Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/string.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/siphash.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/red.h> /* Stochastic Fairness Queuing algorithm. ======================================= Source: Paul E. McKenney "Stochastic Fairness Queuing", IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. Paul E. McKenney "Stochastic Fairness Queuing", "Interworking: Research and Experience", v.2, 1991, p.113-131. See also: M. Shreedhar and George Varghese "Efficient Fair Queuing using Deficit Round Robin", Proc. SIGCOMM 95. This is not the thing that is usually called (W)FQ nowadays. It does not use any timestamp mechanism, but instead processes queues in round-robin order. ADVANTAGE: - It is very cheap. Both CPU and memory requirements are minimal. DRAWBACKS: - "Stochastic" -> It is not 100% fair. When hash collisions occur, several flows are considered as one. - "Round-robin" -> It introduces larger delays than virtual clock based schemes, and should not be used for isolating interactive traffic from non-interactive. It means, that this scheduler should be used as leaf of CBQ or P3, which put interactive traffic to higher priority band. We still need true WFQ for top level CSZ, but using WFQ for the best effort traffic is absolutely pointless: SFQ is superior for this purpose. IMPLEMENTATION: This implementation limits : - maximal queue length per flow to 127 packets. - max mtu to 2^18-1; - max 65408 flows, - number of hash buckets to 65536. It is easy to increase these values, but not in flight. */ #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */ #define SFQ_DEFAULT_FLOWS 128 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */ #define SFQ_EMPTY_SLOT 0xffff #define SFQ_DEFAULT_HASH_DIVISOR 1024 /* We use 16 bits to store allot, and want to handle packets up to 64K * Scale allot by 8 (1<<3) so that no overflow occurs. */ #define SFQ_ALLOT_SHIFT 3 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT) /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */ typedef u16 sfq_index; /* * We dont use pointers to save space. * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH] * are 'pointers' to dep[] array */ struct sfq_head { sfq_index next; sfq_index prev; }; struct sfq_slot { struct sk_buff *skblist_next; struct sk_buff *skblist_prev; sfq_index qlen; /* number of skbs in skblist */ sfq_index next; /* next slot in sfq RR chain */ struct sfq_head dep; /* anchor in dep[] chains */ unsigned short hash; /* hash value (index in ht[]) */ short allot; /* credit for this slot */ unsigned int backlog; struct red_vars vars; }; struct sfq_sched_data { /* frequently used fields */ int limit; /* limit of total number of packets in this qdisc */ unsigned int divisor; /* number of slots in hash table */ u8 headdrop; u8 maxdepth; /* limit of packets per flow */ siphash_key_t perturbation; u8 cur_depth; /* depth of longest slot */ u8 flags; unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */ struct tcf_proto __rcu *filter_list; struct tcf_block *block; sfq_index *ht; /* Hash table ('divisor' slots) */ struct sfq_slot *slots; /* Flows table ('maxflows' entries) */ struct red_parms *red_parms; struct tc_sfqred_stats stats; struct sfq_slot *tail; /* current slot in round */ struct sfq_head dep[SFQ_MAX_DEPTH + 1]; /* Linked lists of slots, indexed by depth * dep[0] : list of unused flows * dep[1] : list of flows with 1 packet * dep[X] : list of flows with X