Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 */
#include <linux/bpf.h>
#include <linux/rcupdate.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/uidgid.h>
#include <linux/filter.h>
#include <linux/ctype.h>
#include <linux/jiffies.h>
#include <linux/pid_namespace.h>
#include <linux/proc_ns.h>

#include "../../lib/kstrtox.h"

/* If kernel subsystem is allowing eBPF programs to call this function,
 * inside its own verifier_ops->get_func_proto() callback it should return
 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
 *
 * Different map implementations will rely on rcu in map methods
 * lookup/update/delete, therefore eBPF programs must run under rcu lock
 * if program is allowed to access maps, so check rcu_read_lock_held in
 * all three functions.
 */
BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return (unsigned long) map->ops->map_lookup_elem(map, key);
}

const struct bpf_func_proto bpf_map_lookup_elem_proto = {
	.func		= bpf_map_lookup_elem,
	.gpl_only	= false,
	.pkt_access	= true,
	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_MAP_KEY,
};

BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
	   void *, value, u64, flags)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return map->ops->map_update_elem(map, key, value, flags);
}

const struct bpf_func_proto bpf_map_update_elem_proto = {
	.func		= bpf_map_update_elem,
	.gpl_only	= false,
	.pkt_access	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_MAP_KEY,
	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
	.arg4_type	= ARG_ANYTHING,
};

BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return map->ops->map_delete_elem(map, key);
}

const struct bpf_func_proto bpf_map_delete_elem_proto = {
	.func		= bpf_map_delete_elem,
	.gpl_only	= false,
	.pkt_access	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_MAP_KEY,
};

BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
{
	return map->ops->map_push_elem(map, value, flags);
}

const struct bpf_func_proto bpf_map_push_elem_proto = {
	.func		= bpf_map_push_elem,
	.gpl_only	= false,
	.pkt_access	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
	.arg3_type	= ARG_ANYTHING,
};

BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
{
	return map->ops->map_pop_elem(map, value);
}

const struct bpf_func_proto bpf_map_pop_elem_proto = {
	.func		= bpf_map_pop_elem,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
};

BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
{
	return map->ops->map_peek_elem(map, value);
}

const struct bpf_func_proto bpf_map_peek_elem_proto = {
	.func		= bpf_map_pop_elem,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
};

const struct bpf_func_proto bpf_get_prandom_u32_proto = {
	.func		= bpf_user_rnd_u32,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_0(bpf_get_smp_processor_id)
{
	return smp_processor_id();
}

const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
	.func		= bpf_get_smp_processor_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_0(bpf_get_numa_node_id)
{
	return numa_node_id();
}

const struct bpf_func_proto bpf_get_numa_node_id_proto = {
	.func		= bpf_get_numa_node_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_0(bpf_ktime_get_ns)
{
	/* NMI safe access to clock monotonic */
	return ktime_get_mono_fast_ns();
}

const struct bpf_func_proto bpf_ktime_get_ns_proto = {
	.func		= bpf_ktime_get_ns,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_0(bpf_get_current_pid_tgid)
{
	struct task_struct *task = current;

	if (unlikely(!task))
		return -EINVAL;

	return (u64) task->tgid << 32 | task->pid;
}

const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
	.func		= bpf_get_current_pid_tgid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_0(bpf_get_current_uid_gid)
{
	struct task_struct *task = current;
	kuid_t uid;
	kgid_t gid;

	if (unlikely(!task))
		return -EINVAL;

	current_uid_gid(&uid, &gid);
	return (u64) from_kgid(&init_user_ns, gid) << 32 |
		     from_kuid(&init_user_ns, uid);
}

const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
	.func		= bpf_get_current_uid_gid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
{
	struct task_struct *task = current;

	if (unlikely(!task))
		goto err_clear;

	strncpy(buf, task->comm, size);

	/* Verifier guarantees that size > 0. For task->comm exceeding
	 * size, guarantee that buf is %NUL-terminated. Unconditionally
	 * done here to save the size test.
	 */
	buf[size - 1] = 0;
	return 0;
err_clear:
	memset(buf, 0, size);
	return -EINVAL;
}

const struct bpf_func_proto bpf_get_current_comm_proto = {
	.func		= bpf_get_current_comm,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg2_type	= ARG_CONST_SIZE,
};

#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)

static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
	arch_spinlock_t *l = (void *)lock;
	union {
		__u32 val;
		arch_spinlock_t lock;
	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };

	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
	arch_spin_lock(l);
}

static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
	arch_spinlock_t *l = (void *)lock;

	arch_spin_unlock(l);
}

#else

static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
	atomic_t *l = (void *)lock;

	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
	do {
		atomic_cond_read_relaxed(l, !VAL);
	} while (atomic_xchg(l, 1));
}

static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
	atomic_t *l = (void *)lock;

	atomic_set_release(l, 0);
}

#endif

static DEFINE_PER_CPU(unsigned long, irqsave_flags);

notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
{
	unsigned long flags;

	local_irq_save(flags);
	__bpf_spin_lock(lock);
	__this_cpu_write(irqsave_flags, flags);
	return 0;
}

const struct bpf_func_proto bpf_spin_lock_proto = {
	.func		= bpf_spin_lock,
	.gpl_only	= false,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
};

notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
{
	unsigned long flags;

	flags = __this_cpu_read(irqsave_flags);
	__bpf_spin_unlock(lock);
	local_irq_restore(flags);
	return 0;
}

const struct bpf_func_proto bpf_spin_unlock_proto = {
	.func		= bpf_spin_unlock,
	.gpl_only	= false,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
};

void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
			   bool lock_src)
{
	struct bpf_spin_lock *lock;

	if (lock_src)
		lock = src + map->spin_lock_off;
	else
		lock = dst + map->spin_lock_off;
	preempt_disable();
	____bpf_spin_lock(lock);
	copy_map_value(map, dst, src);
	____bpf_spin_unlock(lock);
	preempt_enable();
}

