Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | // SPDX-License-Identifier: GPL-2.0 /* * Common EFI (Extensible Firmware Interface) support functions * Based on Extensible Firmware Interface Specification version 1.0 * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999-2002 Hewlett-Packard Co. * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 2005-2008 Intel Co. * Fenghua Yu <fenghua.yu@intel.com> * Bibo Mao <bibo.mao@intel.com> * Chandramouli Narayanan <mouli@linux.intel.com> * Huang Ying <ying.huang@intel.com> * Copyright (C) 2013 SuSE Labs * Borislav Petkov <bp@suse.de> - runtime services VA mapping * * Copied from efi_32.c to eliminate the duplicated code between EFI * 32/64 support code. --ying 2007-10-26 * * All EFI Runtime Services are not implemented yet as EFI only * supports physical mode addressing on SoftSDV. This is to be fixed * in a future version. --drummond 1999-07-20 * * Implemented EFI runtime services and virtual mode calls. --davidm * * Goutham Rao: <goutham.rao@intel.com> * Skip non-WB memory and ignore empty memory ranges. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/init.h> #include <linux/efi.h> #include <linux/efi-bgrt.h> #include <linux/export.h> #include <linux/memblock.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/uaccess.h> #include <linux/time.h> #include <linux/io.h> #include <linux/reboot.h> #include <linux/bcd.h> #include <asm/setup.h> #include <asm/efi.h> #include <asm/e820/api.h> #include <asm/time.h> #include <asm/tlbflush.h> #include <asm/x86_init.h> #include <asm/uv/uv.h> static unsigned long efi_systab_phys __initdata; static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR; static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR; static unsigned long efi_runtime, efi_nr_tables; unsigned long efi_fw_vendor, efi_config_table; static const efi_config_table_type_t arch_tables[] __initconst = { {EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" }, {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" }, #ifdef CONFIG_X86_UV {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" }, #endif {}, }; static const unsigned long * const efi_tables[] = { &efi.acpi, &efi.acpi20, &efi.smbios, &efi.smbios3, &uga_phys, #ifdef CONFIG_X86_UV &uv_systab_phys, #endif &efi_fw_vendor, &efi_runtime, &efi_config_table, &efi.esrt, &prop_phys, &efi_mem_attr_table, #ifdef CONFIG_EFI_RCI2_TABLE &rci2_table_phys, #endif &efi.tpm_log, &efi.tpm_final_log, &efi_rng_seed, #ifdef CONFIG_LOAD_UEFI_KEYS &efi.mokvar_table, #endif #ifdef CONFIG_EFI_COCO_SECRET &efi.coco_secret, #endif #ifdef CONFIG_UNACCEPTED_MEMORY &efi.unaccepted, #endif }; u64 efi_setup; /* efi setup_data physical address */ static int add_efi_memmap __initdata; static int __init setup_add_efi_memmap(char *arg) { add_efi_memmap = 1; return 0; } early_param("add_efi_memmap", setup_add_efi_memmap); /* * Tell the kernel about the EFI memory map. This might include * more than the max 128 entries that can fit in the passed in e820 * legacy (zeropage) memory map, but the kernel's e820 table can hold * E820_MAX_ENTRIES. */ static void __init do_add_efi_memmap(void) { efi_memory_desc_t *md; if (!efi_enabled(EFI_MEMMAP)) return; for_each_efi_memory_desc(md) { unsigned long long start = md->phys_addr; unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; int e820_type; switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: if (efi_soft_reserve_enabled() && (md->attribute & EFI_MEMORY_SP)) e820_type = E820_TYPE_SOFT_RESERVED; else if (md->attribute & EFI_MEMORY_WB) e820_type = E820_TYPE_RAM; else e820_type = E820_TYPE_RESERVED; break; case EFI_ACPI_RECLAIM_MEMORY: e820_type = E820_TYPE_ACPI; break; case EFI_ACPI_MEMORY_NVS: e820_type = E820_TYPE_NVS; break; case EFI_UNUSABLE_MEMORY: e820_type = E820_TYPE_UNUSABLE; break; case EFI_PERSISTENT_MEMORY: e820_type = E820_TYPE_PMEM; break; default: /* * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE */ e820_type = E820_TYPE_RESERVED; break; } e820__range_add(start, size, e820_type); } e820__update_table(e820_table); } /* * Given add_efi_memmap defaults to 0 and there is no alternative * e820 mechanism for soft-reserved memory, import the full EFI memory * map if soft reservations are present and enabled. Otherwise, the * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is * the efi=nosoftreserve option. */ static bool do_efi_soft_reserve(void) { efi_memory_desc_t *md; if (!efi_enabled(EFI_MEMMAP)) return false; if (!efi_soft_reserve_enabled()) return false; for_each_efi_memory_desc(md) if (md->type == EFI_CONVENTIONAL_MEMORY && (md->attribute & EFI_MEMORY_SP)) return true; return false; } int __init efi_memblock_x86_reserve_range(void) { struct efi_info *e = &boot_params.efi_info; struct efi_memory_map_data data; phys_addr_t pmap; int rv; if (efi_enabled(EFI_PARAVIRT)) return 0; /* Can't handle firmware tables above 4GB on i386 */ if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) { pr_err("Memory map is above 4GB, disabling EFI.