packets */ unsigned int maxflows; /* number of flows in flows array */ int perturb_period; unsigned int quantum; /* Allotment per round: MUST BE >= MTU */ struct timer_list perturb_timer; struct Qdisc *sch; }; /* * sfq_head are either in a sfq_slot or in dep[] array */ static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val) { if (val < SFQ_MAX_FLOWS) return &q->slots[val].dep; return &q->dep[val - SFQ_MAX_FLOWS]; } static unsigned int sfq_hash(const struct sfq_sched_data *q, const struct sk_buff *skb) { return skb_get_hash_perturb(skb, &q->perturbation) & (q->divisor - 1); } static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) { struct sfq_sched_data *q = qdisc_priv(sch); struct tcf_result res; struct tcf_proto *fl; int result; if (TC_H_MAJ(skb->priority) == sch->handle && TC_H_MIN(skb->priority) > 0 && TC_H_MIN(skb->priority) <= q->divisor) return TC_H_MIN(skb->priority); fl = rcu_dereference_bh(q->filter_list); if (!fl) return sfq_hash(q, skb) + 1; *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; result = tcf_classify(skb, NULL, fl, &res, false); if (result >= 0) { #ifdef CONFIG_NET_CLS_ACT switch (result) { case TC_ACT_STOLEN: case TC_ACT_QUEUED: case TC_ACT_TRAP: *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; fallthrough; case TC_ACT_SHOT: return 0; } #endif if (TC_H_MIN(res.classid) <= q->divisor) return TC_H_MIN(res.classid); } return 0; } /* * x : slot number [0 .. SFQ_MAX_FLOWS - 1] */ static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) { sfq_index p, n; struct sfq_slot *slot = &q->slots[x]; int qlen = slot->qlen; p = qlen + SFQ_MAX_FLOWS; n = q->dep[qlen].next; slot->dep.next = n; slot->dep.prev = p; q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */ sfq_dep_head(q, n)->prev = x; } #define sfq_unlink(q, x, n, p) \ do { \ n = q->slots[x].dep.next; \ p = q->slots[x].dep.prev; \ sfq_dep_head(q, p)->next = n; \ sfq_dep_head(q, n)->prev = p; \ } while (0) static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) { sfq_index p, n; int d; sfq_unlink(q, x, n, p); d = q->slots[x].qlen--; if (n == p && q->cur_depth == d) q->cur_depth--; sfq_link(q, x); } static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) { sfq_index p, n; int d; sfq_unlink(q, x, n, p); d = ++q->slots[x].qlen; if (q->cur_depth < d) q->cur_depth = d; sfq_link(q, x); } /* helper functions : might be changed when/if skb use a standard list_head */ /* remove one skb from tail of slot queue */ static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot) { struct sk_buff *skb = slot->skblist_prev; slot->skblist_prev = skb->prev; skb->prev->next = (struct sk_buff *)slot; skb->next = skb->prev = NULL; return skb; } /* remove one skb from head of slot queue */ static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot) { struct sk_buff *skb = slot->skblist_next; slot->skblist_next = skb->next; skb->next->prev = (struct sk_buff *)slot; skb->next = skb->prev = NULL; return skb; } static inline void slot_queue_init(struct sfq_slot *slot) { memset(slot, 0, sizeof(*slot)); slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot; } /* add skb to slot queue (tail add) */ static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb) { skb->prev = slot->skblist_prev; skb->next = (struct sk_buff *)slot; slot->skblist_prev->next = skb; slot->skblist_prev = skb; } static unsigned int sfq_drop(struct Qdisc *sch, struct sk_buff **to_free) { struct sfq_sched_data *q = qdisc_priv(sch); sfq_index x, d = q->cur_depth; struct sk_buff *skb; unsigned int len; struct sfq_slot *slot; /* Queue is full! Find the longest slot and drop tail packet from it */ if (d > 1) { x = q->dep[d].next; slot = &q->slots[x]; drop: skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot); len = qdisc_pkt_len(skb); slot->backlog -= len; sfq_dec(q, x); sch->q.qlen--; qdisc_qstats_backlog_dec(sch, skb); qdisc_drop(skb, sch, to_free); return len; } if (d == 1) { /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ x = q->tail->next; slot = &q->slots[x]; q->tail->next = slot->next; q->ht[slot->hash] = SFQ_EMPTY_SLOT; goto drop; } return 0; } /* Is ECN parameter configured */ static int sfq_prob_mark(const struct sfq_sched_data *q) { return q->flags & TC_RED_ECN; } /* Should packets over max threshold just be marked */ static int sfq_hard_mark(const struct sfq_sched_data *q) { return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN; } static int sfq_headdrop(const struct sfq_sched_data *q) { return q->headdrop; } static int sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct sfq_sched_data *q = qdisc_priv(sch); unsigned int hash, dropped; sfq_index x, qlen; struct sfq_slot *slot; int ret; struct sk_buff *head; int delta; hash = sfq_classify(skb, sch, &ret); if (hash == 0) { if (ret & __NET_XMIT_BYPASS) qdisc_qstats_drop(sch); __qdisc_drop(skb, to_free); return ret; } hash--; x = q->ht[hash]; slot = &q->slots[x]; if (x == SFQ_EMPTY_SLOT) { x = q->dep[0].next; /* get a free slot */ if (x >= SFQ_MAX_FLOWS) return qdisc_drop(skb, sch, to_free); q->ht[hash] = x; slot = &q->slots[x]; slot->hash = hash; slot->backlog = 0; /* should already be 0 anyway... */ red_set_vars(&slot->vars); goto enqueue; } if (q->red_parms) { slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms, &slot->vars, slot->backlog); switch (red_action(q->red_parms, &slot->vars, slot->vars.qavg)) { case RED_DONT_MARK: break; case RED_PROB_MARK: qdisc_qstats_overlimit(sch); if (sfq_prob_mark(q)) { /* We know we have at least one packet in queue */ if (sfq_headdrop(q) && INET_ECN_set_ce(slot->skblist_next)) { q->stats.prob_mark_head++; break; } if (INET_ECN_set_ce(skb)) { q->stats.prob_mark++; break; } } q->stats.prob_drop++; goto congestion_drop; case RED_HARD_MARK: qdisc_qstats_overlimit(sch); if (sfq_hard_mark(q)) { /* We know we have at least one packet in queue */ if (sfq_headdrop(q) && INET_ECN_set_ce(slot->skblist_next)) { q->stats.forced_mark_head++; break; } if (INET_ECN_set_ce(skb)) { q->stats.forced_mark++; break; } } q->stats.forced_drop++; goto congestion_drop; } } if (slot->qlen >= q->maxdepth) { congestion_drop: if (!sfq_headdrop(q)) return qdisc_drop(skb, sch, to_free); /* We know we have at least one packet in queue */ head = slot_dequeue_head(slot); delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb); sch->qstats.backlog -= delta; slot->backlog -= delta; qdisc_drop(head, sch, to_free); slot_queue_add(slot, skb); qdisc_tree_reduce_backlog(sch, 0, delta); return NET_XMIT_CN; } enqueue: qdisc_qstats_backlog_inc(sch, skb); slot->backlog += qdisc_pkt_len(skb); slot_queue_add(slot, skb); sfq_inc(q, x); if (slot->qlen == 1) { /* The flow is new */ if (q->tail == NULL) { /* It is the first flow */ slot->next = x; } else { slot->next = q->tail->next; q->tail->next = x; } /* We put this flow at the end of our flow list. * This might sound unfair for a new flow to wait after old ones, * but we could endup servicing new flows only, and freeze old ones. */ q->tail = slot; /* We could use a bigger