Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | // SPDX-License-Identifier: GPL-2.0 /* * Data Access Monitor * * Author: SeongJae Park <sjpark@amazon.de> */ #define pr_fmt(fmt) "damon: " fmt #include <linux/damon.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/random.h> #include <linux/slab.h> #define CREATE_TRACE_POINTS #include <trace/events/damon.h> #ifdef CONFIG_DAMON_KUNIT_TEST #undef DAMON_MIN_REGION #define DAMON_MIN_REGION 1 #endif /* Get a random number in [l, r) */ #define damon_rand(l, r) (l + prandom_u32_max(r - l)) static DEFINE_MUTEX(damon_lock); static int nr_running_ctxs; /* * Construct a damon_region struct * * Returns the pointer to the new struct if success, or NULL otherwise */ struct damon_region *damon_new_region(unsigned long start, unsigned long end) { struct damon_region *region; region = kmalloc(sizeof(*region), GFP_KERNEL); if (!region) return NULL; region->ar.start = start; region->ar.end = end; region->nr_accesses = 0; INIT_LIST_HEAD(®ion->list); return region; } /* * Add a region between two other regions */ inline void damon_insert_region(struct damon_region *r, struct damon_region *prev, struct damon_region *next, struct damon_target *t) { __list_add(&r->list, &prev->list, &next->list); t->nr_regions++; } void damon_add_region(struct damon_region *r, struct damon_target *t) { list_add_tail(&r->list, &t->regions_list); t->nr_regions++; } static void damon_del_region(struct damon_region *r, struct damon_target *t) { list_del(&r->list); t->nr_regions--; } static void damon_free_region(struct damon_region *r) { kfree(r); } void damon_destroy_region(struct damon_region *r, struct damon_target *t) { damon_del_region(r, t); damon_free_region(r); } /* * Construct a damon_target struct * * Returns the pointer to the new struct if success, or NULL otherwise */ struct damon_target *damon_new_target(unsigned long id) { struct damon_target *t; t = kmalloc(sizeof(*t), GFP_KERNEL); if (!t) return NULL; t->id = id; t->nr_regions = 0; INIT_LIST_HEAD(&t->regions_list); return t; } void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) { list_add_tail(&t->list, &ctx->adaptive_targets); } static void damon_del_target(struct damon_target *t) { list_del(&t->list); } void damon_free_target(struct damon_target *t) { struct damon_region *r, *next; damon_for_each_region_safe(r, next, t) damon_free_region(r); kfree(t); } void damon_destroy_target(struct damon_target *t) { damon_del_target(t); damon_free_target(t); } unsigned int damon_nr_regions(struct damon_target *t) { return t->nr_regions; } struct damon_ctx *damon_new_ctx(void) { struct damon_ctx *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; ctx->sample_interval = 5 * 1000; ctx->aggr_interval = 100 * 1000; ctx->primitive_update_interval = 60 * 1000 * 1000; ktime_get_coarse_ts64(&ctx->last_aggregation); ctx->last_primitive_update = ctx->last_aggregation; mutex_init(&ctx->kdamond_lock); ctx->min_nr_regions = 10; ctx->max_nr_regions = 1000; INIT_LIST_HEAD(&ctx->adaptive_targets); return ctx; } static void damon_destroy_targets(struct damon_ctx *ctx) { struct damon_target *t, *next_t; if (ctx->primitive.cleanup) { ctx->primitive.cleanup(ctx); return; } damon_for_each_target_safe(t, next_t, ctx) damon_destroy_target(t); } void damon_destroy_ctx(struct damon_ctx *ctx) { damon_destroy_targets(ctx); kfree(ctx); } /** * damon_set_targets() - Set monitoring targets. * @ctx: monitoring context * @ids: array of target ids * @nr_ids: number of entries in @ids * * This function should not be called while the kdamond is running. * * Return: 0 on success, negative error code otherwise. */ int damon_set_targets(struct damon_ctx *ctx, unsigned long *ids, ssize_t nr_ids) { ssize_t i; struct damon_target *t, *next; damon_destroy_targets(ctx); for (i = 0; i < nr_ids; i++) { t = damon_new_target(ids[i]); if (!t) { pr_err("Failed to alloc damon_target\n"); /* The caller should do cleanup of the ids itself */ damon_for_each_target_safe(t, next, ctx) damon_destroy_target(t); return -ENOMEM; } damon_add_target(ctx, t); } return 0; } /** * damon_set_attrs() - Set attributes for the monitoring. * @ctx: monitoring context * @sample_int: time interval between samplings * @aggr_int: time interval between aggregations * @primitive_upd_int: time interval between monitoring primitive