Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include <linux/bpf.h> #include <linux/btf.h> #include <linux/bpf-cgroup.h> #include <linux/cgroup.h> #include <linux/rcupdate.h> #include <linux/random.h> #include <linux/smp.h> #include <linux/topology.h> #include <linux/ktime.h> #include <linux/sched.h> #include <linux/uidgid.h> #include <linux/filter.h> #include <linux/ctype.h> #include <linux/jiffies.h> #include <linux/pid_namespace.h> #include <linux/poison.h> #include <linux/proc_ns.h> #include <linux/sched/task.h> #include <linux/security.h> #include <linux/btf_ids.h> #include <linux/bpf_mem_alloc.h> #include "../../lib/kstrtox.h" /* If kernel subsystem is allowing eBPF programs to call this function, * inside its own verifier_ops->get_func_proto() callback it should return * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments * * Different map implementations will rely on rcu in map methods * lookup/update/delete, therefore eBPF programs must run under rcu lock * if program is allowed to access maps, so check rcu_read_lock_held in * all three functions. */ BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_elem(map, key); } const struct bpf_func_proto bpf_map_lookup_elem_proto = { .func = bpf_map_lookup_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, void *, value, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return map->ops->map_update_elem(map, key, value, flags); } const struct bpf_func_proto bpf_map_update_elem_proto = { .func = bpf_map_update_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_PTR_TO_MAP_VALUE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return map->ops->map_delete_elem(map, key); } const struct bpf_func_proto bpf_map_delete_elem_proto = { .func = bpf_map_delete_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) { return map->ops->map_push_elem(map, value, flags); } const struct bpf_func_proto bpf_map_push_elem_proto = { .func = bpf_map_push_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) { return map->ops->map_pop_elem(map, value); } const struct bpf_func_proto bpf_map_pop_elem_proto = { .func = bpf_map_pop_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, }; BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) { return map->ops->map_peek_elem(map, value); } const struct bpf_func_proto bpf_map_peek_elem_proto = { .func = bpf_map_peek_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, }; BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); } const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { .func = bpf_map_lookup_percpu_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_get_prandom_u32_proto = { .func = bpf_user_rnd_u32, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_smp_processor_id) { return smp_processor_id(); } const struct bpf_func_proto bpf_get_smp_processor_id_proto = { .func = bpf_get_smp_processor_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_numa_node_id) { return numa_node_id(); } const struct bpf_func_proto bpf_get_numa_node_id_proto = { .func = bpf_get_numa_node_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_ns) { /* NMI safe access to clock monotonic */ return ktime_get_mono_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_ns_proto = { .func = bpf_ktime_get_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_boot_ns) { /* NMI safe access to clock boottime */ return ktime_get_boot_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { .func = bpf_ktime_get_boot_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_coarse_ns) { return ktime_get_coarse_ns(); } const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { .func = bpf_ktime_get_coarse_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_tai_ns) { /* NMI safe access to clock tai */ return ktime_get_tai_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { .func = bpf_ktime_get_tai_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_pid_tgid) { struct task_struct *task = current; if (unlikely(!task)) return -EINVAL; return (u64) task->tgid << 32 | task->pid; } const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { .func = bpf_get_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_uid_gid) { struct task_struct *task = current; kuid_t uid; kgid_t gid; if (unlikely(!task)) return -EINVAL; current_uid_gid(&uid, &gid); return (u64) from_kgid(&init_user_ns, gid) << 32 | from_kuid(&init_user_ns, uid); } const struct bpf_func_proto bpf_get_current_uid_gid_proto = { .func = bpf_get_current_uid_gid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) { struct task_struct *task = current; if (unlikely(!task)) goto err_clear; /* Verifier guarantees that size > 0 */ strscpy_pad(buf, task->comm, size); return 0; err_clear: memset(buf, 0, size); return -EINVAL; } const struct bpf_func_proto bpf_get_current_comm_proto = { .func = bpf_get_current_comm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE, }; #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; union { __u32 val; arch_spinlock_t lock; } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); arch_spin_lock(l); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; arch_spin_unlock(l); } #else static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); do { atomic_cond_read_relaxed(l, !VAL); } while (atomic_xchg(l, 1)); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; atomic_set_release(l, 0); } #endif static DEFINE_PER_CPU(unsigned long, irqsave_flags); static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) { unsigned long flags; local_irq_save(flags); __bpf_spin_lock(lock); __this_cpu_write(irqsave_flags, flags); } notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) { __bpf_spin_lock_irqsave(lock); return 0; } const struct bpf_func_proto bpf_spin_lock_proto = { .func = bpf_spin_lock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) { unsigned long flags; flags = __this_cpu_read(irqsave_flags); __bpf_spin_unlock(lock); local_irq_restore(flags); } notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) { __bpf_spin_unlock_irqrestore(lock); return 0; } const struct bpf_func_proto bpf_spin_unlock_proto = { .func = bpf_spin_unlock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src) { struct bpf_spin_lock *lock; if (lock_src) lock = src + map->record->spin_lock_off; else lock = dst + map->record->spin_lock_off; preempt_disable(); __bpf_spin_lock_irqsave(lock); copy_map_value(map, dst, src); __bpf_spin_unlock_irqrestore(lock); preempt_enable(); } BPF_CALL_0(bpf_jiffies64) { return get_jiffies_64(); } const struct bpf_func_proto bpf_jiffies64_proto = { .func = bpf_jiffies64, .gpl_only = false, .ret_type = RET_INTEGER, }; #ifdef CONFIG_CGROUPS BPF_CALL_0(bpf_get_current_cgroup_id) { struct cgroup *cgrp; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); cgrp_id = cgroup_id(cgrp); rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { .func = bpf_get_current_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) { struct cgroup *cgrp; struct cgroup *ancestor; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); ancestor = cgroup_ancestor(cgrp, ancestor_level); cgrp_id = ancestor ? cgroup_id(ancestor) : 0; rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { .func = bpf_get_current_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; #endif /* CONFIG_CGROUPS */ #define BPF_STRTOX_BASE_MASK 0x1F static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, unsigned long long *res, bool *is_negative) { unsigned int base = flags & BPF_STRTOX_BASE_MASK; const char *cur_buf = buf; size_t cur_len = buf_len; unsigned int consumed; size_t val_len; char str[64]; if (!buf || !buf_len || !res || !is_negative) return -EINVAL; if (base != 0 && base != 8 && base != 10 && base != 16) return -EINVAL; if (flags & ~BPF_STRTOX_BASE_MASK) return -EINVAL; while (cur_buf < buf + buf_len && isspace(*cur_buf)) ++cur_buf; *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); if (*is_negative) ++cur_buf; consumed = cur_buf - buf; cur_len -= consumed; if (!cur_len) return -EINVAL; cur_len = min(cur_len, sizeof(str) - 1); memcpy(str, cur_buf, cur_len); str[cur_len] = '\0'; cur_buf = str; cur_buf = _parse_integer_fixup_radix(cur_buf, &base); val_len = _parse_integer(cur_buf, base, res); if (val_len & KSTRTOX_OVERFLOW) return -ERANGE; if (val_len == 0) return -EINVAL; cur_buf += val_len; consumed += cur_buf - str; return consumed; } static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, long long *res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) { if ((long long)-_res > 0) return -ERANGE; *res = -_res; } else { if ((long long)_res < 0) return -ERANGE; *res = _res; } return err; } BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, long *, res) { long long _res; int err; err = __bpf_strtoll(buf, buf_len, flags, &_res); if (err < 0) return err; if (_res != (long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtol_proto = { .func = bpf_strtol, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, unsigned long *, res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) return -EINVAL; if (_res != (unsigned long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtoul_proto = { .func = bpf_strtoul, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) { return strncmp(s1, s2, s1_sz); } static const struct bpf_func_proto bpf_strncmp_proto = { .func = bpf_strncmp, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_PTR_TO_CONST_STR, }; BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, struct bpf_pidns_info *, nsdata, u32, size) { struct task_struct *task = current; struct pid_namespace *pidns; int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_pidns_info))) goto clear; if (unlikely((u64)(dev_t)dev != dev)) goto clear; if (unlikely(!task)) goto clear; pidns = task_active_pid_ns(task); if (unlikely(!pidns)) { err = -ENOENT; goto clear; } if (!ns_match(&pidns->ns, (dev_t)dev, ino)) goto clear; nsdata->pid = task_pid_nr_ns(task, pidns); nsdata->tgid = task_tgid_nr_ns(task, pidns); return 0; clear: memset((void *)nsdata, 0, (size_t) size); return err; } const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { .func = bpf_get_ns_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { .func = bpf_get_raw_cpu_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags, void *, data, u64, size) { if (unlikely(flags & ~(BPF_F_INDEX_MASK))) return -EINVAL; return bpf_event_output(map, flags, data, size, NULL, 0, NULL); } const struct bpf_func_proto bpf_event_output_data_proto = { .func = bpf_event_output_data, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, const void __user *, user_ptr) { int ret = copy_from_user(dst, user_ptr, size); if (unlikely(ret)) { memset(dst, 0, size); ret = -EFAULT; } return ret; } const struct bpf_func_proto bpf_copy_from_user_proto = { .func = bpf_copy_from_user, .gpl_only = false, .might_sleep = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) { int ret; /* flags is not used yet */ if (unlikely(flags)) return -EINVAL; if (unlikely(!size)) return 0; ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); if (ret == size) return 0; memset(dst, 0, size); /* Return -EFAULT for partial read */ return ret < 0 ? ret : -EFAULT; } const struct bpf_func_proto bpf_copy_from_user_task_proto = { .func = bpf_copy_from_user_task, .gpl_only = true, .might_sleep = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_BTF_ID, .