ctx->attrs.sample_interval ?
		ctx->attrs.sample_interval : 1;
	unsigned long apply_interval;
	struct damos *scheme;

	ctx->passed_sample_intervals = 0;
	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
		sample_interval;

	damon_for_each_scheme(scheme, ctx) {
		apply_interval = scheme->apply_interval_us ?
			scheme->apply_interval_us : ctx->attrs.aggr_interval;
		scheme->next_apply_sis = apply_interval / sample_interval;
	}
}

/*
 * The monitoring daemon that runs as a kernel thread
 */
static int kdamond_fn(void *data)
{
	struct damon_ctx *ctx = data;
	struct damon_target *t;
	struct damon_region *r, *next;
	unsigned int max_nr_accesses = 0;
	unsigned long sz_limit = 0;

	pr_debug("kdamond (%d) starts\n", current->pid);

	complete(&ctx->kdamond_started);
	kdamond_init_intervals_sis(ctx);

	if (ctx->ops.init)
		ctx->ops.init(ctx);
	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
		goto done;

	sz_limit = damon_region_sz_limit(ctx);

	while (!kdamond_need_stop(ctx)) {
		/*
		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
		 * be changed from after_wmarks_check() or after_aggregation()
		 * callbacks.  Read the values here, and use those for this
		 * iteration.  That is, damon_set_attrs() updated new values
		 * are respected from next iteration.
		 */
		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
		unsigned long sample_interval = ctx->attrs.sample_interval;

		if (kdamond_wait_activation(ctx))
			break;

		if (ctx->ops.prepare_access_checks)
			ctx->ops.prepare_access_checks(ctx);
		if (ctx->callback.after_sampling &&
				ctx->callback.after_sampling(ctx))
			break;

		kdamond_usleep(sample_interval);
		ctx->passed_sample_intervals++;

		if (ctx->ops.check_accesses)
			max_nr_accesses = ctx->ops.check_accesses(ctx);

		if (ctx->passed_sample_intervals == next_aggregation_sis) {
			kdamond_merge_regions(ctx,
					max_nr_accesses / 10,
					sz_limit);
			if (ctx->callback.after_aggregation &&
					ctx->callback.after_aggregation(ctx))
				break;
		}

		/*
		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
		 * possible, to reduce overhead
		 */
		if (!list_empty(&ctx->schemes))
			kdamond_apply_schemes(ctx);

		sample_interval = ctx->attrs.sample_interval ?
			ctx->attrs.sample_interval : 1;
		if (ctx->passed_sample_intervals == next_aggregation_sis) {
			ctx->next_aggregation_sis = next_aggregation_sis +
				ctx->attrs.aggr_interval / sample_interval;

			kdamond_reset_aggregated(ctx);
			kdamond_split_regions(ctx);
			if (ctx->ops.reset_aggregated)
				ctx->ops.reset_aggregated(ctx);
		}

		if (ctx->passed_sample_intervals == next_ops_update_sis) {
			ctx->next_ops_update_sis = next_ops_update_sis +
				ctx->attrs.ops_update_interval /
				sample_interval;
			if (ctx->ops.update)
				ctx->ops.update(ctx);
			sz_limit = damon_region_sz_limit(ctx);
		}
	}
done:
	damon_for_each_target(t, ctx) {
		damon_for_each_region_safe(r, next, t)
			damon_destroy_region(r, t);
	}

	if (ctx->callback.before_terminate)
		ctx->callback.before_terminate(ctx);
	if (ctx->ops.cleanup)
		ctx->ops.cleanup(ctx);

	pr_debug("kdamond (%d) finishes\n", current->pid);
	mutex_lock(&ctx->kdamond_lock);
	ctx->kdamond = NULL;
	mutex_unlock(&ctx->kdamond_lock);

	mutex_lock(&damon_lock);
	nr_running_ctxs--;
	if (!nr_running_ctxs && running_exclusive_ctxs)
		running_exclusive_ctxs = false;
	mutex_unlock(&damon_lock);

	return 0;
}

/*
 * struct damon_system_ram_region - System RAM resource address region of
 *				    [@start, @end).
 * @start:	Start address of the region (inclusive).
 * @end:	End address of the region (exclusive).
 */
struct damon_system_ram_region {
	unsigned long start;
	unsigned long end;
};

static int walk_system_ram(struct resource *res, void *arg)
{
	struct damon_system_ram_region *a = arg;

	if (a->end - a->start < resource_size(res)) {
		a->start = res->start;
		a->end = res->end;
	}
	return 0;
}