\n"); return -EINVAL; } pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32)); data.phys_map = pmap; data.size = e->efi_memmap_size; data.desc_size = e->efi_memdesc_size; data.desc_version = e->efi_memdesc_version; if (!efi_enabled(EFI_PARAVIRT)) { rv = efi_memmap_init_early(&data); if (rv) return rv; } if (add_efi_memmap || do_efi_soft_reserve()) do_add_efi_memmap(); efi_fake_memmap_early(); WARN(efi.memmap.desc_version != 1, "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", efi.memmap.desc_version); memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags); return 0; } #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) #define U64_HIGH_BIT (~(U64_MAX >> 1)) static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) { u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; u64 end_hi = 0; char buf[64]; if (md->num_pages == 0) { end = 0; } else if (md->num_pages > EFI_PAGES_MAX || EFI_PAGES_MAX - md->num_pages < (md->phys_addr >> EFI_PAGE_SHIFT)) { end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) >> OVERFLOW_ADDR_SHIFT; if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) end_hi += 1; } else { return true; } pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); if (end_hi) { pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", i, efi_md_typeattr_format(buf, sizeof(buf), md), md->phys_addr, end_hi, end); } else { pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", i, efi_md_typeattr_format(buf, sizeof(buf), md), md->phys_addr, end); } return false; } static void __init efi_clean_memmap(void) { efi_memory_desc_t *out = efi.memmap.map; const efi_memory_desc_t *in = out; const efi_memory_desc_t *end = efi.memmap.map_end; int i, n_removal; for (i = n_removal = 0; in < end; i++) { if (efi_memmap_entry_valid(in, i)) { if (out != in) memcpy(out, in, efi.memmap.desc_size); out = (void *)out + efi.memmap.desc_size; } else { n_removal++; } in = (void *)in + efi.memmap.desc_size; } if (n_removal > 0) { struct efi_memory_map_data data = { .phys_map = efi.memmap.phys_map, .desc_version = efi.memmap.desc_version, .desc_size = efi.memmap.desc_size, .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal), .flags = 0, }; pr_warn("Removing %d invalid memory map entries.\n", n_removal); efi_memmap_install(&data); } } /* * Firmware can use EfiMemoryMappedIO to request that MMIO regions be * mapped by the OS so they can be accessed by EFI runtime services, but * should have no other significance to the OS (UEFI r2.10, sec 7.2). * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO * regions to E820_TYPE_RESERVED entries, which prevent Linux from * allocating space from them (see remove_e820_regions()). * * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and * PCI host bridge windows, which means Linux can't allocate BAR space for * hot-added devices. * * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this * problem. * * Retain small EfiMemoryMappedIO regions because on some platforms, these * describe non-window space that's included in host bridge _CRS. If we * assign that space to PCI devices, they don't work. */ static void __init efi_remove_e820_mmio(void) { efi_memory_desc_t *md; u64 size, start, end; int i = 0; for_each_efi_memory_desc(md) { if (md->type == EFI_MEMORY_MAPPED_IO) { size = md->num_pages << EFI_PAGE_SHIFT; start = md->phys_addr; end = start + size - 1; if (size >= 256*1024) { pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n", i, start, end, size >> 20); e820__range_remove(start, size, E820_TYPE_RESERVED, 1); } else { pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n", i, start, end, size >> 10); } } i++; } } void __init efi_print_memmap(void) { efi_memory_desc_t *md; int i = 0; for_each_efi_memory_desc(md) { char buf[64]; pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", i++, efi_md_typeattr_format(buf, sizeof(buf), md), md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, (md->num_pages >> (20 - EFI_PAGE_SHIFT))); } } static int __init efi_systab_init(unsigned long phys) { int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t) : sizeof(efi_system_table_32_t); const efi_table_hdr_t *hdr; bool over4g = false; void *p; int ret; hdr = p = early_memremap_ro(phys, size); if (p == NULL) { pr_err("Couldn't map the system table!