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], .arg5_type = ARG_ANYTHING }; BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) { if (cpu >= nr_cpu_ids) return (unsigned long)NULL; return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); } const struct bpf_func_proto bpf_per_cpu_ptr_proto = { .func = bpf_per_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) { return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); } const struct bpf_func_proto bpf_this_cpu_ptr_proto = { .func = bpf_this_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, }; static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, size_t bufsz) { void __user *user_ptr = (__force void __user *)unsafe_ptr; buf[0] = 0; switch (fmt_ptype) { case 's': #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if ((unsigned long)unsafe_ptr < TASK_SIZE) return strncpy_from_user_nofault(buf, user_ptr, bufsz); fallthrough; #endif case 'k': return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); case 'u': return strncpy_from_user_nofault(buf, user_ptr, bufsz); } return -EINVAL; } /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary * arguments representation. */ #define MAX_BPRINTF_BIN_ARGS 512 /* Support executing three nested bprintf helper calls on a given CPU */ #define MAX_BPRINTF_NEST_LEVEL 3 struct bpf_bprintf_buffers { char bin_args[MAX_BPRINTF_BIN_ARGS]; char buf[MAX_BPRINTF_BUF]; }; static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); static int try_get_buffers(struct bpf_bprintf_buffers **bufs) { int nest_level; preempt_disable(); nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); return -EBUSY; } *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); return 0; } void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) { if (!data->bin_args && !data->buf) return; if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) return; this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); } /* * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers * * Returns a negative value if fmt is an invalid format string or 0 otherwise. * * This can be used in two ways: * - Format string verification only: when data->get_bin_args is false * - Arguments preparation: in addition to the above verification, it writes in * data->bin_args a binary representation of arguments usable by bstr_printf * where pointers from BPF have been sanitized. * * In argument preparation mode, if 0 is returned, safe temporary buffers are * allocated and bpf_bprintf_cleanup should be called to free them after use. */ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 num_args, struct bpf_bprintf_data *data) { bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; struct bpf_bprintf_buffers *buffers = NULL; size_t sizeof_cur_arg, sizeof_cur_ip; int err, i, num_spec = 0; u64 cur_arg; char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; fmt_end = strnchr(fmt, fmt_size, 0); if (!fmt_end) return -EINVAL; fmt_size = fmt_end - fmt; if (get_buffers && try_get_buffers(&buffers)) return -EBUSY; if (data->get_bin_args) { if (num_args) tmp_buf = buffers->bin_args; tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; data->bin_args = (u32 *)tmp_buf; } if (data->get_buf) data->buf = buffers->buf; for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; goto out; } if (fmt[i] != '%') continue; if (fmt[i + 1] == '%') { i++; continue; } if (num_spec >= num_args) { err = -EINVAL; goto out; } /* The string is zero-terminated so if fmt[i] != 0, we can * always access fmt[i + 1], in the worst case it will be a 0 */ i++; /* skip optional "[0 +-][num]" width formatting field */ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || fmt[i] == ' ') i++; if (fmt[i] >= '1' && fmt[i] <= '9') { i++; while (fmt[i] >= '0' && fmt[i] <= '9') i++; } if (fmt[i] == 'p') { sizeof_cur_arg = sizeof(long); if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; i += 2; goto fmt_str; } if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 's' || fmt[i + 1] == 'S') { /* just kernel pointers */ if (tmp_buf) cur_arg = raw_args[num_spec]; i++; goto nocopy_fmt; } if (fmt[i + 1] == 'B') { if (tmp_buf) { err = snprintf(tmp_buf, (tmp_buf_end - tmp_buf), "%pB", (void *)(long)raw_args[num_spec]); tmp_buf += (err + 1); } i++; num_spec++; continue; } /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { err = -EINVAL; goto out; } i += 2; if (!tmp_buf) goto nocopy_fmt; sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, sizeof_cur_ip); if (err < 0) memset(cur_ip, 0, sizeof_cur_ip); /* hack: bstr_printf expects IP addresses to be * pre-formatted as strings, ironically, the easiest way * to do that is to call snprintf. */ ip_spec[2] = fmt[i - 1]; ip_spec[3] = fmt[i]; err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, ip_spec, &cur_ip); tmp_buf += err + 1; num_spec++; continue; } else if (fmt[i] == 's') { fmt_ptype = fmt[i]; fmt_str: if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) { err = -EINVAL; goto out; } if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, fmt_ptype, tmp_buf_end - tmp_buf); if (err < 0) { tmp_buf[0] = '\0'; err = 1; } tmp_buf += err; num_spec++; continue; } else if (fmt[i] == 'c') { if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } *tmp_buf = raw_args[num_spec]; tmp_buf++; num_spec++; continue; } sizeof_cur_arg = sizeof(int); if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long); i++; } if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long long); i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x' && fmt[i] != 'X') { err = -EINVAL; goto out; } if (tmp_buf) cur_arg = raw_args[num_spec]; nocopy_fmt: if (tmp_buf) { tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { err = -ENOSPC; goto out; } if (sizeof_cur_arg == 8) { *(u32 *)tmp_buf = *(u32 *)&cur_arg; *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); } else { *(u32 *)tmp_buf = (u32)(long)cur_arg; } tmp_buf += sizeof_cur_arg; } num_spec++; } err = 0; out: if (err) bpf_bprintf_cleanup(data); return err; } BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, const void *, args, u32, data_len) { struct bpf_bprintf_data data = { .get_bin_args = true, }; int err, num_args; if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || (data_len && !args)) return -EINVAL; num_args = data_len / 8; /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we * can safely give an unbounded size. */ err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); if (err < 0) return err; err = bstr_printf(str, str_size, fmt, data.bin_args); bpf_bprintf_cleanup(&data); return err + 1; } const struct bpf_func_proto bpf_snprintf_proto = { .func = bpf_snprintf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_CONST_STR, .