Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | /* * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Licensed under the GPL * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar */ #include "linux/cpumask.h" #include "linux/hardirq.h" #include "linux/interrupt.h" #include "linux/kernel_stat.h" #include "linux/module.h" #include "linux/sched.h" #include "linux/seq_file.h" #include "linux/slab.h" #include "as-layout.h" #include "kern_util.h" #include "os.h" /* * Generic, controller-independent functions: */ int show_interrupts(struct seq_file *p, void *v) { int i = *(loff_t *) v, j; struct irqaction * action; unsigned long flags; if (i == 0) { seq_printf(p, " "); for_each_online_cpu(j) seq_printf(p, "CPU%d ",j); seq_putc(p, '\n'); } if (i < NR_IRQS) { raw_spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (!action) goto skip; seq_printf(p, "%3d: ",i); #ifndef CONFIG_SMP seq_printf(p, "%10u ", kstat_irqs(i)); #else for_each_online_cpu(j) seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); #endif seq_printf(p, " %14s", irq_desc[i].chip->name); seq_printf(p, " %s", action->name); for (action=action->next; action; action = action->next) seq_printf(p, ", %s", action->name); seq_putc(p, '\n'); skip: raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); } else if (i == NR_IRQS) seq_putc(p, '\n'); return 0; } /* * This list is accessed under irq_lock, except in sigio_handler, * where it is safe from being modified. IRQ handlers won't change it - * if an IRQ source has vanished, it will be freed by free_irqs just * before returning from sigio_handler. That will process a separate * list of irqs to free, with its own locking, coming back here to * remove list elements, taking the irq_lock to do so. */ static struct irq_fd *active_fds = NULL; static struct irq_fd **last_irq_ptr = &active_fds; extern void free_irqs(void); void sigio_handler(int sig, struct uml_pt_regs *regs) { struct irq_fd *irq_fd; int n; if (smp_sigio_handler()) return; while (1) { n = os_waiting_for_events(active_fds); if (n <= 0) { if (n == -EINTR) continue; else break; } for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { if (irq_fd->current_events != 0) { irq_fd->current_events = 0; do_IRQ(irq_fd->irq, regs); } } } free_irqs(); } static DEFINE_SPINLOCK(irq_lock); static int activate_fd(int irq, int fd, int type, void *dev_id) { struct pollfd *tmp_pfd; struct irq_fd *new_fd, *irq_fd; unsigned long flags; int events, err, n; err = os_set_fd_async(fd); if (err < 0) goto out; err = -ENOMEM; new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); if (new_fd == NULL) goto out; if (type == IRQ_READ) events = UM_POLLIN | UM_POLLPRI; else events = UM_POLLOUT; *new_fd = ((struct irq_fd) { .next = NULL, .id = dev_id, .fd = fd, .type = type, .irq = irq, .events = events, .current_events = 0 } ); err = -EBUSY; spin_lock_irqsave(&irq_lock, flags); for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { if ((irq_fd->fd == fd) && (irq_fd->type == type)) { printk(KERN_ERR "Registering fd %d twice\n", fd); printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, dev_id); goto out_unlock; } } if (type == IRQ_WRITE) fd = -1; tmp_pfd = NULL; n = 0; while (1) { n = os_create_pollfd(fd, events, tmp_pfd, n); if (n == 0) break; /* * n > 0 * It means we couldn't put new pollfd to current pollfds * and tmp_fds is NULL or too small for new pollfds array. * Needed size is equal to n as minimum. * * Here we have to drop the lock in order to call * kmalloc, which might sleep. * If something else came in and changed the pollfds array * so we will not be able to put new pollfd struct to pollfds * then we free the buffer tmp_fds and try again. */ spin_unlock_irqrestore(&irq_lock, flags); kfree(tmp_pfd); tmp_pfd = kmalloc(n, GFP_KERNEL); if (tmp_pfd == NULL) goto out_kfree; spin_lock_irqsave(&irq_lock, flags); } *last_irq_ptr = new_fd; last_irq_ptr = &new_fd->next; spin_unlock_irqrestore(&irq_lock, flags); /* * This calls