Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/*
 * net/sched/sch_sfq.c	Stochastic Fairness Queueing discipline.
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 */

#include <linux/config.h>
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <net/ip.h>
#include <linux/ipv6.h>
#include <net/route.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/pkt_sched.h>


/*	Stochastic Fairness Queuing algorithm.
	=======================================

	Source:
	Paul E. McKenney "Stochastic Fairness Queuing",
	IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.

	Paul E. McKenney "Stochastic Fairness Queuing",
	"Interworking: Research and Experience", v.2, 1991, p.113-131.


	See also:
	M. Shreedhar and George Varghese "Efficient Fair
	Queuing using Deficit Round Robin", Proc. SIGCOMM 95.


	This is not the thing that is usually called (W)FQ nowadays. 
	It does not use any timestamp mechanism, but instead
	processes queues in round-robin order.

	ADVANTAGE:

	- It is very cheap. Both CPU and memory requirements are minimal.

	DRAWBACKS:

	- "Stochastic" -> It is not 100% fair. 
	When hash collisions occur, several flows are considered as one.

	- "Round-robin" -> It introduces larger delays than virtual clock
	based schemes, and should not be used for isolating interactive
	traffic	from non-interactive. It means, that this scheduler
	should be used as leaf of CBQ or P3, which put interactive traffic
	to higher priority band.

	We still need true WFQ for top level CSZ, but using WFQ
	for the best effort traffic is absolutely pointless:
	SFQ is superior for this purpose.

	IMPLEMENTATION:
	This implementation limits maximal queue length to 128;
	maximal mtu to 2^15-1; number of hash buckets to 1024.
	The only goal of this restrictions was that all data
	fit into one 4K page :-). Struct sfq_sched_data is
	organized in anti-cache manner: all the data for a bucket
	are scattered over different locations. This is not good,
	but it allowed me to put it into 4K.

	It is easy to increase these values, but not in flight.  */

#define SFQ_DEPTH		128
#define SFQ_HASH_DIVISOR	1024

/* This type should contain at least SFQ_DEPTH*2 values */
typedef unsigned char sfq_index;

struct sfq_head
{
	sfq_index	next;
	sfq_index	prev;
};

struct sfq_sched_data
{
/* Parameters */
	int		perturb_period;
	unsigned	quantum;	/* Allotment per round: MUST BE >= MTU */

/* Variables */
	struct timer_list perturb_timer;
	int		perturbation;
	sfq_index	tail;		/* Index of current slot in round */
	sfq_index	max_depth;	/* Maximal depth */

	sfq_index	ht[SFQ_HASH_DIVISOR];	/* Hash table */
	sfq_index	next[SFQ_DEPTH];	/* Active slots link */
	short		allot[SFQ_DEPTH];	/* Current allotment per slot */
	unsigned short	hash[SFQ_DEPTH];	/* Hash value indexed by slots */
	struct sk_buff_head	qs[SFQ_DEPTH];		/* Slot queue */
	struct sfq_head	dep[SFQ_DEPTH*2];	/* Linked list of slots, indexed by depth */
};

static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
{
	int pert = q->perturbation;

	/* Have we any rotation primitives? If not, WHY? */
	h ^= (h1<<pert) ^ (h1>>(0x1F - pert));
	h ^= h>>10;
	return h & 0x3FF;
}

#ifndef IPPROTO_ESP
#define IPPROTO_ESP 50
#endif

static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
{
	u32 h, h2;

	switch (skb->protocol) {
	case __constant_htons(ETH_P_IP):
	{
		struct iphdr *iph = skb->nh.iph;
		h = iph->daddr;
		h2 = iph->saddr^iph->protocol;
		if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
		    (iph->protocol == IPPROTO_TCP ||
		     iph->protocol == IPPROTO_UDP ||
		     iph->protocol == IPPROTO_ESP))
			h2 ^= *(((u32*)iph) + iph->ihl);
		break;
	}
	case __constant_htons(ETH_P_IPV6):
	{
		struct ipv6hdr *iph = skb->nh.ipv6h;
		h = iph->daddr.s6_addr32[3];
		h2 = iph->saddr.s6_addr32[3]^iph->nexthdr;
		if (iph->nexthdr == IPPROTO_TCP ||
		    iph->nexthdr == IPPROTO_UDP ||
		    iph->nexthdr == IPPROTO_ESP)
			h2 ^= *(u32*)&iph[1];
		break;
	}
	default:
		h = (u32)(unsigned long)skb->dst^skb->protocol;
		h2 = (u32)(unsigned long)skb->sk;
	}
	return sfq_fold_hash(q, h, h2);
}