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; /* BPF map elements can contain 'struct bpf_timer'. * Such map owns all of its BPF timers. * 'struct bpf_timer' is allocated as part of map element allocation * and it's zero initialized. * That space is used to keep 'struct bpf_timer_kern'. * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and * remembers 'struct bpf_map *' pointer it's part of. * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. * bpf_timer_start() arms the timer. * If user space reference to a map goes to zero at this point * ops->map_release_uref callback is responsible for cancelling the timers, * freeing their memory, and decrementing prog's refcnts. * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. * Inner maps can contain bpf timers as well. ops->map_release_uref is * freeing the timers when inner map is replaced or deleted by user space. */ struct bpf_hrtimer { struct hrtimer timer; struct bpf_map *map; struct bpf_prog *prog; void __rcu *callback_fn; void *value; }; /* the actual struct hidden inside uapi struct bpf_timer */ struct bpf_timer_kern { struct bpf_hrtimer *timer; /* bpf_spin_lock is used here instead of spinlock_t to make * sure that it always fits into space reserved by struct bpf_timer * regardless of LOCKDEP and spinlock debug flags. */ struct bpf_spin_lock lock; } __attribute__((aligned(8))); static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) { struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); struct bpf_map *map = t->map; void *value = t->value; bpf_callback_t callback_fn; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_timer); callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); if (!callback_fn) goto out; /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and * cannot be preempted by another bpf_timer_cb() on the same cpu. * Remember the timer this callback is servicing to prevent * deadlock if callback_fn() calls bpf_timer_cancel() or * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ this_cpu_write(hrtimer_running, NULL); out: return HRTIMER_NORESTART; } BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, u64, flags) { clockid_t clockid = flags & (MAX_CLOCKS - 1); struct bpf_hrtimer *t; int ret = 0; BUILD_BUG_ON(MAX_CLOCKS != 16); BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); if (in_nmi()) return -EOPNOTSUPP; if (flags >= MAX_CLOCKS || /* similar to timerfd except _ALARM variants are not supported */ (clockid != CLOCK_MONOTONIC && clockid != CLOCK_REALTIME && clockid != CLOCK_BOOTTIME)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (t) { ret = -EBUSY; goto out; } if (!atomic64_read(&map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. */ ret = -EPERM; goto out; } /* allocate hrtimer via map_kmalloc to use memcg accounting */ t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); if (!t) { ret = -ENOMEM; goto out; } t->value = (void *)timer - map->record->timer_off; t->map = map; t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); t->timer.function = bpf_timer_cb; timer->timer = t; out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_init_proto = { .func = bpf_timer_init, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, struct bpf_prog_aux *, aux) { struct bpf_prog *prev, *prog = aux->prog; struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } if (!atomic64_read(&t->map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. Otherwise timer might still be * running even when bpf prog is detached and user space * is gone, since map_release_uref won't ever be called. */ ret = -EPERM; goto out; } prev = t->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() * can pick different callback_fn-s within the same prog. */ prog = bpf_prog_inc_not_zero(prog); if (IS_ERR(prog)) { ret = PTR_ERR(prog); goto out; } if (prev) /* Drop prev prog refcnt when swapping with new prog */ bpf_prog_put(prev); t->prog = prog; } rcu_assign_pointer(t->callback_fn, callback_fn); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_set_callback_proto = { .func = bpf_timer_set_callback, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_PTR_TO_FUNC, }; BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) { struct bpf_hrtimer *t; int ret = 0; enum hrtimer_mode mode; if (in_nmi()) return -EOPNOTSUPP; if (flags > BPF_F_TIMER_ABS) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t || !t->prog) { ret = -EINVAL; goto out; } if (flags & BPF_F_TIMER_ABS) mode = HRTIMER_MODE_ABS_SOFT; else mode = HRTIMER_MODE_REL_SOFT; hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_start_proto = { .func = bpf_timer_start, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static void drop_prog_refcnt(struct bpf_hrtimer *t) { struct bpf_prog *prog = t->prog; if (prog) { bpf_prog_put(prog); t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); } } BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) { struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } if (this_cpu_read(hrtimer_running) == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock * since it waits for callback_fn to finish */ ret = -EDEADLK; goto out; } drop_prog_refcnt(t); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); return ret; } static const struct bpf_func_proto bpf_timer_cancel_proto = { .func = bpf_timer_cancel, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, }; /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_timer_cancel_and_free(void *val) { struct bpf_timer_kern *timer = val; struct bpf_hrtimer *t; /* Performance optimization: read timer->timer without lock first. */ if (!READ_ONCE(timer->timer)) return; __bpf_spin_lock_irqsave(&timer->lock); /* re-read it under lock */ t = timer->timer; if (!t) goto out; drop_prog_refcnt(t); /* The subsequent bpf_timer_start/cancel() helpers won't be able to use * this timer, since it won't be initialized. */ timer->timer = NULL; out: __bpf_spin_unlock_irqrestore(&timer->lock); if (!t) return; /* Cancel the timer and wait for callback to complete if it was running. * If hrtimer_cancel() can be safely called it's safe to call kfree(t) * right after for both preallocated and non-preallocated maps. * The timer->timer = NULL was already done and no code path can * see address 't' anymore. * * Check that bpf_map_delete/update_elem() wasn't called from timer * callback_fn. In such case don't call hrtimer_cancel() (since it will * deadlock) and don't call