\n"); return -ENOMEM; } ret = efi_systab_check_header(hdr); if (ret) { early_memunmap(p, size); return ret; } if (efi_enabled(EFI_64BIT)) { const efi_system_table_64_t *systab64 = p; efi_runtime = systab64->runtime; over4g = systab64->runtime > U32_MAX; if (efi_setup) { struct efi_setup_data *data; data = early_memremap_ro(efi_setup, sizeof(*data)); if (!data) { early_memunmap(p, size); return -ENOMEM; } efi_fw_vendor = (unsigned long)data->fw_vendor; efi_config_table = (unsigned long)data->tables; over4g |= data->fw_vendor > U32_MAX || data->tables > U32_MAX; early_memunmap(data, sizeof(*data)); } else { efi_fw_vendor = systab64->fw_vendor; efi_config_table = systab64->tables; over4g |= systab64->fw_vendor > U32_MAX || systab64->tables > U32_MAX; } efi_nr_tables = systab64->nr_tables; } else { const efi_system_table_32_t *systab32 = p; efi_fw_vendor = systab32->fw_vendor; efi_runtime = systab32->runtime; efi_config_table = systab32->tables; efi_nr_tables = systab32->nr_tables; } efi.runtime_version = hdr->revision; efi_systab_report_header(hdr, efi_fw_vendor); early_memunmap(p, size); if (IS_ENABLED(CONFIG_X86_32) && over4g) { pr_err("EFI data located above 4GB, disabling EFI.\n"); return -EINVAL; } return 0; } static int __init efi_config_init(const efi_config_table_type_t *arch_tables) { void *config_tables; int sz, ret; if (efi_nr_tables == 0) return 0; if (efi_enabled(EFI_64BIT)) sz = sizeof(efi_config_table_64_t); else sz = sizeof(efi_config_table_32_t); /* * Let's see what config tables the firmware passed to us. */ config_tables = early_memremap(efi_config_table, efi_nr_tables * sz); if (config_tables == NULL) { pr_err("Could not map Configuration table!\n"); return -ENOMEM; } ret = efi_config_parse_tables(config_tables, efi_nr_tables, arch_tables); early_memunmap(config_tables, efi_nr_tables * sz); return ret; } void __init efi_init(void) { if (IS_ENABLED(CONFIG_X86_32) && (boot_params.efi_info.efi_systab_hi || boot_params.efi_info.efi_memmap_hi)) { pr_info("Table located above 4GB, disabling EFI.\n"); return; } efi_systab_phys = boot_params.efi_info.efi_systab | ((__u64)boot_params.efi_info.efi_systab_hi << 32); if (efi_systab_init(efi_systab_phys)) return; if (efi_reuse_config(efi_config_table, efi_nr_tables)) return; if (efi_config_init(arch_tables)) return; /* * Note: We currently don't support runtime services on an EFI * that doesn't match the kernel 32/64-bit mode. */ if (!efi_runtime_supported()) pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n"); if (!efi_runtime_supported() || efi_runtime_disabled()) { efi_memmap_unmap(); return; } /* Parse the EFI Properties table if it exists */ if (prop_phys != EFI_INVALID_TABLE_ADDR) { efi_properties_table_t *tbl; tbl = early_memremap_ro(prop_phys, sizeof(*tbl)); if (tbl == NULL) { pr_err("Could not map Properties table!\n"); } else { if (tbl->memory_protection_attribute & EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) set_bit(EFI_NX_PE_DATA, &efi.flags); early_memunmap(tbl, sizeof(*tbl)); } } set_bit(EFI_RUNTIME_SERVICES, &efi.flags); efi_clean_memmap(); efi_remove_e820_mmio(); if (efi_enabled(EFI_DBG)) efi_print_memmap(); } /* Merge contiguous regions of the same type and attribute */ static void __init efi_merge_regions(void) { efi_memory_desc_t *md, *prev_md = NULL; for_each_efi_memory_desc(md) { u64 prev_size; if (!prev_md) { prev_md = md; continue; } if (prev_md->type != md->type || prev_md->attribute != md->attribute) { prev_md = md; continue; } prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; if (md->phys_addr == (prev_md->phys_addr + prev_size)) { prev_md->num_pages += md->num_pages; md->type = EFI_RESERVED_TYPE; md->attribute = 0; continue; } prev_md = md; } } static void *realloc_pages(void *old_memmap, int old_shift) { void *ret; ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); if (!ret) goto