extern __inline__ void sfq_link(struct sfq_sched_data *q, sfq_index x)
{
	sfq_index p, n;
	int d = q->qs[x].qlen + SFQ_DEPTH;

	p = d;
	n = q->dep[d].next;
	q->dep[x].next = n;
	q->dep[x].prev = p;
	q->dep[p].next = q->dep[n].prev = x;
}

extern __inline__ void sfq_dec(struct sfq_sched_data *q, sfq_index x)
{
	sfq_index p, n;

	n = q->dep[x].next;
	p = q->dep[x].prev;
	q->dep[p].next = n;
	q->dep[n].prev = p;

	if (n == p && q->max_depth == q->qs[x].qlen + 1)
		q->max_depth--;

	sfq_link(q, x);
}

extern __inline__ void sfq_inc(struct sfq_sched_data *q, sfq_index x)
{
	sfq_index p, n;
	int d;

	n = q->dep[x].next;
	p = q->dep[x].prev;
	q->dep[p].next = n;
	q->dep[n].prev = p;
	d = q->qs[x].qlen;
	if (q->max_depth < d)
		q->max_depth = d;

	sfq_link(q, x);
}

static int sfq_drop(struct Qdisc *sch)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	sfq_index d = q->max_depth;
	struct sk_buff *skb;

	/* Queue is full! Find the longest slot and
	   drop a packet from it */

	if (d > 1) {
		sfq_index x = q->dep[d+SFQ_DEPTH].next;
		skb = q->qs[x].prev;
		__skb_unlink(skb, &q->qs[x]);
		kfree_skb(skb);
		sfq_dec(q, x);
		sch->q.qlen--;
		sch->stats.drops++;
		return 1;
	}

	if (d == 1) {
		/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
		d = q->next[q->tail];
		q->next[q->tail] = q->next[d];
		q->allot[q->next[d]] += q->quantum;
		skb = q->qs[d].prev;
		__skb_unlink(skb, &q->qs[d]);
		kfree_skb(skb);
		sfq_dec(q, d);
		sch->q.qlen--;
		q->ht[q->hash[d]] = SFQ_DEPTH;
		sch->stats.drops++;
		return 1;
	}

	return 0;
}

static int
sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	unsigned hash = sfq_hash(q, skb);
	sfq_index x;

	x = q->ht[hash];
	if (x == SFQ_DEPTH) {
		q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
		q->hash[x] = hash;
	}
	__skb_queue_tail(&q->qs[x], skb);
	sfq_inc(q, x);
	if (q->qs[x].qlen == 1) {		/* The flow is new */
		if (q->tail == SFQ_DEPTH) {	/* It is the first flow */
			q->tail = x;
			q->next[x] = x;
			q->allot[x] = q->quantum;
		} else {
			q->next[x] = q->next[q->tail];
			q->next[q->tail] = x;
			q->tail = x;
		}
	}
	if (++sch->q.qlen < SFQ_DEPTH-1) {
		sch->stats.bytes += skb->len;
		sch->stats.packets++;
		return 1;
	}

	sfq_drop(sch);
	return 0;
}

static int
sfq_requeue(struct sk_buff *skb, struct Qdisc* sch)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	unsigned hash = sfq_hash(q, skb);
	sfq_index x;

	x = q->ht[hash];
	if (x == SFQ_DEPTH) {
		q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
		q->hash[x] = hash;
	}
	__skb_queue_head(&q->qs[x], skb);
	sfq_inc(q, x);
	if (q->qs[x].qlen == 1) {		/* The flow is new */
		if (q->tail == SFQ_DEPTH) {	/* It is the first flow */
			q->tail = x;
			q->next[x] = x;
			q->allot[x] = q->quantum;
		} else {
			q->next[x] = q->next[q->tail];
			q->next[q->tail] = x;
			q->tail = x;
		}
	}
	if (++sch->q.qlen < SFQ_DEPTH-1)
		return 1;

	sch->stats.drops++;
	sfq_drop(sch);
	return 0;
}




static struct sk_buff *
sfq_dequeue(struct Qdisc* sch)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	struct sk_buff *skb;
	sfq_index a, old_a;

