Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | // SPDX-License-Identifier: GPL-2.0 /* * Virtual Memory Map support * * (C) 2007 sgi. Christoph Lameter. * * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, * virt_to_page, page_address() to be implemented as a base offset * calculation without memory access. * * However, virtual mappings need a page table and TLBs. Many Linux * architectures already map their physical space using 1-1 mappings * via TLBs. For those arches the virtual memory map is essentially * for free if we use the same page size as the 1-1 mappings. In that * case the overhead consists of a few additional pages that are * allocated to create a view of memory for vmemmap. * * The architecture is expected to provide a vmemmap_populate() function * to instantiate the mapping. */ #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/memblock.h> #include <linux/memremap.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/sched.h> #include <asm/dma.h> #include <asm/pgalloc.h> /* * Allocate a block of memory to be used to back the virtual memory map * or to back the page tables that are used to create the mapping. * Uses the main allocators if they are available, else bootmem. */ static void * __ref __earlyonly_bootmem_alloc(int node, unsigned long size, unsigned long align, unsigned long goal) { return memblock_alloc_try_nid_raw(size, align, goal, MEMBLOCK_ALLOC_ACCESSIBLE, node); } void * __meminit vmemmap_alloc_block(unsigned long size, int node) { /* If the main allocator is up use that, fallback to bootmem. */ if (slab_is_available()) { gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; int order = get_order(size); static bool warned; struct page *page; page = alloc_pages_node(node, gfp_mask, order); if (page) return page_address(page); if (!warned) { warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, "vmemmap alloc failure: order:%u", order); warned = true; } return NULL; } else return __earlyonly_bootmem_alloc(node, size, size, __pa(MAX_DMA_ADDRESS)); } static void * __meminit altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); /* need to make sure size is all the same during early stage */ void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap) { void *ptr; if (altmap) return altmap_alloc_block_buf(size, altmap); ptr = sparse_buffer_alloc(size); if (!ptr) ptr = vmemmap_alloc_block(size, node); return ptr; } static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) { return altmap->base_pfn + altmap->reserve + altmap->alloc + altmap->align; } static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) { unsigned long allocated = altmap->alloc + altmap->align; if (altmap->free > allocated) return altmap->free - allocated; return 0; } static void * __meminit altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap) { unsigned long pfn, nr_pfns, nr_align; if (size & ~PAGE_MASK) { pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", __func__, size); return NULL; } pfn = vmem_altmap_next_pfn(altmap); nr_pfns = size >> PAGE_SHIFT; nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); nr_align = ALIGN(pfn, nr_align) - pfn; if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) return NULL; altmap->alloc += nr_pfns; altmap->align += nr_align; pfn += nr_align; pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", __func__, pfn, altmap->alloc, altmap->align, nr_pfns); return __va(__pfn_to_phys(pfn)); } void __meminit vmemmap_verify(pte_t *pte, int node, unsigned long start, unsigned long end) { unsigned long pfn = pte_pfn(ptep_get(pte)); int actual_node = early_pfn_to_nid(pfn); if (node_distance(actual_node, node) > LOCAL_DISTANCE) pr_warn_once("[%lx-%lx] potential offnode page_structs\n", start, end - 1); } pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap, struct page *reuse) { pte_t *pte = pte_offset_kernel(pmd, addr); if (pte_none(ptep_get(pte))) { pte_t entry; void *p; if (!reuse) { p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); if (!p) return NULL; } else { /* * When a PTE/PMD entry is freed from the init_mm * there's a free_pages() call to this page allocated * above. Thus this get_page() is paired with the * put_page_testzero() on the freeing path. * This can only called by certain ZONE_DEVICE path, * and through vmemmap_populate_compound_pages() when * slab is available. */ get_page(reuse); p = page_to_virt(reuse); } entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); set_pte_at(&init_mm, addr, pte, entry); } return pte; } static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) { void *p = vmemmap_alloc_block(size, node); if (!p) return NULL; memset(p, 0, size); return p; } pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) { pmd_t *pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pmd_populate_kernel(&init_mm, pmd, p); } return pmd; } void __weak __meminit pmd_init(void *addr) { } pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) { pud_t *pud = pud_offset(p4d, addr); if (pud_none(*pud)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pmd_init(p); pud_populate(&init_mm, pud, p); } return pud; } void __weak __meminit pud_init(void *addr) { } p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) { p4d_t *p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pud_init(p); p4d_populate(&init_mm, p4d, p); } return p4d; } pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) { pgd_t *pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pgd_populate(&init_mm, pgd, p); } return pgd; } static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, struct vmem_altmap *altmap, struct page *reuse) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; pgd = vmemmap_pgd_populate(addr, node); if (!pgd) return NULL; p4d = vmemmap_p4d_populate(pgd, addr, node); if (!p4d) return NULL; pud = vmemmap_pud_populate(p4d, addr, node); if (!pud) return NULL; pmd = vmemmap_pmd_populate(pud, addr, node); if (!pmd) return NULL; pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); if (!pte) return NULL; vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); return pte; } static int __meminit vmemmap_populate_range(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap, struct page *reuse) { unsigned long addr = start; pte_t *pte; for (; addr < end; addr += PAGE_SIZE) { pte = vmemmap_populate_address(addr, node, altmap, reuse); if (!pte) return -ENOMEM; } return 0; } int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { return vmemmap_populate_range(start, end, node, altmap, NULL); } void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, unsigned long addr, unsigned long next) { } int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, unsigned long addr, unsigned long next) { return 0; } int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { unsigned long addr; unsigned long next; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; for (addr = start; addr < end; addr = next) { next = pmd_addr_end(addr, end); pgd = vmemmap_pgd_populate(addr, node); if (!pgd) return -ENOMEM; p4d = vmemmap_p4d_populate(pgd, addr, node); if (!p4d) return -ENOMEM; pud = vmemmap_pud_populate(p4d, addr, node); if (!pud) return -ENOMEM; pmd = pmd_offset(pud, addr); if (pmd_none(READ_ONCE(*pmd))) { void *p; p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); if (p) { vmemmap_set_pmd(pmd, p, node, addr, next); continue; } else if (altmap) { /* * No fallback: In any case we care about, the * altmap should be reasonably sized and aligned * such that vmemmap_alloc_block_buf() will always * succeed. For consistency with the PTE case, * return an error here as failure could indicate * a configuration issue with the size of the altmap. */ return -ENOMEM; } } else if (vmemmap_check_pmd(pmd, node, addr, next)) continue; if (vmemmap_populate_basepages(addr, next, node, altmap)) return -ENOMEM; } return 0; } #ifndef vmemmap_populate_compound_pages /* * For compound pages bigger than section size (e.g. x86 1G compound * pages with 2M subsection size) fill the rest of sections as tail * pages. * * Note that memremap_pages() resets @nr_range value and will increment * it after each range successful onlining. Thus the value or @nr_range * at section memmap populate corresponds to the in-progress range * being onlined here. */ static bool __meminit reuse_compound_section(unsigned long start_pfn, struct dev_pagemap *pgmap) { unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); unsigned long offset = start_pfn - PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; } static pte_t * __meminit compound_section_tail_page(unsigned long addr) { pte_t *pte; addr -= PAGE_SIZE; /* * Assuming sections are populated sequentially, the previous section's * page data can be reused. */ pte = pte_offset_kernel(pmd_off_k(addr), addr); if (!pte) return NULL; return pte; } static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, unsigned long start, unsigned long end, int node, struct dev_pagemap *pgmap) { unsigned long size, addr; pte_t *pte; int rc; if (reuse_compound_section(start_pfn, pgmap)) { pte = compound_section_tail_page(start); if (!pte) return -ENOMEM; /* * Reuse the page that was populated in the prior iteration * with just tail struct pages. */ return vmemmap_populate_range(start, end, node, NULL, pte_page(ptep_get(pte))); } size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); for (addr = start; addr < end; addr += size) { unsigned long next, last = addr + size; /* Populate the head page vmemmap page */ pte = vmemmap_populate_address(addr, node, NULL, NULL); if (!pte) return -ENOMEM; /* Populate the tail pages vmemmap page */ next = addr + PAGE_SIZE; pte = vmemmap_populate_address(next, node, NULL, NULL); if (!pte) return -ENOMEM; /* * Reuse the previous page for the rest of tail pages * See layout diagram in Documentation/mm/vmemmap_dedup.rst */ next += PAGE_SIZE; rc = vmemmap_populate_range(next, last, node, NULL, pte_page(ptep_get(pte))); if (rc) return -ENOMEM; } return 0; } #endif struct page * __meminit __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap, struct dev_pagemap *pgmap) { unsigned long start = (unsigned long) pfn_to_page(pfn); unsigned long end = start + nr_pages * sizeof(struct page); int r; if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) return NULL; if (vmemmap_can_optimize(altmap, pgmap)) r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); else r = vmemmap_populate(start, end, nid, altmap); if (r < 0) return NULL; return pfn_to_page(pfn); } |