Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2017 - Cambridge Greys Ltd
 * Copyright (C) 2011 - 2014 Cisco Systems Inc
 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
 */

#include <linux/cpumask.h>
#include <linux/hardirq.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <as-layout.h>
#include <kern_util.h>
#include <os.h>
#include <irq_user.h>
#include <irq_kern.h>
#include <linux/time-internal.h>


extern void free_irqs(void);

/* When epoll triggers we do not know why it did so
 * we can also have different IRQs for read and write.
 * This is why we keep a small irq_reg array for each fd -
 * one entry per IRQ type
 */
struct irq_reg {
	void *id;
	int irq;
	/* it's cheaper to store this than to query it */
	int events;
	bool active;
	bool pending;
	bool wakeup;
#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
	bool pending_on_resume;
	void (*timetravel_handler)(int, int, void *,
				   struct time_travel_event *);
	struct time_travel_event event;
#endif
};

struct irq_entry {
	struct list_head list;
	int fd;
	struct irq_reg reg[NUM_IRQ_TYPES];
	bool suspended;
	bool sigio_workaround;
};

static DEFINE_SPINLOCK(irq_lock);
static LIST_HEAD(active_fds);
static DECLARE_BITMAP(irqs_allocated, UM_LAST_SIGNAL_IRQ);
static bool irqs_suspended;

static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs)
{
/*
 * irq->active guards against reentry
 * irq->pending accumulates pending requests
 * if pending is raised the irq_handler is re-run
 * until pending is cleared
 */
	if (irq->active) {
		irq->active = false;

		do {
			irq->pending = false;
			do_IRQ(irq->irq, regs);
		} while (irq->pending);

		irq->active = true;
	} else {
		irq->pending = true;
	}
}

#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
static void irq_event_handler(struct time_travel_event *ev)
{
	struct irq_reg *reg = container_of(ev, struct irq_reg, event);

	/* do nothing if suspended - just to cause a wakeup */
	if (irqs_suspended)
		return;

	generic_handle_irq(reg->irq);
}

static bool irq_do_timetravel_handler(struct irq_entry *entry,
				      enum um_irq_type t)
{
	struct irq_reg *reg = &entry->reg[t];

	if (!reg->timetravel_handler)
		return false;

	/*
	 * Handle all messages - we might get multiple even while
	 * interrupts are already suspended, due to suspend order
	 * etc. Note that time_travel_add_irq_event() will not add
	 * an event twice, if it's pending already "first wins".
	 */
	reg->timetravel_handler(reg->irq, entry->fd, reg->id, &reg->event);

	if (!reg->event.pending)
		return false;

	if (irqs_suspended)
		reg->pending_on_resume = true;
	return true;
}
#else
static bool irq_do_timetravel_handler(struct irq_entry *entry,
				      enum um_irq_type t)
{
	return false;
}
#endif

static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t,
			      struct uml_pt_regs *regs,
			      bool timetravel_handlers_only)
{
	struct irq_reg *reg = &entry->reg[t];

	if (!reg->events)
		return;

	if (os_epoll_triggered(idx, reg->events) <= 0)
		return;

	if (irq_do_timetravel_handler(entry, t))
		return;

	/*
	 * If we're called to only run time-travel handlers then don't
	 * actually proceed but mark sigio as pending (if applicable).
	 * For suspend/resume, timetravel_handlers_only may be true
	 * despite time-travel not being configured and used.
	 */
	if (timetravel_handlers_only) {
#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
		mark_sigio_pending();
#endif
		return;
	}

	irq_io_loop(reg, regs);
}

static void _sigio_handler(struct uml_pt_regs *regs,
			   bool timetravel_handlers_only)
{
	struct irq_entry *irq_entry;
	int n, i;

	if (timetravel_handlers_only && !um_irq_timetravel_handler_used())
		return;

	while (1) {
		/* This is now lockless - epoll keeps back-referencesto the irqs
		 * which have trigger it so there is no need to walk the irq
		 * list and lock it every time. We avoid locking by turning off
		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
		 * we do any changes to the actual data structures
		 */
		n = os_waiting_for_events_epoll();