hrtimer_try_to_cancel() (since it will just * return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', * since timer->timer = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. */ if (this_cpu_read(hrtimer_running) != t) hrtimer_cancel(&t->timer); kfree(t); } BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) { unsigned long *kptr = map_value; return xchg(kptr, (unsigned long)ptr); } /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to * denote type that verifier will determine. */ static const struct bpf_func_proto bpf_kptr_xchg_proto = { .func = bpf_kptr_xchg, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .ret_btf_id = BPF_PTR_POISON, .arg1_type = ARG_PTR_TO_KPTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, .arg2_btf_id = BPF_PTR_POISON, }; /* Since the upper 8 bits of dynptr->size is reserved, the * maximum supported size is 2^24 - 1. */ #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) #define DYNPTR_TYPE_SHIFT 28 #define DYNPTR_SIZE_MASK 0xFFFFFF #define DYNPTR_RDONLY_BIT BIT(31) static bool bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_RDONLY_BIT; } void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) { ptr->size |= DYNPTR_RDONLY_BIT; } static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) { ptr->size |= type << DYNPTR_TYPE_SHIFT; } static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) { return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; } u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_SIZE_MASK; } int bpf_dynptr_check_size(u32 size) { return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; } void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size) { ptr->data = data; ptr->offset = offset; ptr->size = size; bpf_dynptr_set_type(ptr, type); } void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) { memset(ptr, 0, sizeof(*ptr)); } static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) { u32 size = bpf_dynptr_get_size(ptr); if (len > size || offset > size - len) return -E2BIG; return 0; } BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) { int err; BTF_TYPE_EMIT(struct bpf_dynptr); err = bpf_dynptr_check_size(size); if (err) goto error; /* flags is currently unsupported */ if (flags) { err = -EINVAL; goto error; } bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); return 0; error: bpf_dynptr_set_null(ptr); return err; } static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { .func = bpf_dynptr_from_mem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, }; BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, u32, offset, u64, flags) { enum bpf_dynptr_type type; int err; if (!src->data || flags) return -EINVAL; err = bpf_dynptr_check_off_len(src, offset, len); if (err) return err; type = bpf_dynptr_get_type(src); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: /* Source and destination may possibly overlap, hence use memmove to * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr * pointing to overlapping PTR_TO_MAP_VALUE regions. */ memmove(dst, src->data + src->offset + offset, len); return 0; case BPF_DYNPTR_TYPE_SKB: return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); case BPF_DYNPTR_TYPE_XDP: return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); default: WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); return -EFAULT; } } static const struct bpf_func_proto bpf_dynptr_read_proto = { .func = bpf_dynptr_read, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, u32, len, u64, flags) { enum bpf_dynptr_type type; int err; if (!dst->data || bpf_dynptr_is_rdonly(dst)) return -EINVAL; err = bpf_dynptr_check_off_len(dst, offset, len); if (err) return err; type = bpf_dynptr_get_type(dst); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: if (flags) return -EINVAL; /* Source and destination may possibly overlap, hence use memmove to * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr * pointing to overlapping PTR_TO_MAP_VALUE regions. */ memmove(dst->data + dst->offset + offset, src, len); return 0; case BPF_DYNPTR_TYPE_SKB: return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, flags); case BPF_DYNPTR_TYPE_XDP: if (flags) return -EINVAL; return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); default: WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); return -EFAULT; } } static const struct bpf_func_proto bpf_dynptr_write_proto = { .func = bpf_dynptr_write, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) { enum bpf_dynptr_type type; int err; if (!ptr->data) return 0; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return 0; if (bpf_dynptr_is_rdonly(ptr)) return 0; type = bpf_dynptr_get_type(ptr); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: return (unsigned long)(ptr->data + ptr->offset + offset); case BPF_DYNPTR_TYPE_SKB: case BPF_DYNPTR_TYPE_XDP: /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ return 0; default: WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); return 0; } } static const struct bpf_func_proto bpf_dynptr_data_proto = { .func = bpf_dynptr_data, .gpl_only = false, .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, }; const struct bpf_func_proto bpf_get_current_task_proto __weak; const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; const struct bpf_func_proto bpf_probe_read_user_proto __weak; const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; const struct bpf_func_proto bpf_task_pt_regs_proto __weak; const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_map_push_elem: return &bpf_map_push_elem_proto; case BPF_FUNC_map_pop_elem: return &bpf_map_pop_elem_proto; case BPF_FUNC_map_peek_elem: return &bpf_map_peek_elem_proto; case BPF_FUNC_map_lookup_percpu_elem: return &bpf_map_lookup_percpu_elem_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_raw_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_ktime_get_boot_ns: return &bpf_ktime_get_boot_ns_proto; case BPF_FUNC_ktime_get_tai_ns: return &bpf_ktime_get_tai_ns_proto; case BPF_FUNC_ringbuf_output: return &bpf_ringbuf_output_proto; case BPF_FUNC_ringbuf_reserve: return &bpf_ringbuf_reserve_proto; case