	/* No active slots */
	if (q->tail == SFQ_DEPTH)
		return NULL;

	a = old_a = q->next[q->tail];

	/* Grab packet */
	skb = __skb_dequeue(&q->qs[a]);
	sfq_dec(q, a);
	sch->q.qlen--;

	/* Is the slot empty? */
	if (q->qs[a].qlen == 0) {
		a = q->next[a];
		if (a == old_a) {
			q->tail = SFQ_DEPTH;
			return skb;
		}
		q->next[q->tail] = a;
		q->allot[a] += q->quantum;
	} else if ((q->allot[a] -= skb->len) <= 0) {
		q->tail = a;
		a = q->next[a];
		q->allot[a] += q->quantum;
	}
	return skb;
}

static void
sfq_reset(struct Qdisc* sch)
{
	struct sk_buff *skb;

	while ((skb = sfq_dequeue(sch)) != NULL)
		kfree_skb(skb);
}

static void sfq_perturbation(unsigned long arg)
{
	struct Qdisc *sch = (struct Qdisc*)arg;
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;

	q->perturbation = net_random()&0x1F;
	q->perturb_timer.expires = jiffies + q->perturb_period;

	if (q->perturb_period) {
		q->perturb_timer.expires = jiffies + q->perturb_period;
		add_timer(&q->perturb_timer);
	}
}

static int sfq_change(struct Qdisc *sch, struct rtattr *opt)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	struct tc_sfq_qopt *ctl = RTA_DATA(opt);

	if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))
		return -EINVAL;

	start_bh_atomic();
	q->quantum = ctl->quantum ? : psched_mtu(sch->dev);
	q->perturb_period = ctl->perturb_period*HZ;

	del_timer(&q->perturb_timer);
	if (q->perturb_period) {
		q->perturb_timer.expires = jiffies + q->perturb_period;
		add_timer(&q->perturb_timer);
	}
	end_bh_atomic();
	return 0;
}

static int sfq_init(struct Qdisc *sch, struct rtattr *opt)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	int i;

	q->perturb_timer.data = (unsigned long)sch;
	q->perturb_timer.function = sfq_perturbation;
	init_timer(&q->perturb_timer);

	for (i=0; i<SFQ_HASH_DIVISOR; i++)
		q->ht[i] = SFQ_DEPTH;
	for (i=0; i<SFQ_DEPTH; i++) {
		skb_queue_head_init(&q->qs[i]);
		q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH;
		q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH;
	}
	q->max_depth = 0;
	q->tail = SFQ_DEPTH;
	if (opt == NULL) {
		q->quantum = psched_mtu(sch->dev);
		q->perturb_period = 0;
	} else {
		int err = sfq_change(sch, opt);
		if (err)
			return err;
	}
	for (i=0; i<SFQ_DEPTH; i++)
		sfq_link(q, i);
	MOD_INC_USE_COUNT;
	return 0;
}

static void sfq_destroy(struct Qdisc *sch)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	del_timer(&q->perturb_timer);
	MOD_DEC_USE_COUNT;
}

#ifdef CONFIG_RTNETLINK
static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct sfq_sched_data *q = (struct sfq_sched_data *)sch->data;
	unsigned char	 *b = skb->tail;
	struct tc_sfq_qopt opt;

	opt.quantum = q->quantum;
	opt.perturb_period = q->perturb_period/HZ;

	opt.limit = SFQ_DEPTH;
	opt.divisor = SFQ_HASH_DIVISOR;
	opt.flows = SFQ_DEPTH;

	RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);

	return skb->len;

rtattr_failure:
	skb_trim(skb, b - skb->data);
	return -1;
}
#endif

struct Qdisc_ops sfq_qdisc_ops =
{
	NULL,
	NULL,
	"sfq",
	sizeof(struct sfq_sched_data),

	sfq_enqueue,
	sfq_dequeue,
	sfq_requeue,
	sfq_drop,

	sfq_init,
	sfq_reset,
	sfq_destroy,
	NULL, /* sfq_change */

#ifdef CONFIG_RTNETLINK
	sfq_dump,
#endif
};

#ifdef MODULE
int init_module(void)
{
	return register_qdisc(&sfq_qdisc_ops);
}

void cleanup_module(void) 
{
	unregister_qdisc(&sfq_qdisc_ops);
}
#endif