initial quantum for new flows */ slot->allot = q->scaled_quantum; } if (++sch->q.qlen <= q->limit) return NET_XMIT_SUCCESS; qlen = slot->qlen; dropped = sfq_drop(sch, to_free); /* Return Congestion Notification only if we dropped a packet * from this flow. */ if (qlen != slot->qlen) { qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb)); return NET_XMIT_CN; } /* As we dropped a packet, better let upper stack know this */ qdisc_tree_reduce_backlog(sch, 1, dropped); return NET_XMIT_SUCCESS; } static struct sk_buff * sfq_dequeue(struct Qdisc *sch) { struct sfq_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; sfq_index a, next_a; struct sfq_slot *slot; /* No active slots */ if (q->tail == NULL) return NULL; next_slot: a = q->tail->next; slot = &q->slots[a]; if (slot->allot <= 0) { q->tail = slot; slot->allot += q->scaled_quantum; goto next_slot; } skb = slot_dequeue_head(slot); sfq_dec(q, a); qdisc_bstats_update(sch, skb); sch->q.qlen--; qdisc_qstats_backlog_dec(sch, skb); slot->backlog -= qdisc_pkt_len(skb); /* Is the slot empty? */ if (slot->qlen == 0) { q->ht[slot->hash] = SFQ_EMPTY_SLOT; next_a = slot->next; if (a == next_a) { q->tail = NULL; /* no more active slots */ return skb; } q->tail->next = next_a; } else { slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb)); } return skb; } static void sfq_reset(struct Qdisc *sch) { struct sk_buff *skb; while ((skb = sfq_dequeue(sch)) != NULL) rtnl_kfree_skbs(skb, skb); } /* * When q->perturbation is changed, we rehash all queued skbs * to avoid OOO (Out Of Order) effects. * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change * counters. */ static void sfq_rehash(struct Qdisc *sch) { struct sfq_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; int i; struct sfq_slot *slot; struct sk_buff_head list; int dropped = 0; unsigned int drop_len = 0; __skb_queue_head_init(&list); for (i = 0; i < q->maxflows; i++) { slot = &q->slots[i]; if (!slot->qlen) continue; while (slot->qlen) { skb = slot_dequeue_head(slot); sfq_dec(q, i); __skb_queue_tail(&list, skb); } slot->backlog = 0; red_set_vars(&slot->vars); q->ht[slot->hash] = SFQ_EMPTY_SLOT; } q->tail = NULL; while ((skb = __skb_dequeue(&list)) != NULL) { unsigned int hash = sfq_hash(q, skb); sfq_index x = q->ht[hash]; slot = &q->slots[x]; if (x == SFQ_EMPTY_SLOT) { x = q->dep[0].next; /* get a free slot */ if (x >= SFQ_MAX_FLOWS) { drop: qdisc_qstats_backlog_dec(sch, skb); drop_len += qdisc_pkt_len(skb); kfree_skb(skb); dropped++; continue; } q->ht[hash] = x; slot = &q->slots[x]; slot->hash = hash; } if (slot->qlen >= q->maxdepth) goto drop; slot_queue_add(slot, skb); if (q->red_parms) slot->vars.qavg = red_calc_qavg(q->red_parms, &slot->vars, slot->backlog); slot->backlog += qdisc_pkt_len(skb); sfq_inc(q, x); if (slot->qlen == 1) { /* The flow is new */ if (q->tail == NULL) { /* It is the first flow */ slot->next = x; } else { slot->next = q->tail->next; q->tail->next = x; } q->tail = slot; slot->allot = q->scaled_quantum; } } sch->q.qlen -= dropped; qdisc_tree_reduce_backlog(sch, dropped, drop_len); } static void sfq_perturbation(struct timer_list *t) { struct sfq_sched_data *q = from_timer(q, t, perturb_timer); struct Qdisc *sch = q->sch; spinlock_t *root_lock; siphash_key_t nkey; get_random_bytes(&nkey, sizeof(nkey)); rcu_read_lock(); root_lock = qdisc_lock(qdisc_root_sleeping(sch)); spin_lock(root_lock); q->perturbation = nkey; if (!q->filter_list && q->tail) sfq_rehash(sch); spin_unlock(root_lock); if (q->perturb_period) mod_timer(&q->perturb_timer, jiffies + q->perturb_period); rcu_read_unlock(); } static int sfq_change(struct Qdisc *sch, struct nlattr *opt) { struct sfq_sched_data *q = qdisc_priv(sch); struct tc_sfq_qopt *ctl = nla_data(opt); struct tc_sfq_qopt_v1 *ctl_v1 = NULL; unsigned int qlen, dropped = 0; struct red_parms *p = NULL; struct sk_buff *to_free = NULL; struct sk_buff *tail = NULL; if (opt->nla_len < nla_attr_size(sizeof(*ctl))) return -EINVAL; if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1))) ctl_v1 = nla_data(opt); if (ctl->divisor && (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536)) return -EINVAL; /* slot->allot is a short, make sure quantum is not too big. */ if (ctl->quantum) { unsigned int scaled = SFQ_ALLOT_SIZE(ctl->quantum); if (scaled <= 0 || scaled > SHRT_MAX) return -EINVAL; } if (ctl_v1 && !red_check_params(ctl_v1->qth_min, ctl_v1->qth_max, ctl_v1->Wlog, ctl_v1->Scell_log, NULL)) return -EINVAL; if (ctl_v1 && ctl_v1->qth_min) { p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; } sch_tree_lock(sch); if (ctl->quantum) { q->quantum = ctl->quantum; q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); } q->perturb_period = ctl->perturb_period * HZ; if (ctl->flows) q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS); if (ctl->divisor) { q->divisor = ctl->divisor; q->maxflows = min_t(u32, q->maxflows, q->divisor); } if (ctl_v1) { if (ctl_v1->depth) q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH); if (p) { swap(q->red_parms, p); red_set_parms(q->red_parms, ctl_v1->qth_min, ctl_v1->qth_max, ctl_v1->Wlog, ctl_v1->Plog, ctl_v1->Scell_log, NULL, ctl_v1->max_P); } q->flags = ctl_v1->flags; q->headdrop = ctl_v1->headdrop; } if (ctl->limit) { q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows); q->maxflows = min_t(u32, q->maxflows, q->limit); } qlen = sch->q.qlen; while (sch->q.qlen > q->limit) { dropped += sfq_drop(sch, &to_free); if (!tail) tail = to_free; } rtnl_kfree_skbs(to_free, tail); qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); del_timer(&q->perturb_timer); if (q->perturb_period) { mod_timer(&q->perturb_timer, jiffies + q->perturb_period); get_random_bytes(&q->perturbation, sizeof(q->perturbation)); } sch_tree_unlock(sch); kfree(p); return 0; } static void *sfq_alloc(size_t sz) { return kvmalloc(sz, GFP_KERNEL); } static void sfq_free(void *addr) { kvfree(addr); } static void sfq_destroy(struct Qdisc *sch) { struct sfq_sched_data *q = qdisc_priv(sch); tcf_block_put(q->block); q->perturb_period = 0; del_timer_sync(&q->perturb_timer); sfq_free(q->ht); sfq_free(q->slots); kfree(q->red_parms); } static int sfq_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct sfq_sched_data *q = qdisc_priv(sch); int i; int err; q->sch = sch; timer_setup(&q->perturb_timer, sfq_perturbation, TIMER_DEFERRABLE); err = tcf_block_get(&q->block, &q->filter_list, sch, extack); if (err) return err; for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) { q->dep[i].next = i + SFQ_MAX_FLOWS; q->dep[i].prev = i + SFQ_MAX_FLOWS; } q->limit = SFQ_MAX_DEPTH; q->maxdepth = SFQ_MAX_DEPTH; q->cur_depth = 0; q->tail = NULL; q->divisor = SFQ_DEFAULT_HASH_DIVISOR; q->maxflows = SFQ_DEFAULT_FLOWS; q->quantum = psched_mtu(qdisc_dev(sch)); q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); q->perturb_period = 0; get_random_bytes(&q->perturbation, sizeof(q->perturbation)); if (opt) { int err = sfq_change(sch, opt); if (err) return