updates * @min_nr_reg: minimal number of regions * @max_nr_reg: maximum number of regions * * This function should not be called while the kdamond is running. * Every time interval is in micro-seconds. * * Return: 0 on success, negative error code otherwise. */ int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, unsigned long aggr_int, unsigned long primitive_upd_int, unsigned long min_nr_reg, unsigned long max_nr_reg) { if (min_nr_reg < 3) { pr_err("min_nr_regions (%lu) must be at least 3\n", min_nr_reg); return -EINVAL; } if (min_nr_reg > max_nr_reg) { pr_err("invalid nr_regions. min (%lu) > max (%lu)\n", min_nr_reg, max_nr_reg); return -EINVAL; } ctx->sample_interval = sample_int; ctx->aggr_interval = aggr_int; ctx->primitive_update_interval = primitive_upd_int; ctx->min_nr_regions = min_nr_reg; ctx->max_nr_regions = max_nr_reg; return 0; } /** * damon_nr_running_ctxs() - Return number of currently running contexts. */ int damon_nr_running_ctxs(void) { int nr_ctxs; mutex_lock(&damon_lock); nr_ctxs = nr_running_ctxs; mutex_unlock(&damon_lock); return nr_ctxs; } /* Returns the size upper limit for each monitoring region */ static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) { struct damon_target *t; struct damon_region *r; unsigned long sz = 0; damon_for_each_target(t, ctx) { damon_for_each_region(r, t) sz += r->ar.end - r->ar.start; } if (ctx->min_nr_regions) sz /= ctx->min_nr_regions; if (sz < DAMON_MIN_REGION) sz = DAMON_MIN_REGION; return sz; } static bool damon_kdamond_running(struct damon_ctx *ctx) { bool running; mutex_lock(&ctx->kdamond_lock); running = ctx->kdamond != NULL; mutex_unlock(&ctx->kdamond_lock); return running; } static int kdamond_fn(void *data); /* * __damon_start() - Starts monitoring with given context. * @ctx: monitoring context * * This function should be called while damon_lock is hold. * * Return: 0 on success, negative error code otherwise. */ static int __damon_start(struct damon_ctx *ctx) { int err = -EBUSY; mutex_lock(&ctx->kdamond_lock); if (!ctx->kdamond) { err = 0; ctx->kdamond_stop = false; ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", nr_running_ctxs); if (IS_ERR(ctx->kdamond)) { err = PTR_ERR(ctx->kdamond); ctx->kdamond = 0; } } mutex_unlock(&ctx->kdamond_lock); return err; } /** * damon_start() - Starts the monitorings for a given group of contexts. * @ctxs: an array of the pointers for contexts to start monitoring * @nr_ctxs: size of @ctxs * * This function starts a group of monitoring threads for a group of monitoring * contexts. One thread per each context is created and run in parallel. The * caller should handle synchronization between the threads by itself. If a * group of threads that created by other 'damon_start()' call is currently * running, this function does nothing but returns -EBUSY. * * Return: 0 on success, negative error code otherwise. */ int damon_start(struct damon_ctx **ctxs, int nr_ctxs) { int i; int err = 0; mutex_lock(&damon_lock); if (nr_running_ctxs) { mutex_unlock(&damon_lock); return -EBUSY; } for (i = 0; i < nr_ctxs; i++) { err = __damon_start(ctxs[i]); if (err) break; nr_running_ctxs++; } mutex_unlock(&damon_lock); return err; } static void kdamond_usleep(unsigned long usecs) { /* See Documentation/timers/timers-howto.rst for the thresholds */ if (usecs > 20 * 1000) schedule_timeout_idle(usecs_to_jiffies(usecs)); else usleep_idle_range(usecs, usecs + 1); } /* * __damon_stop() - Stops monitoring of given context. * @ctx: monitoring context * * Return: 0 on success, negative error code otherwise. */ static int __damon_stop(struct damon_ctx *ctx) { mutex_lock(&ctx->kdamond_lock); if (ctx->kdamond) { ctx->kdamond_stop = true; mutex_unlock(&ctx->kdamond_lock); while (damon_kdamond_running(ctx)) kdamond_usleep(ctx->sample_interval); return 0; } mutex_unlock(&ctx->kdamond_lock); return -EPERM; } /** * damon_stop() - Stops the monitorings for a given group of contexts. * @ctxs: an array of the pointers for contexts to stop monitoring * @nr_ctxs: size of @ctxs * * Return: 0 on success, negative error code otherwise. */ int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) { int i, err = 0; for (i = 0; i < nr_ctxs; i++) { /* nr_running_ctxs is decremented in kdamond_fn */ err = __damon_stop(ctxs[i]); if (err) return err; } return