BPF_CALL_0(bpf_jiffies64)
{
	return get_jiffies_64();
}

const struct bpf_func_proto bpf_jiffies64_proto = {
	.func		= bpf_jiffies64,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

#ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)
{
	struct cgroup *cgrp = task_dfl_cgroup(current);

	return cgroup_id(cgrp);
}

const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
	.func		= bpf_get_current_cgroup_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
{
	struct cgroup *cgrp = task_dfl_cgroup(current);
	struct cgroup *ancestor;

	ancestor = cgroup_ancestor(cgrp, ancestor_level);
	if (!ancestor)
		return 0;
	return cgroup_id(ancestor);
}

const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
	.func		= bpf_get_current_ancestor_cgroup_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_ANYTHING,
};

#ifdef CONFIG_CGROUP_BPF
DECLARE_PER_CPU(struct bpf_cgroup_storage*,
		bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);

BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
{
	/* flags argument is not used now,
	 * but provides an ability to extend the API.
	 * verifier checks that its value is correct.
	 */
	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
	struct bpf_cgroup_storage *storage;
	void *ptr;

	storage = this_cpu_read(bpf_cgroup_storage[stype]);

	if (stype == BPF_CGROUP_STORAGE_SHARED)
		ptr = &READ_ONCE(storage->buf)->data[0];
	else
		ptr = this_cpu_ptr(storage->percpu_buf);

	return (unsigned long)ptr;
}

const struct bpf_func_proto bpf_get_local_storage_proto = {
	.func		= bpf_get_local_storage,
	.gpl_only	= false,
	.ret_type	= RET_PTR_TO_MAP_VALUE,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_ANYTHING,
};
#endif

#define BPF_STRTOX_BASE_MASK 0x1F

static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
			  unsigned long long *res, bool *is_negative)
{
	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
	const char *cur_buf = buf;
	size_t cur_len = buf_len;
	unsigned int consumed;
	size_t val_len;
	char str[64];

	if (!buf || !buf_len || !res || !is_negative)
		return -EINVAL;

	if (base != 0 && base != 8 && base != 10 && base != 16)
		return -EINVAL;

	if (flags & ~BPF_STRTOX_BASE_MASK)
		return -EINVAL;

	while (cur_buf < buf + buf_len && isspace(*cur_buf))
		++cur_buf;

	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
	if (*is_negative)
		++cur_buf;

	consumed = cur_buf - buf;
	cur_len -= consumed;
	if (!cur_len)
		return -EINVAL;

	cur_len = min(cur_len, sizeof(str) - 1);
	memcpy(str, cur_buf, cur_len);
	str[cur_len] = '\0';
	cur_buf = str;

	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
	val_len = _parse_integer(cur_buf, base, res);

	if (val_len & KSTRTOX_OVERFLOW)
		return -ERANGE;

	if (val_len == 0)
		return -EINVAL;

	cur_buf += val_len;
	consumed += cur_buf - str;

	return consumed;
}

static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
			 long long *res)
{
	unsigned long long _res;
	bool is_negative;
	int err;

	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
	if (err < 0)
		return err;
	if (is_negative) {
		if ((long long)-_res > 0)
			return -ERANGE;
		*res = -_res;
	} else {
		if ((long long)_res < 0)
			return -ERANGE;
		*res = _res;
	}
	return err;
}

BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
	   long *, res)
{
	long long _res;
	int err;

	err = __bpf_strtoll(buf, buf_len, flags, &_res);
	if (err < 0)
		return err;
	if (_res != (long)_res)
		return -ERANGE;
	*res = _res;
	return err;
}

const struct bpf_func_proto bpf_strtol_proto = {
	.func		= bpf_strtol,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_MEM,
	.arg2_type	= ARG_CONST_SIZE,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_LONG,
};

BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
	   unsigned long *, res)
{
	unsigned long long _res;
	bool is_negative;
	int err;

	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
	if (err < 0)
		return err;
	if (is_negative)
		return -EINVAL;
	if (_res != (unsigned long)_res)
		return -ERANGE;
	*res = _res;
	return err;
}

const struct bpf_func_proto bpf_strtoul_proto = {
	.func		= bpf_strtoul,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_MEM,
	.arg2_type	= ARG_CONST_SIZE,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_LONG,
};
#endif

BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
	   struct bpf_pidns_info *, nsdata, u32, size)
{
	struct task_struct *task = current;
	struct pid_namespace *pidns;
	int err = -EINVAL;

	if (unlikely(size != sizeof(struct bpf_pidns_info)))
		goto clear;

	if (unlikely((u64)(dev_t)dev != dev))
		goto clear;

	if (unlikely(!task))
		goto clear;

	pidns = task_active_pid_ns(task);
	if (unlikely(!pidns)) {
		err = -ENOENT;
		goto clear;
	}

	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
		goto clear;

	nsdata->pid = task_pid_nr_ns(task, pidns);
	nsdata->tgid = task_tgid_nr_ns(task, pidns);
	return 0;
clear:
	memset((void *)nsdata, 0, (size_t) size);
	return err;
}

const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
	.func		= bpf_get_ns_current_pid_tgid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_ANYTHING,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
	.arg4_type      = ARG_CONST_SIZE,
};