BPF_FUNC_ringbuf_submit: return &bpf_ringbuf_submit_proto; case BPF_FUNC_ringbuf_discard: return &bpf_ringbuf_discard_proto; case BPF_FUNC_ringbuf_query: return &bpf_ringbuf_query_proto; case BPF_FUNC_strncmp: return &bpf_strncmp_proto; case BPF_FUNC_strtol: return &bpf_strtol_proto; case BPF_FUNC_strtoul: return &bpf_strtoul_proto; default: break; } if (!bpf_capable()) return NULL; switch (func_id) { case BPF_FUNC_spin_lock: return &bpf_spin_lock_proto; case BPF_FUNC_spin_unlock: return &bpf_spin_unlock_proto; case BPF_FUNC_jiffies64: return &bpf_jiffies64_proto; case BPF_FUNC_per_cpu_ptr: return &bpf_per_cpu_ptr_proto; case BPF_FUNC_this_cpu_ptr: return &bpf_this_cpu_ptr_proto; case BPF_FUNC_timer_init: return &bpf_timer_init_proto; case BPF_FUNC_timer_set_callback: return &bpf_timer_set_callback_proto; case BPF_FUNC_timer_start: return &bpf_timer_start_proto; case BPF_FUNC_timer_cancel: return &bpf_timer_cancel_proto; case BPF_FUNC_kptr_xchg: return &bpf_kptr_xchg_proto; case BPF_FUNC_for_each_map_elem: return &bpf_for_each_map_elem_proto; case BPF_FUNC_loop: return &bpf_loop_proto; case BPF_FUNC_user_ringbuf_drain: return &bpf_user_ringbuf_drain_proto; case BPF_FUNC_ringbuf_reserve_dynptr: return &bpf_ringbuf_reserve_dynptr_proto; case BPF_FUNC_ringbuf_submit_dynptr: return &bpf_ringbuf_submit_dynptr_proto; case BPF_FUNC_ringbuf_discard_dynptr: return &bpf_ringbuf_discard_dynptr_proto; case BPF_FUNC_dynptr_from_mem: return &bpf_dynptr_from_mem_proto; case BPF_FUNC_dynptr_read: return &bpf_dynptr_read_proto; case BPF_FUNC_dynptr_write: return &bpf_dynptr_write_proto; case BPF_FUNC_dynptr_data: return &bpf_dynptr_data_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_cgrp_storage_get: return &bpf_cgrp_storage_get_proto; case BPF_FUNC_cgrp_storage_delete: return &bpf_cgrp_storage_delete_proto; case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; case BPF_FUNC_get_current_ancestor_cgroup_id: return &bpf_get_current_ancestor_cgroup_id_proto; #endif default: break; } if (!perfmon_capable()) return NULL; switch (func_id) { case BPF_FUNC_trace_printk: return bpf_get_trace_printk_proto(); case BPF_FUNC_get_current_task: return &bpf_get_current_task_proto; case BPF_FUNC_get_current_task_btf: return &bpf_get_current_task_btf_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_proto; case BPF_FUNC_probe_read_user_str: return &bpf_probe_read_user_str_proto; case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_snprintf: return &bpf_snprintf_proto; case BPF_FUNC_task_pt_regs: return &bpf_task_pt_regs_proto; case BPF_FUNC_trace_vprintk: return bpf_get_trace_vprintk_proto(); default: return NULL; } } void __bpf_obj_drop_impl(void *p, const struct btf_record *rec); void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock) { struct list_head *head = list_head, *orig_head = list_head; BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); /* Do the actual list draining outside the lock to not hold the lock for * too long, and also prevent deadlocks if tracing programs end up * executing on entry/exit of functions called inside the critical * section, and end up doing map ops that call bpf_list_head_free for * the same map value again. */ __bpf_spin_lock_irqsave(spin_lock); if (!head->next || list_empty(head)) goto unlock; head = head->next; unlock: INIT_LIST_HEAD(orig_head); __bpf_spin_unlock_irqrestore(spin_lock); while (head != orig_head) { void *obj = head; obj -= field->graph_root.node_offset; head = head->next; /* The contained type can also have resources, including a * bpf_list_head which needs to be freed. */ migrate_disable(); __bpf_obj_drop_impl(obj, field->graph_root.value_rec); migrate_enable(); } } /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are * 'rb_node *', so field name of rb_node within containing struct is not * needed. * * Since bpf_rb_tree's node type has a corresponding struct btf_field with * graph_root.node_offset, it's not necessary to know field name * or type of node struct */ #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ for (pos = rb_first_postorder(root); \ pos && ({ n = rb_next_postorder(pos); 1; }); \ pos = n) void bpf_rb_root_free(const struct btf_field *field, void *rb_root, struct bpf_spin_lock *spin_lock) { struct rb_root_cached orig_root, *root = rb_root; struct rb_node *pos, *n; void *obj; BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); __bpf_spin_lock_irqsave(spin_lock); orig_root = *root; *root = RB_ROOT_CACHED; __bpf_spin_unlock_irqrestore(spin_lock); bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { obj = pos; obj -= field->graph_root.node_offset; migrate_disable(); __bpf_obj_drop_impl(obj, field->graph_root.value_rec); migrate_enable(); } } __diag_push(); __diag_ignore_all("-Wmissing-prototypes", "Global functions as their definitions will be in vmlinux BTF"); __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; u64 size = local_type_id__k; void *p; p = bpf_mem_alloc(&bpf_global_ma, size); if (!p) return NULL; if (meta) bpf_obj_init(meta->record, p); return p; } /* Must be called under migrate_disable(), as required by bpf_mem_free */ void __bpf_obj_drop_impl(void *p, const struct btf_record *rec) { if (rec && rec->refcount_off >= 0 && !