Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | // SPDX-License-Identifier: GPL-2.0 /* * Virtual Memory Map support * * (C) 2007 sgi. Christoph Lameter. * * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, * virt_to_page, page_address() to be implemented as a base offset * calculation without memory access. * * However, virtual mappings need a page table and TLBs. Many Linux * architectures already map their physical space using 1-1 mappings * via TLBs. For those arches the virtual memory map is essentially * for free if we use the same page size as the 1-1 mappings. In that * case the overhead consists of a few additional pages that are * allocated to create a view of memory for vmemmap. * * The architecture is expected to provide a vmemmap_populate() function * to instantiate the mapping. */ #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/memblock.h> #include <linux/memremap.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/sched.h> #include <asm/dma.h> #include <asm/pgalloc.h> /* * Allocate a block of memory to be used to back the virtual memory map * or to back the page tables that are used to create the mapping. * Uses the main allocators if they are available, else bootmem. */ static void * __ref __earlyonly_bootmem_alloc(int node, unsigned long size, unsigned long align, unsigned long goal) { return memblock_alloc_try_nid_raw(size, align, goal, MEMBLOCK_ALLOC_ACCESSIBLE, node); } void * __meminit vmemmap_alloc_block(unsigned long size, int node) { /* If the main allocator is up use that, fallback to bootmem. */ if (slab_is_available()) { gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; int order = get_order(size); static bool warned; struct page *page; page = alloc_pages_node(node, gfp_mask, order); if (page) return page_address(page); if (!warned) { warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, "vmemmap alloc failure: order:%u", order); warned = true; } return NULL; } else return __earlyonly_bootmem_alloc(node, size, size, __pa(MAX_DMA_ADDRESS)); } static void * __meminit altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); /* need to make sure size is all the same during early stage */ void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap) { void *ptr; if (altmap) return altmap_alloc_block_buf(size, altmap); ptr = sparse_buffer_alloc(size); if (!ptr) ptr = vmemmap_alloc_block(size, node); return ptr; } static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) { return altmap->base_pfn + altmap->reserve + altmap->alloc + altmap->align; } static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) { unsigned long allocated = altmap->alloc + altmap->align; if (altmap->free > allocated) return altmap->free - allocated; return 0; } static void * __meminit altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap) { unsigned long pfn, nr_pfns, nr_align; if (size & ~PAGE_MASK) { pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", __func__, size); return NULL; } pfn = vmem_altmap_next_pfn(altmap); nr_pfns = size >> PAGE_SHIFT; nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); nr_align = ALIGN(pfn, nr_align) - pfn; if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) return NULL; altmap->alloc += nr_pfns; altmap->align += nr_align; pfn += nr_align; pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", __func__, pfn, altmap->alloc, altmap->align, nr_pfns); return __va(__pfn_to_phys(pfn)); } void __meminit vmemmap_verify(pte_t *pte, int node, unsigned long start, unsigned long end) { unsigned long pfn = pte_pfn(*pte); int actual_node = early_pfn_to_nid(pfn); if (node_distance(actual_node, node) > LOCAL_DISTANCE) pr_warn("[%lx-%lx] potential offnode page_structs\n", start, end - 1); } pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap) { pte_t *pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) { pte_t entry; void *p; p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); if (!p) return NULL; entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); set_pte_at(&init_mm, addr, pte, entry); } return pte; } static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) { void *p = vmemmap_alloc_block(size, node); if (!p) return NULL; memset(p, 0, size); return p; } pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) { pmd_t *pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pmd_populate_kernel(&init_mm, pmd, p); } return pmd; } pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) { pud_t *pud = pud_offset(p4d, addr); if (pud_none(*pud)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pud_populate(&init_mm, pud, p); } return pud; } p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) { p4d_t *p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; p4d_populate(&init_mm, p4d, p); } return p4d; } pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) { pgd_t *pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) { void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); if (!p) return NULL; pgd_populate(&init_mm, pgd, p); } return pgd; } int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { unsigned long addr = start; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; for (; addr < end; addr += PAGE_SIZE) { pgd = vmemmap_pgd_populate(addr, node); if (!pgd) return -ENOMEM; p4d = vmemmap_p4d_populate(pgd, addr, node); if (!p4d) return -ENOMEM; pud = vmemmap_pud_populate(p4d, addr, node); if (!pud) return -ENOMEM; pmd = vmemmap_pmd_populate(pud, addr, node); if (!pmd) return -ENOMEM; pte = vmemmap_pte_populate(pmd, addr, node, altmap); if (!pte) return -ENOMEM; vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); } return 0; } struct page * __meminit __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap) { unsigned long start = (unsigned long) pfn_to_page(pfn); unsigned long end = start + nr_pages * sizeof(struct page); if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) return NULL; if (vmemmap_populate(start, end, nid, altmap)) return NULL; return pfn_to_page(pfn); } |