err; } /* * damon_check_reset_time_interval() - Check if a time interval is elapsed. * @baseline: the time to check whether the interval has elapsed since * @interval: the time interval (microseconds) * * See whether the given time interval has passed since the given baseline * time. If so, it also updates the baseline to current time for next check. * * Return: true if the time interval has passed, or false otherwise. */ static bool damon_check_reset_time_interval(struct timespec64 *baseline, unsigned long interval) { struct timespec64 now; ktime_get_coarse_ts64(&now); if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < interval * 1000) return false; *baseline = now; return true; } /* * Check whether it is time to flush the aggregated information */ static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) { return damon_check_reset_time_interval(&ctx->last_aggregation, ctx->aggr_interval); } /* * Reset the aggregated monitoring results ('nr_accesses' of each region). */ static void kdamond_reset_aggregated(struct damon_ctx *c) { struct damon_target *t; damon_for_each_target(t, c) { struct damon_region *r; damon_for_each_region(r, t) { trace_damon_aggregated(t, r, damon_nr_regions(t)); r->nr_accesses = 0; } } } #define sz_damon_region(r) (r->ar.end - r->ar.start) /* * Merge two adjacent regions into one region */ static void damon_merge_two_regions(struct damon_target *t, struct damon_region *l, struct damon_region *r) { unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r); l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / (sz_l + sz_r); l->ar.end = r->ar.end; damon_destroy_region(r, t); } #define diff_of(a, b) (a > b ? a - b : b - a) /* * Merge adjacent regions having similar access frequencies * * t target affected by this merge operation * thres '->nr_accesses' diff threshold for the merge * sz_limit size upper limit of each region */ static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, unsigned long sz_limit) { struct damon_region *r, *prev = NULL, *next; damon_for_each_region_safe(r, next, t) { if (prev && prev->ar.end == r->ar.start && diff_of(prev->nr_accesses, r->nr_accesses) <= thres && sz_damon_region(prev) + sz_damon_region(r) <= sz_limit) damon_merge_two_regions(t, prev, r); else prev = r; } } /* * Merge adjacent regions having similar access frequencies * * threshold '->nr_accesses' diff threshold for the merge * sz_limit size upper limit of each region * * This function merges monitoring target regions which are adjacent and their * access frequencies are similar. This is for minimizing the monitoring * overhead under the dynamically changeable access pattern. If a merge was * unnecessarily made, later 'kdamond_split_regions()' will revert it. * * The total number of regions could be higher than the user-defined limit, * max_nr_regions for some cases. For example, the user can update * max_nr_regions to a number that lower than the current number of regions * while DAMON is running. For such a case, repeat merging until the limit is * met while increasing @threshold up to possible maximum level. */ static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, unsigned long sz_limit) { struct damon_target *t; unsigned int nr_regions; unsigned int max_thres; max_thres = c->aggr_interval / (c->sample_interval ? c->sample_interval : 1); do { nr_regions = 0; damon_for_each_target(t, c) { damon_merge_regions_of(t, threshold, sz_limit); nr_regions += damon_nr_regions(t); } threshold = max(1, threshold * 2); } while (nr_regions > c->max_nr_regions && threshold / 2 < max_thres); } /* * Split a region in two * * r the region to be split * sz_r size of the first sub-region that will be made */ static void damon_split_region_at(struct damon_ctx *ctx, struct damon_target *t, struct damon_region *r, unsigned long sz_r) { struct damon_region *new; new = damon_new_region(r->ar.start + sz_r, r->ar.end); if (!new) return; r->ar.end = new->ar.start; damon_insert_region(new, r, damon_next_region(r), t); } /* Split every region in the given target into 'nr_subs' regions */ static void damon_split_regions_of(struct damon_ctx *ctx, struct damon_target *t, int nr_subs) { struct damon_region *r, *next; unsigned long sz_region, sz_sub = 0; int i; damon_for_each_region_safe(r, next, t) { sz_region = r->ar.end - r->ar.start; for (i = 0; i < nr_subs - 1 && sz_region > 2 * DAMON_MIN_REGION; i++) { /* * Randomly select size of left sub-region to be at * least 10 percent and at most 90% of original region */ sz_sub = ALIGN_DOWN(damon_rand(1, 10) * sz_region / 10, DAMON_MIN_REGION); /* Do not allow blank region */ if (sz_sub == 0 || sz_sub >= sz_region) continue; damon_split_region_at(ctx, t, r, sz_sub); sz_region = sz_sub; } } } /* * Split every target region into randomly-sized small regions * * This function splits every target region into random-sized small regions if * current total number of the regions is equal or smaller than half of the * user-specified maximum number of regions. This is for maximizing the * monitoring accuracy under the dynamically changeable access patterns. If a * split was unnecessarily made, later 'kdamond_merge_regions()' will revert * it. */ static void kdamond_split_regions(struct damon_ctx *ctx) { struct damon_target *t; unsigned int nr_regions = 0; static unsigned int last_nr_regions; int nr_subregions = 2; damon_for_each_target(t, ctx) nr_regions += damon_nr_regions(t); if (nr_regions > ctx->max_nr_regions / 2) return; /* Maybe the middle of the region has different access frequency */ if (last_nr_regions == nr_regions && nr_regions < ctx->max_nr_regions / 3) nr_subregions = 3; damon_for_each_target(t, ctx) damon_split_regions_of(ctx, t, nr_subregions); last_nr_regions = nr_regions; } /* * Check whether it is time to check and apply the target monitoring regions * * Returns true if it is. */ static bool kdamond_need_update_primitive(struct damon_ctx *ctx) { return damon_check_reset_time_interval(&ctx->last_primitive_update, ctx->primitive_update_interval); } /* * Check whether current monitoring should be stopped * * The monitoring is stopped when either the user requested to stop, or all * monitoring targets are invalid. * * Returns true if need to stop current monitoring. */ static bool kdamond_need_stop(struct damon_ctx *ctx) { struct damon_target *t; bool stop; mutex_lock(&ctx->kdamond_lock); stop = ctx->kdamond_stop; mutex_unlock(&ctx->kdamond_lock); if (stop) return true; if (!ctx->primitive.target_valid) return false; damon_for_each_target(t, ctx) { if (ctx->primitive.target_valid(t)) return false; } return true; } static void set_kdamond_stop(struct damon_ctx *ctx) { mutex_lock(&ctx->kdamond_lock); ctx->kdamond_stop = true; mutex_unlock(&ctx->kdamond_lock); } /* * The monitoring daemon that runs as a kernel thread */ static int kdamond_fn(void *data) { struct damon_ctx *ctx = (struct damon_ctx *)data; struct damon_target *t; struct damon_region *r, *next; unsigned int max_nr_accesses = 0; unsigned long sz_limit = 0; mutex_lock(&ctx->kdamond_lock); pr_info("kdamond (%d) starts\n", ctx->kdamond->pid); mutex_unlock(&ctx->kdamond_lock); if (ctx->primitive.init) ctx->primitive.init(ctx); if (ctx->callback.before_start && ctx->callback.before_start(ctx)) set_kdamond_stop(ctx); sz_limit = damon_region_sz_limit(ctx); while (!kdamond_need_stop(ctx)) { if (ctx->primitive.prepare_access_checks) ctx->primitive.prepare_access_checks(ctx); if (ctx->callback.after_sampling && ctx->callback.after_sampling(ctx)) set_kdamond_stop(ctx); kdamond_usleep(ctx->sample_interval); if (ctx->primitive.check_accesses) max_nr_accesses = ctx->primitive.check_accesses(ctx); if (kdamond_aggregate_interval_passed(ctx)) { kdamond_merge_regions(ctx, max_nr_accesses / 10, sz_limit); if (ctx->callback.after_aggregation && ctx->callback.after_aggregation(ctx)) set_kdamond_stop(ctx); kdamond_reset_aggregated(ctx); kdamond_split_regions(ctx); if (ctx->primitive.reset_aggregated) ctx->primitive.reset_aggregated(ctx); } if (kdamond_need_update_primitive(ctx)) { if (ctx->primitive.update) ctx->primitive.update(ctx); sz_limit = damon_region_sz_limit(ctx); } } damon_for_each_target(t, ctx) { damon_for_each_region_safe(r, next, t) damon_destroy_region(r, t); } if (ctx->callback.before_terminate && ctx->callback.before_terminate(ctx)) set_kdamond_stop(ctx); if (ctx->primitive.cleanup) ctx->primitive.cleanup(ctx); pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid); mutex_lock(&ctx->kdamond_lock); ctx->kdamond = NULL; mutex_unlock(&ctx->kdamond_lock); mutex_lock(&damon_lock); nr_running_ctxs--; mutex_unlock(&damon_lock); do_exit(0); } #include "core-test.h" |