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { /* Object is refcounted and refcount_dec didn't result in 0 * refcount. Return without freeing the object */ return; } if (rec) bpf_obj_free_fields(rec, p); bpf_mem_free(&bpf_global_ma, p); } __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; void *p = p__alloc; __bpf_obj_drop_impl(p, meta ? meta->record : NULL); } __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; struct bpf_refcount *ref; /* Could just cast directly to refcount_t *, but need some code using * bpf_refcount type so that it is emitted in vmlinux BTF */ ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); refcount_inc((refcount_t *)ref); return (void *)p__refcounted_kptr; } static int __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, bool tail, struct btf_record *rec, u64 off) { struct list_head *n = (void *)node, *h = (void *)head; /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't * called on its fields, so init here */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (!list_empty(n)) { /* Only called from BPF prog, no need to migrate_disable */ __bpf_obj_drop_impl(n - off, rec); return -EINVAL; } tail ? list_add_tail(n, h) : list_add(n, h); return 0; } __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, struct bpf_list_node *node, void *meta__ign, u64 off) { struct btf_struct_meta *meta = meta__ign; return __bpf_list_add(node, head, false, meta ? meta->record : NULL, off); } __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, struct bpf_list_node *node, void *meta__ign, u64 off) { struct btf_struct_meta *meta = meta__ign; return __bpf_list_add(node, head, true, meta ? meta->record : NULL, off); } static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) { struct list_head *n, *h = (void *)head; /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't * called on its fields, so init here */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (list_empty(h)) return NULL; n = tail ? h->prev : h->next; list_del_init(n); return (struct bpf_list_node *)n; } __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) { return __bpf_list_del(head, false); } __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) { return __bpf_list_del(head, true); } __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, struct bpf_rb_node *node) { struct rb_root_cached *r = (struct rb_root_cached *)root; struct rb_node *n = (struct rb_node *)node; if (RB_EMPTY_NODE(n)) return NULL; rb_erase_cached(n, r); RB_CLEAR_NODE(n); return (struct bpf_rb_node *)n; } /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF * program */ static int __bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node, void *less, struct btf_record *rec, u64 off) { struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; struct rb_node *parent = NULL, *n = (struct rb_node *)node; bpf_callback_t cb = (bpf_callback_t)less; bool leftmost = true; if (!RB_EMPTY_NODE(n)) { /* Only called from BPF prog, no need to migrate_disable */ __bpf_obj_drop_impl(n - off, rec); return -EINVAL; } while (*link) { parent = *link; if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { link = &parent->rb_left; } else { link = &parent->rb_right; leftmost = false; } } rb_link_node(n, parent, link); rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); return 0; } __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), void *meta__ign, u64 off) { struct btf_struct_meta *meta = meta__ign; return __bpf_rbtree_add(root, node, (void *)less, meta ? meta->record : NULL, off); } __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) { struct rb_root_cached *r = (struct rb_root_cached *)root; return (struct bpf_rb_node *)rb_first_cached(r); } /** * bpf_task_acquire - Acquire a reference to a task. A task acquired by this * kfunc which is not stored in a map as a kptr, must be released by calling * bpf_task_release(). * @p: The task on which a reference is being acquired. */ __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) { if (refcount_inc_not_zero(&p->rcu_users)) return p; return NULL; } /** * bpf_task_release - Release the reference acquired on a task. * @p: The task on which a reference is being released. */ __bpf_kfunc void bpf_task_release(struct task_struct *p) { put_task_struct_rcu_user(p); } #ifdef CONFIG_CGROUPS /** * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by * this kfunc which is not stored in a map as a kptr, must be released by * calling bpf_cgroup_release(). * @cgrp: The cgroup on which a reference is being acquired. */ __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) { return cgroup_tryget(cgrp) ? cgrp : NULL; } /** * bpf_cgroup_release - Release the reference acquired on a cgroup. * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to * not be freed until the current grace period has ended, even if its refcount * drops to 0. * @cgrp: The cgroup on which a reference is being released. */ __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) { cgroup_put(cgrp); } /** * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor * array. A cgroup returned by this kfunc which is not subsequently stored in a * map, must be released by calling bpf_cgroup_release(). * @cgrp: The cgroup for which we're performing a lookup. * @level: The level of ancestor to look up. */ __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) { struct cgroup *ancestor; if (level > cgrp->level || level < 0) return NULL; /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ ancestor = cgrp->ancestors[level]; if (!cgroup_tryget(ancestor)) return NULL; return ancestor; } /** * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this * kfunc which is not subsequently stored in a map, must be released by calling * bpf_cgroup_release(). * @cgid: cgroup id. */ __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) { struct cgroup *cgrp; cgrp = cgroup_get_from_id(cgid); if (IS_ERR(cgrp)) return NULL; return cgrp; } #endif /* CONFIG_CGROUPS */ /** * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up * in the root pid namespace idr. If a task is returned, it must either be * stored in a map, or released with bpf_task_release(). * @pid: The pid of the task being looked up. */ __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) { struct task_struct *p; rcu_read_lock(); p = find_task_by_pid_ns(pid, &init_pid_ns); if (p) p = bpf_task_acquire(p); rcu_read_unlock(); return p; } /** * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. * @ptr: The dynptr whose data slice to retrieve * @offset: Offset into the dynptr * @buffer: User-provided buffer to copy contents into * @buffer__szk: Size (in bytes) of the buffer. This is the length of the * requested slice. This must be a constant. * * For non-skb and non-xdp type dynptrs, there is no difference between * bpf_dynptr_slice and bpf_dynptr_data. * * If the intention is to write to the data slice, please use * bpf_dynptr_slice_rdwr. * * The user must check that the returned pointer is not null before using it. * * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice * does not change the underlying packet data pointers, so a call to * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in * the bpf program. * * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only * data slice (can be either direct pointer to the data or a pointer to the user * provided buffer, with its contents containing the data, if unable to obtain * direct pointer) */ __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, void *buffer, u32 buffer__szk) { enum bpf_dynptr_type type; u32 len = buffer__szk; int err; if (!ptr->data) return NULL; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return NULL; type = bpf_dynptr_get_type(ptr); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: return ptr->data + ptr->offset + offset; case BPF_DYNPTR_TYPE_SKB: return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer); case BPF_DYNPTR_TYPE_XDP: { void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); if (xdp_ptr) return xdp_ptr; bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer, len, false); return buffer; } default: WARN_ONCE(true, "unknown dynptr type %d\n", type); return NULL; } } /** * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. * @ptr: The dynptr whose data slice to retrieve * @offset: Offset into the dynptr * @buffer: User-provided buffer to copy contents into * @buffer__szk: Size (in bytes) of the buffer. This is the length of the * requested slice. This must be a constant. * * For non-skb and non-xdp type dynptrs, there is no difference between * bpf_dynptr_slice and bpf_dynptr_data. * * The returned pointer is writable and may point to either directly the dynptr * data at the requested offset or to the buffer if unable to obtain a direct * data pointer to (example: the requested slice is to the paged area of an skb * packet). In the case where the returned pointer is to the buffer, the user * is responsible for persisting writes through calling bpf_dynptr_write(). This * usually looks something like this pattern: * * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); * if (!eth) * return TC_ACT_SHOT; * * // mutate eth header // * * if (eth == buffer) * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); * * Please note that, as in the example above, the user must check that the * returned pointer is not null before using it. * * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr * does not change the underlying packet data pointers, so a call to * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in * the bpf program. * * Return: NULL if the call failed (eg invalid dynptr), pointer to a * data slice (can be either direct pointer to the data or a pointer to the user * provided buffer, with its contents containing the data, if unable to obtain * direct pointer) */ __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, void *buffer, u32 buffer__szk) { if (!ptr->data || bpf_dynptr_is_rdonly(ptr)) return NULL; /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. * * For skb-type dynptrs, it is safe to write into the returned pointer * if the bpf program allows skb data writes. There are two possiblities * that may occur when calling bpf_dynptr_slice_rdwr: * * 1) The requested slice is in the head of the skb. In this case, the * returned pointer is directly to skb data, and if the skb is cloned, the * verifier will have uncloned it (see bpf_unclone_prologue()) already. * The pointer can be directly written into. * * 2) Some portion of the requested slice is in the paged buffer area. * In this case, the requested data will be copied out into the buffer * and the returned pointer will be a pointer to the buffer. The skb * will not be pulled. To persist the write, the user will need to call * bpf_dynptr_write(), which will pull the skb and commit the write. * * Similarly for xdp programs, if the requested slice is not across xdp * fragments, then a direct pointer will be returned, otherwise the data * will be copied out into the buffer and the user will need to call * bpf_dynptr_write() to commit changes. */ return bpf_dynptr_slice(ptr, offset, buffer, buffer__szk); } __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) { return obj; } __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) { return obj__ign; } __bpf_kfunc void bpf_rcu_read_lock(void) { rcu_read_lock(); } __bpf_kfunc void bpf_rcu_read_unlock(void) { rcu_read_unlock(); } __diag_pop(); BTF_SET8_START(generic_btf_ids) #ifdef CONFIG_KEXEC_CORE BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) #endif BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE) BTF_ID_FLAGS(func, bpf_list_push_front_impl) BTF_ID_FLAGS(func, bpf_list_push_back_impl) BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_rbtree_add_impl) BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) #ifdef CONFIG_CGROUPS BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) #endif BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) BTF_SET8_END(generic_btf_ids) static const struct btf_kfunc_id_set generic_kfunc_set = { .owner = THIS_MODULE, .set = &generic_btf_ids, }; BTF_ID_LIST(generic_dtor_ids) BTF_ID(struct, task_struct) BTF_ID(func, bpf_task_release) #ifdef CONFIG_CGROUPS BTF_ID(struct, cgroup) BTF_ID(func, bpf_cgroup_release) #endif BTF_SET8_START(common_btf_ids) BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) BTF_ID_FLAGS(func, bpf_rdonly_cast) BTF_ID_FLAGS(func, bpf_rcu_read_lock) BTF_ID_FLAGS(func, bpf_rcu_read_unlock) BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) BTF_SET8_END(common_btf_ids) static const struct btf_kfunc_id_set common_kfunc_set = { .owner = THIS_MODULE, .set = &common_btf_ids, }; static int __init kfunc_init(void) { int ret; const struct btf_id_dtor_kfunc generic_dtors[] = { { .btf_id = generic_dtor_ids[0], .kfunc_btf_id = generic_dtor_ids[1] }, #ifdef CONFIG_CGROUPS { .btf_id = generic_dtor_ids[2], .kfunc_btf_id = generic_dtor_ids[3] }, #endif }; ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, ARRAY_SIZE(generic_dtors), THIS_MODULE); return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); } late_initcall(kfunc_init); |