		if (n <= 0) {
			if (n == -EINTR)
				continue;
			else
				break;
		}

		for (i = 0; i < n ; i++) {
			enum um_irq_type t;

			irq_entry = os_epoll_get_data_pointer(i);

			for (t = 0; t < NUM_IRQ_TYPES; t++)
				sigio_reg_handler(i, irq_entry, t, regs,
						  timetravel_handlers_only);
		}
	}

	if (!timetravel_handlers_only)
		free_irqs();
}

void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
{
	_sigio_handler(regs, irqs_suspended);
}

static struct irq_entry *get_irq_entry_by_fd(int fd)
{
	struct irq_entry *walk;

	lockdep_assert_held(&irq_lock);

	list_for_each_entry(walk, &active_fds, list) {
		if (walk->fd == fd)
			return walk;
	}

	return NULL;
}

static void free_irq_entry(struct irq_entry *to_free, bool remove)
{
	if (!to_free)
		return;

	if (remove)
		os_del_epoll_fd(to_free->fd);
	list_del(&to_free->list);
	kfree(to_free);
}

static bool update_irq_entry(struct irq_entry *entry)
{
	enum um_irq_type i;
	int events = 0;

	for (i = 0; i < NUM_IRQ_TYPES; i++)
		events |= entry->reg[i].events;

	if (events) {
		/* will modify (instead of add) if needed */
		os_add_epoll_fd(events, entry->fd, entry);
		return true;
	}

	os_del_epoll_fd(entry->fd);
	return false;
}

static void update_or_free_irq_entry(struct irq_entry *entry)
{
	if (!update_irq_entry(entry))
		free_irq_entry(entry, false);
}

static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id,
		       void (*timetravel_handler)(int, int, void *,
						  struct time_travel_event *))
{
	struct irq_entry *irq_entry;
	int err, events = os_event_mask(type);
	unsigned long flags;

	err = os_set_fd_async(fd);
	if (err < 0)
		goto out;

	spin_lock_irqsave(&irq_lock, flags);
	irq_entry = get_irq_entry_by_fd(fd);
	if (irq_entry) {
		/* cannot register the same FD twice with the same type */
		if (WARN_ON(irq_entry->reg[type].events)) {
			err = -EALREADY;
			goto out_unlock;
		}

		/* temporarily disable to avoid IRQ-side locking */
		os_del_epoll_fd(fd);
	} else {
		irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC);
		if (!irq_entry) {
			err = -ENOMEM;
			goto out_unlock;
		}
		irq_entry->fd = fd;
		list_add_tail(&irq_entry->list, &active_fds);
		maybe_sigio_broken(fd);
	}

	irq_entry->reg[type].id = dev_id;
	irq_entry->reg[type].irq = irq;
	irq_entry->reg[type].active = true;
	irq_entry->reg[type].events = events;

#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
	if (um_irq_timetravel_handler_used()) {
		irq_entry->reg[type].timetravel_handler = timetravel_handler;
		irq_entry->reg[type].event.fn = irq_event_handler;
	}
#endif

	WARN_ON(!update_irq_entry(irq_entry));
	spin_unlock_irqrestore(&irq_lock, flags);

	return 0;
out_unlock:
	spin_unlock_irqrestore(&irq_lock, flags);
out:
	return err;
}

/*
 * Remove the entry or entries for a specific FD, if you
 * don't want to remove all the possible entries then use
 * um_free_irq() or deactivate_fd() instead.
 */
void free_irq_by_fd(int fd)
{
	struct irq_entry *to_free;
	unsigned long flags;

	spin_lock_irqsave(&irq_lock, flags);
	to_free = get_irq_entry_by_fd(fd);
	free_irq_entry(to_free, true);
	spin_unlock_irqrestore(&irq_lock, flags);
}
EXPORT_SYMBOL(free_irq_by_fd);

static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
{
	struct irq_entry *entry;
	unsigned long flags;