out; /* * A first-time allocation doesn't have anything to copy. */ if (!old_memmap) return ret; memcpy(ret, old_memmap, PAGE_SIZE << old_shift); out: free_pages((unsigned long)old_memmap, old_shift); return ret; } /* * Iterate the EFI memory map in reverse order because the regions * will be mapped top-down. The end result is the same as if we had * mapped things forward, but doesn't require us to change the * existing implementation of efi_map_region(). */ static inline void *efi_map_next_entry_reverse(void *entry) { /* Initial call */ if (!entry) return efi.memmap.map_end - efi.memmap.desc_size; entry -= efi.memmap.desc_size; if (entry < efi.memmap.map) return NULL; return entry; } /* * efi_map_next_entry - Return the next EFI memory map descriptor * @entry: Previous EFI memory map descriptor * * This is a helper function to iterate over the EFI memory map, which * we do in different orders depending on the current configuration. * * To begin traversing the memory map @entry must be %NULL. * * Returns %NULL when we reach the end of the memory map. */ static void *efi_map_next_entry(void *entry) { if (efi_enabled(EFI_64BIT)) { /* * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE * config table feature requires us to map all entries * in the same order as they appear in the EFI memory * map. That is to say, entry N must have a lower * virtual address than entry N+1. This is because the * firmware toolchain leaves relative references in * the code/data sections, which are split and become * separate EFI memory regions. Mapping things * out-of-order leads to the firmware accessing * unmapped addresses. * * Since we need to map things this way whether or not * the kernel actually makes use of * EFI_PROPERTIES_TABLE, let's just switch to this * scheme by default for 64-bit. */ return efi_map_next_entry_reverse(entry); } /* Initial call */ if (!entry) return efi.memmap.map; entry += efi.memmap.desc_size; if (entry >= efi.memmap.map_end) return NULL; return entry; } static bool should_map_region(efi_memory_desc_t *md) { /* * Runtime regions always require runtime mappings (obviously). */ if (md->attribute & EFI_MEMORY_RUNTIME) return true; /* * 32-bit EFI doesn't suffer from the bug that requires us to * reserve boot services regions, and mixed mode support * doesn't exist for 32-bit kernels. */ if (IS_ENABLED(CONFIG_X86_32)) return false; /* * EFI specific purpose memory may be reserved by default * depending on kernel config and boot options. */ if (md->type == EFI_CONVENTIONAL_MEMORY && efi_soft_reserve_enabled() && (md->attribute & EFI_MEMORY_SP)) return false; /* * Map all of RAM so that we can access arguments in the 1:1 * mapping when making EFI runtime calls. */ if (efi_is_mixed()) { if (md->type == EFI_CONVENTIONAL_MEMORY || md->type == EFI_LOADER_DATA || md->type == EFI_LOADER_CODE) return true; } /* * Map boot services regions as a workaround for buggy * firmware that accesses them even when they shouldn't. * * See efi_{reserve,free}_boot_services(). */ if (md->type == EFI_BOOT_SERVICES_CODE || md->type == EFI_BOOT_SERVICES_DATA) return true; return false; } /* * Map the efi memory ranges of the runtime services and update new_mmap with * virtual addresses. */ static void * __init efi_map_regions(int *count, int *pg_shift) { void *p, *new_memmap = NULL; unsigned long left = 0; unsigned long desc_size; efi_memory_desc_t *md; desc_size = efi.memmap.desc_size; p = NULL; while ((p = efi_map_next_entry(p))) { md = p; if (!should_map_region(md)) continue; efi_map_region(md); if (left < desc_size) { new_memmap = realloc_pages(new_memmap, *pg_shift); if (!new_memmap) return NULL; left += PAGE_SIZE << *pg_shift; (*pg_shift)++; } memcpy(new_memmap + (*count * desc_size), md, desc_size); left -= desc_size; (*count)++; } return new_memmap; } static void __init kexec_enter_virtual_mode(void) { #ifdef CONFIG_KEXEC_CORE efi_memory_desc_t *md; unsigned int num_pages; /* * We don't do virtual mode, since we don't do runtime services, on * non-native EFI. */ if (efi_is_mixed()) { efi_memmap_unmap(); clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); return; } if (efi_alloc_page_tables()) { pr_err("Failed to allocate EFI page tables\n"); clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); return; } /* * Map efi regions which were passed via setup_data. The virt_addr is a * fixed addr which was