err; } q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor); q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows); if (!q->ht || !q->slots) { /* Note: sfq_destroy() will be called by our caller */ return -ENOMEM; } for (i = 0; i < q->divisor; i++) q->ht[i] = SFQ_EMPTY_SLOT; for (i = 0; i < q->maxflows; i++) { slot_queue_init(&q->slots[i]); sfq_link(q, i); } if (q->limit >= 1) sch->flags |= TCQ_F_CAN_BYPASS; else sch->flags &= ~TCQ_F_CAN_BYPASS; return 0; } static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) { struct sfq_sched_data *q = qdisc_priv(sch); unsigned char *b = skb_tail_pointer(skb); struct tc_sfq_qopt_v1 opt; struct red_parms *p = q->red_parms; memset(&opt, 0, sizeof(opt)); opt.v0.quantum = q->quantum; opt.v0.perturb_period = q->perturb_period / HZ; opt.v0.limit = q->limit; opt.v0.divisor = q->divisor; opt.v0.flows = q->maxflows; opt.depth = q->maxdepth; opt.headdrop = q->headdrop; if (p) { opt.qth_min = p->qth_min >> p->Wlog; opt.qth_max = p->qth_max >> p->Wlog; opt.Wlog = p->Wlog; opt.Plog = p->Plog; opt.Scell_log = p->Scell_log; opt.max_P = p->max_P; } memcpy(&opt.stats, &q->stats, sizeof(opt.stats)); opt.flags = q->flags; if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) goto nla_put_failure; return skb->len; nla_put_failure: nlmsg_trim(skb, b); return -1; } static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg) { return NULL; } static unsigned long sfq_find(struct Qdisc *sch, u32 classid) { return 0; } static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent, u32 classid) { return 0; } static void sfq_unbind(struct Qdisc *q, unsigned long cl) { } static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl, struct netlink_ext_ack *extack) { struct sfq_sched_data *q = qdisc_priv(sch); if (cl) return NULL; return q->block; } static int sfq_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { tcm->tcm_handle |= TC_H_MIN(cl); return 0; } static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) { struct sfq_sched_data *q = qdisc_priv(sch); sfq_index idx = q->ht[cl - 1]; struct gnet_stats_queue qs = { 0 }; struct tc_sfq_xstats xstats = { 0 }; if (idx != SFQ_EMPTY_SLOT) { const struct sfq_slot *slot = &q->slots[idx]; xstats.allot = slot->allot << SFQ_ALLOT_SHIFT; qs.qlen = slot->qlen; qs.backlog = slot->backlog; } if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) return -1; return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); } static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct sfq_sched_data *q = qdisc_priv(sch); unsigned int i; if (arg->stop) return; for (i = 0; i < q->divisor; i++) { if (q->ht[i] == SFQ_EMPTY_SLOT) { arg->count++; continue; } if (!tc_qdisc_stats_dump(sch, i + 1, arg)) break; } } static const struct Qdisc_class_ops sfq_class_ops = { .leaf = sfq_leaf, .find = sfq_find, .tcf_block = sfq_tcf_block, .bind_tcf = sfq_bind, .unbind_tcf = sfq_unbind, .dump = sfq_dump_class, .dump_stats = sfq_dump_class_stats, .walk = sfq_walk, }; static struct Qdisc_ops sfq_qdisc_ops __read_mostly = { .cl_ops = &sfq_class_ops, .id = "sfq", .priv_size = sizeof(struct sfq_sched_data), .enqueue = sfq_enqueue, .dequeue = sfq_dequeue, .peek = qdisc_peek_dequeued, .init = sfq_init, .reset = sfq_reset, .destroy = sfq_destroy, .change = NULL, .dump = sfq_dump, .owner = THIS_MODULE, }; static int __init sfq_module_init(void) { return register_qdisc(&sfq_qdisc_ops); } static void __exit sfq_module_exit(void) { unregister_qdisc(&sfq_qdisc_ops); } module_init(sfq_module_init) module_exit(sfq_module_exit) MODULE_LICENSE("GPL"); |