	spin_lock_irqsave(&irq_lock, flags);
	list_for_each_entry(entry, &active_fds, list) {
		enum um_irq_type i;

		for (i = 0; i < NUM_IRQ_TYPES; i++) {
			struct irq_reg *reg = &entry->reg[i];

			if (!reg->events)
				continue;
			if (reg->irq != irq)
				continue;
			if (reg->id != dev)
				continue;

			os_del_epoll_fd(entry->fd);
			reg->events = 0;
			update_or_free_irq_entry(entry);
			goto out;
		}
	}
out:
	spin_unlock_irqrestore(&irq_lock, flags);
}

void deactivate_fd(int fd, int irqnum)
{
	struct irq_entry *entry;
	unsigned long flags;
	enum um_irq_type i;

	os_del_epoll_fd(fd);

	spin_lock_irqsave(&irq_lock, flags);
	entry = get_irq_entry_by_fd(fd);
	if (!entry)
		goto out;

	for (i = 0; i < NUM_IRQ_TYPES; i++) {
		if (!entry->reg[i].events)
			continue;
		if (entry->reg[i].irq == irqnum)
			entry->reg[i].events = 0;
	}

	update_or_free_irq_entry(entry);
out:
	spin_unlock_irqrestore(&irq_lock, flags);

	ignore_sigio_fd(fd);
}
EXPORT_SYMBOL(deactivate_fd);

/*
 * Called just before shutdown in order to provide a clean exec
 * environment in case the system is rebooting.  No locking because
 * that would cause a pointless shutdown hang if something hadn't
 * released the lock.
 */
int deactivate_all_fds(void)
{
	struct irq_entry *entry;

	/* Stop IO. The IRQ loop has no lock so this is our
	 * only way of making sure we are safe to dispose
	 * of all IRQ handlers
	 */
	os_set_ioignore();

	/* we can no longer call kfree() here so just deactivate */
	list_for_each_entry(entry, &active_fds, list)
		os_del_epoll_fd(entry->fd);
	os_close_epoll_fd();
	return 0;
}

/*
 * do_IRQ handles all normal device IRQs (the special
 * SMP cross-CPU interrupts have their own specific
 * handlers).
 */
unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
{
	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
	irq_enter();
	generic_handle_irq(irq);
	irq_exit();
	set_irq_regs(old_regs);
	return 1;
}

void um_free_irq(int irq, void *dev)
{
	if (WARN(irq < 0 || irq > UM_LAST_SIGNAL_IRQ,
		 "freeing invalid irq %d", irq))
		return;

	free_irq_by_irq_and_dev(irq, dev);
	free_irq(irq, dev);
	clear_bit(irq, irqs_allocated);
}
EXPORT_SYMBOL(um_free_irq);

static int
_um_request_irq(int irq, int fd, enum um_irq_type type,
		irq_handler_t handler, unsigned long irqflags,
		const char *devname, void *dev_id,
		void (*timetravel_handler)(int, int, void *,
					   struct time_travel_event *))
{
	int err;

	if (irq == UM_IRQ_ALLOC) {
		int i;

		for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) {
			if (!test_and_set_bit(i, irqs_allocated)) {
				irq = i;
				break;
			}
		}
	}

	if (irq < 0)
		return -ENOSPC;

	if (fd != -1) {
		err = activate_fd(irq, fd, type, dev_id, timetravel_handler);
		if (err)
			goto error;
	}

	err = request_irq(irq, handler, irqflags, devname, dev_id);
	if (err < 0)
		goto error;

	return irq;
error:
	clear_bit(irq, irqs_allocated);
	return err;
}

int um_request_irq(int irq, int fd, enum um_irq_type type,
		   irq_handler_t handler, unsigned long irqflags,
		   const char *devname, void *dev_id)
{
	return _um_request_irq(irq, fd, type, handler, irqflags,
			       devname, dev_id, NULL);
}
EXPORT_SYMBOL(um_request_irq);