used in first kernel of a kexec boot. */ for_each_efi_memory_desc(md) efi_map_region_fixed(md); /* FIXME: add error handling */ /* * Unregister the early EFI memmap from efi_init() and install * the new EFI memory map. */ efi_memmap_unmap(); if (efi_memmap_init_late(efi.memmap.phys_map, efi.memmap.desc_size * efi.memmap.nr_map)) { pr_err("Failed to remap late EFI memory map\n"); clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); return; } num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); num_pages >>= PAGE_SHIFT; if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); return; } efi_sync_low_kernel_mappings(); efi_native_runtime_setup(); #endif } /* * This function will switch the EFI runtime services to virtual mode. * Essentially, we look through the EFI memmap and map every region that * has the runtime attribute bit set in its memory descriptor into the * efi_pgd page table. * * The new method does a pagetable switch in a preemption-safe manner * so that we're in a different address space when calling a runtime * function. For function arguments passing we do copy the PUDs of the * kernel page table into efi_pgd prior to each call. * * Specially for kexec boot, efi runtime maps in previous kernel should * be passed in via setup_data. In that case runtime ranges will be mapped * to the same virtual addresses as the first kernel, see * kexec_enter_virtual_mode(). */ static void __init __efi_enter_virtual_mode(void) { int count = 0, pg_shift = 0; void *new_memmap = NULL; efi_status_t status; unsigned long pa; if (efi_alloc_page_tables()) { pr_err("Failed to allocate EFI page tables\n"); goto err; } efi_merge_regions(); new_memmap = efi_map_regions(&count, &pg_shift); if (!new_memmap) { pr_err("Error reallocating memory, EFI runtime non-functional!\n"); goto err; } pa = __pa(new_memmap); /* * Unregister the early EFI memmap from efi_init() and install * the new EFI memory map that we are about to pass to the * firmware via SetVirtualAddressMap(). */ efi_memmap_unmap(); if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { pr_err("Failed to remap late EFI memory map\n"); goto err; } if (efi_enabled(EFI_DBG)) { pr_info("EFI runtime memory map:\n"); efi_print_memmap(); } if (efi_setup_page_tables(pa, 1 << pg_shift)) goto err; efi_sync_low_kernel_mappings(); status = efi_set_virtual_address_map(efi.memmap.desc_size * count, efi.memmap.desc_size, efi.memmap.desc_version, (efi_memory_desc_t *)pa, efi_systab_phys); if (status != EFI_SUCCESS) { pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n", status); goto err; } efi_check_for_embedded_firmwares(); efi_free_boot_services(); if (!efi_is_mixed()) efi_native_runtime_setup(); else efi_thunk_runtime_setup(); /* * Apply more restrictive page table mapping attributes now that * SVAM() has been called and the firmware has performed all * necessary relocation fixups for the new virtual addresses. */ efi_runtime_update_mappings(); /* clean DUMMY object */ efi_delete_dummy_variable(); return; err: clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); } void __init efi_enter_virtual_mode(void) { if (efi_enabled(EFI_PARAVIRT)) return; efi.runtime = (efi_runtime_services_t *)efi_runtime; if (efi_setup) kexec_enter_virtual_mode(); else __efi_enter_virtual_mode(); efi_dump_pagetable(); } bool efi_is_table_address(unsigned long phys_addr) { unsigned int i; if (phys_addr == EFI_INVALID_TABLE_ADDR) return false; for (i = 0; i < ARRAY_SIZE(efi_tables); i++) if (*(efi_tables[i]) == phys_addr) return true; return false; } char *efi_systab_show_arch(char *str) { if (uga_phys != EFI_INVALID_TABLE_ADDR) str += sprintf(str, "UGA=0x%lx\n", uga_phys); return str; } #define EFI_FIELD(var) efi_ ## var #define EFI_ATTR_SHOW(name) \ static ssize_t name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buf) \ { \ return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ } EFI_ATTR_SHOW(fw_vendor); EFI_ATTR_SHOW(runtime); EFI_ATTR_SHOW(config_table); struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { if (attr == &efi_attr_fw_vendor.attr) { if (efi_enabled(EFI_PARAVIRT) || efi_fw_vendor == EFI_INVALID_TABLE_ADDR) return 0; } else if (attr == &efi_attr_runtime.attr) { if (efi_runtime == EFI_INVALID_TABLE_ADDR) return 0; } else if (attr == &efi_attr_config_table.attr) { if (efi_config_table == EFI_INVALID_TABLE_ADDR) return 0; } return attr->mode; } |