/*
 * Find biggest 'System RAM' resource and store its start and end address in
 * @start and @end, respectively.  If no System RAM is found, returns false.
 */
static bool damon_find_biggest_system_ram(unsigned long *start,
						unsigned long *end)

{
	struct damon_system_ram_region arg = {};

	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
	if (arg.end <= arg.start)
		return false;

	*start = arg.start;
	*end = arg.end;
	return true;
}

/**
 * damon_set_region_biggest_system_ram_default() - Set the region of the given
 * monitoring target as requested, or biggest 'System RAM'.
 * @t:		The monitoring target to set the region.
 * @start:	The pointer to the start address of the region.
 * @end:	The pointer to the end address of the region.
 *
 * This function sets the region of @t as requested by @start and @end.  If the
 * values of @start and @end are zero, however, this function finds the biggest
 * 'System RAM' resource and sets the region to cover the resource.  In the
 * latter case, this function saves the start and end addresses of the resource
 * in @start and @end, respectively.
 *
 * Return: 0 on success, negative error code otherwise.
 */
int damon_set_region_biggest_system_ram_default(struct damon_target *t,
			unsigned long *start, unsigned long *end)
{
	struct damon_addr_range addr_range;

	if (*start > *end)
		return -EINVAL;

	if (!*start && !*end &&
		!damon_find_biggest_system_ram(start, end))
		return -EINVAL;

	addr_range.start = *start;
	addr_range.end = *end;
	return damon_set_regions(t, &addr_range, 1);
}

/*
 * damon_moving_sum() - Calculate an inferred moving sum value.
 * @mvsum:	Inferred sum of the last @len_window values.
 * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
 * @len_window:	The number of last values to take care of.
 * @new_value:	New value that will be added to the pseudo moving sum.
 *
 * Moving sum (moving average * window size) is good for handling noise, but
 * the cost of keeping past values can be high for arbitrary window size.  This
 * function implements a lightweight pseudo moving sum function that doesn't
 * keep the past window values.
 *
 * It simply assumes there was no noise in the past, and get the no-noise
 * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
 * non-moving sum of the last window.  For example, if @len_window is 10 and we
 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
 * values.  Hence, this function simply drops @nomvsum / @len_window from
 * given @mvsum and add @new_value.
 *
 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
 * calculating next moving sum with a new value, we should drop 0 from 50 and
 * add the new value.  However, this function assumes it got value 5 for each
 * of the last ten times.  Based on the assumption, when the next value is
 * measured, it drops the assumed past value, 5 from the current sum, and add
 * the new value to get the updated pseduo-moving average.
 *
 * This means the value could have errors, but the errors will be disappeared
 * for every @len_window aligned calls.  For example, if @len_window is 10, the
 * pseudo moving sum with 11th value to 19th value would have an error.  But
 * the sum with 20th value will not have the error.
 *
 * Return: Pseudo-moving average after getting the @new_value.
 */
static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
		unsigned int len_window, unsigned int new_value)
{
	return mvsum - nomvsum / len_window + new_value;
}

/**
 * damon_update_region_access_rate() - Update the access rate of a region.
 * @r:		The DAMON region to update for its access check result.
 * @accessed:	Whether the region has accessed during last sampling interval.
 * @attrs:	The damon_attrs of the DAMON context.
 *
 * Update the access rate of a region with the region's last sampling interval
 * access check result.
 *
 * Usually this will be called by &damon_operations->check_accesses callback.
 */
void damon_update_region_access_rate(struct damon_region *r, bool accessed,
		struct damon_attrs *attrs)
{
	unsigned int len_window = 1;

	/*
	 * sample_interval can be zero, but cannot be larger than
	 * aggr_interval, owing to validation of damon_set_attrs().
	 */
	if (attrs->sample_interval)
		len_window = damon_max_nr_accesses(attrs);
	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
			r->last_nr_accesses * 10000, len_window,
			accessed ? 10000 : 0);

	if (accessed)
		r->nr_accesses++;
}

static int __init damon_init(void)
{
	damon_region_cache = KMEM_CACHE(damon_region, 0);
	if (unlikely(!damon_region_cache)) {
		pr_err("creating damon_region_cache fails\n");
		return -ENOMEM;
	}

	return 0;
}

subsys_initcall(damon_init);

#include "core-test.h"