#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
int um_request_irq_tt(int irq, int fd, enum um_irq_type type,
		      irq_handler_t handler, unsigned long irqflags,
		      const char *devname, void *dev_id,
		      void (*timetravel_handler)(int, int, void *,
						 struct time_travel_event *))
{
	return _um_request_irq(irq, fd, type, handler, irqflags,
			       devname, dev_id, timetravel_handler);
}
EXPORT_SYMBOL(um_request_irq_tt);

void sigio_run_timetravel_handlers(void)
{
	_sigio_handler(NULL, true);
}
#endif

#ifdef CONFIG_PM_SLEEP
void um_irqs_suspend(void)
{
	struct irq_entry *entry;
	unsigned long flags;

	irqs_suspended = true;

	spin_lock_irqsave(&irq_lock, flags);
	list_for_each_entry(entry, &active_fds, list) {
		enum um_irq_type t;
		bool clear = true;

		for (t = 0; t < NUM_IRQ_TYPES; t++) {
			if (!entry->reg[t].events)
				continue;

			/*
			 * For the SIGIO_WRITE_IRQ, which is used to handle the
			 * SIGIO workaround thread, we need special handling:
			 * enable wake for it itself, but below we tell it about
			 * any FDs that should be suspended.
			 */
			if (entry->reg[t].wakeup ||
			    entry->reg[t].irq == SIGIO_WRITE_IRQ
#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
			    || entry->reg[t].timetravel_handler
#endif
			    ) {
				clear = false;
				break;
			}
		}

		if (clear) {
			entry->suspended = true;
			os_clear_fd_async(entry->fd);
			entry->sigio_workaround =
				!__ignore_sigio_fd(entry->fd);
		}
	}
	spin_unlock_irqrestore(&irq_lock, flags);
}

void um_irqs_resume(void)
{
	struct irq_entry *entry;
	unsigned long flags;


	local_irq_save(flags);
#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
	/*
	 * We don't need to lock anything here since we're in resume
	 * and nothing else is running, but have disabled IRQs so we
	 * don't try anything else with the interrupt list from there.
	 */
	list_for_each_entry(entry, &active_fds, list) {
		enum um_irq_type t;

		for (t = 0; t < NUM_IRQ_TYPES; t++) {
			struct irq_reg *reg = &entry->reg[t];

			if (reg->pending_on_resume) {
				irq_enter();
				generic_handle_irq(reg->irq);
				irq_exit();
				reg->pending_on_resume = false;
			}
		}
	}
#endif

	spin_lock(&irq_lock);
	list_for_each_entry(entry, &active_fds, list) {
		if (entry->suspended) {
			int err = os_set_fd_async(entry->fd);

			WARN(err < 0, "os_set_fd_async returned %d\n", err);
			entry->suspended = false;

			if (entry->sigio_workaround) {
				err = __add_sigio_fd(entry->fd);
				WARN(err < 0, "add_sigio_returned %d\n", err);
			}
		}
	}
	spin_unlock_irqrestore(&irq_lock, flags);

	irqs_suspended = false;
	send_sigio_to_self();
}

static int normal_irq_set_wake(struct irq_data *d, unsigned int on)
{
	struct irq_entry *entry;
	unsigned long flags;

	spin_lock_irqsave(&irq_lock, flags);
	list_for_each_entry(entry, &active_fds, list) {
		enum um_irq_type t;

		for (t = 0; t < NUM_IRQ_TYPES; t++) {
			if (!entry->reg[t].events)
				continue;

			if (entry->reg[t].irq != d->irq)
				continue;
			entry->reg[t].wakeup = on;
			goto unlock;
		}
	}
unlock:
	spin_unlock_irqrestore(&irq_lock, flags);
	return 0;
}
#else
#define normal_irq_set_wake NULL
#endif

/*
 * irq_chip must define at least enable/disable and ack when
 * the edge handler is used.
 */
static void dummy(struct irq_data *d)
{
}

/* This is used for everything other than the timer. */
static struct irq_chip normal_irq_type = {
	.name = "SIGIO",
	.irq_disable = dummy,
	.irq_enable = dummy,
	.irq_ack = dummy,
	.irq_mask = dummy,
	.irq_unmask = dummy,
	.irq_set_wake = normal_irq_set_wake,
};

static struct irq_chip alarm_irq_type = {
	.name = "SIGALRM",
	.irq_disable = dummy,
	.irq_enable = dummy,
	.irq_ack = dummy,
	.irq_mask = dummy,
	.irq_unmask = dummy,
};

void __init init_IRQ(void)
{
	int i;

	irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq);

	for (i = 1; i < UM_LAST_SIGNAL_IRQ; i++)
		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
	/* Initialize EPOLL Loop */
	os_setup_epoll();
}

/*
 * IRQ stack entry and exit:
 *
 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
 * and switch over to the IRQ stack after some preparation.  We use
 * sigaltstack to receive signals on a separate stack from the start.
 * These two functions make sure the rest of the kernel won't be too
 * upset by being on a different stack.  The IRQ stack has a
 * thread_info structure at the bottom so that current et al continue
 * to work.
 *
 * to_irq_stack copies the current task's thread_info to the IRQ stack
 * thread_info and sets the tasks's stack to point to the IRQ stack.
 *
 * from_irq_stack copies the thread_info struct back (flags may have
 * been modified) and resets the task's stack pointer.
 *
 * Tricky bits -
 *
 * What happens when two signals race each other?  UML doesn't block
 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
 * could arrive while a previous one is still setting up the
 * thread_info.
 *
 * There are three cases -
 *     The first interrupt on the stack - sets up the thread_info and
 * handles the interrupt
 *     A nested interrupt interrupting the copying of the thread_info -
 * can't handle the interrupt, as the stack is in an unknown state
 *     A nested interrupt not interrupting the copying of the
 * thread_info - doesn't do any setup, just handles the interrupt
 *
 * The first job is to figure out whether we interrupted stack setup.
 * This is done by xchging the signal mask with thread_info->pending.
 * If the value that comes back is zero, then there is no setup in
 * progress, and the interrupt can be handled.  If the value is
 * non-zero, then there is stack setup in progress.  In order to have
 * the interrupt handled, we leave our signal in the mask, and it will
 * be handled by the upper handler after it has set up the stack.
 *
 * Next is to figure out whether we are the outer handler or a nested
 * one.  As part of setting up the stack, thread_info->real_thread is
 * set to non-NULL (and is reset to NULL on exit).  This is the
 * nesting indicator.  If it is non-NULL, then the stack is already
 * set up and the handler can run.
 */

static unsigned long pending_mask;

unsigned long to_irq_stack(unsigned long *mask_out)
{
	struct thread_info *ti;
	unsigned long mask, old;
	int nested;

	mask = xchg(&pending_mask, *mask_out);
	if (mask != 0) {
		/*
		 * If any interrupts come in at this point, we want to
		 * make sure that their bits aren't lost by our
		 * putting our bit in.  So, this loop accumulates bits
		 * until xchg returns the same value that we put in.
		 * When that happens, there were no new interrupts,
		 * and pending_mask contains a bit for each interrupt
		 * that came in.
		 */
		old = *mask_out;
		do {
			old |= mask;
			mask = xchg(&pending_mask, old);
		} while (mask != old);
		return 1;
	}

	ti = current_thread_info();
	nested = (ti->real_thread != NULL);
	if (!nested) {
		struct task_struct *task;
		struct thread_info *tti;

		task = cpu_tasks[ti->cpu].task;
		tti = task_thread_info(task);

		*ti = *tti;
		ti->real_thread = tti;
		task->stack = ti;
	}

	mask = xchg(&pending_mask, 0);
	*mask_out |= mask | nested;
	return 0;
}

unsigned long from_irq_stack(int nested)
{
	struct thread_info *ti, *to;
	unsigned long mask;

	ti = current_thread_info();

	pending_mask = 1;

	to = ti->real_thread;
	current->stack = to;
	ti->real_thread = NULL;
	*to = *ti;

	mask = xchg(&pending_mask, 0);
	return mask & ~1;
}