activate_fd, so it has to be outside the critical * section. */ maybe_sigio_broken(fd, (type == IRQ_READ)); return 0; out_unlock: spin_unlock_irqrestore(&irq_lock, flags); out_kfree: kfree(new_fd); out: return err; } static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) { unsigned long flags; spin_lock_irqsave(&irq_lock, flags); os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); spin_unlock_irqrestore(&irq_lock, flags); } struct irq_and_dev { int irq; void *dev; }; static int same_irq_and_dev(struct irq_fd *irq, void *d) { struct irq_and_dev *data = d; return ((irq->irq == data->irq) && (irq->id == data->dev)); } static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) { struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, .dev = dev }); free_irq_by_cb(same_irq_and_dev, &data); } static int same_fd(struct irq_fd *irq, void *fd) { return (irq->fd == *((int *)fd)); } void free_irq_by_fd(int fd) { free_irq_by_cb(same_fd, &fd); } /* Must be called with irq_lock held */ static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) { struct irq_fd *irq; int i = 0; int fdi; for (irq = active_fds; irq != NULL; irq = irq->next) { if ((irq->fd == fd) && (irq->irq == irqnum)) break; i++; } if (irq == NULL) { printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", fd); goto out; } fdi = os_get_pollfd(i); if ((fdi != -1) && (fdi != fd)) { printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " "and pollfds, fd %d vs %d, need %d\n", irq->fd, fdi, fd); irq = NULL; goto out; } *index_out = i; out: return irq; } void reactivate_fd(int fd, int irqnum) { struct irq_fd *irq; unsigned long flags; int i; spin_lock_irqsave(&irq_lock, flags); irq = find_irq_by_fd(fd, irqnum, &i); if (irq == NULL) { spin_unlock_irqrestore(&irq_lock, flags); return; } os_set_pollfd(i, irq->fd); spin_unlock_irqrestore(&irq_lock, flags); add_sigio_fd(fd); } void deactivate_fd(int fd, int irqnum) { struct irq_fd *irq; unsigned long flags; int i; spin_lock_irqsave(&irq_lock, flags); irq = find_irq_by_fd(fd, irqnum, &i); if (irq == NULL) { spin_unlock_irqrestore(&irq_lock, flags); return; } os_set_pollfd(i, -1); spin_unlock_irqrestore(&irq_lock, flags); ignore_sigio_fd(fd); } /* * Called just before shutdown in order to provide a clean exec * environment in case the system is rebooting. No locking because * that would cause a pointless shutdown hang if something hadn't * released the lock. */ int deactivate_all_fds(void) { struct irq_fd *irq; int err; for (irq = active_fds; irq != NULL; irq = irq->next) { err = os_clear_fd_async(irq->fd); if (err) return err; } /* If there is a signal already queued, after unblocking ignore it */ os_set_ioignore(); return 0; } /* * do_IRQ handles all normal device IRQs (the special * SMP cross-CPU interrupts have their own specific * handlers). */ unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); irq_enter(); generic_handle_irq(irq); irq_exit(); set_irq_regs(old_regs); return 1; } int um_request_irq(unsigned int irq, int fd, int type, irq_handler_t handler, unsigned long irqflags, const char * devname, void *dev_id) { int err; if (fd != -1) { err = activate_fd(irq, fd, type, dev_id); if (err) return err; } return request_irq(irq, handler, irqflags, devname, dev_id); } EXPORT_SYMBOL(um_request_irq); EXPORT_SYMBOL(reactivate_fd); /* * irq_chip must define (startup || enable) && * (shutdown || disable) && end */ static void dummy(unsigned int irq) { } /* This is used for everything else than the timer. */ static struct irq_chip normal_irq_type = { .name = "SIGIO", .release = free_irq_by_irq_and_dev, .disable = dummy, .enable = dummy, .ack = dummy, .end = dummy }; static struct irq_chip SIGVTALRM_irq_type = { .name = "SIGVTALRM", .release = free_irq_by_irq_and_dev, .shutdown = dummy, /* never called */ .disable = dummy, .enable = dummy, .ack = dummy, .end = dummy }; void __init init_IRQ(void) { int i; set_irq_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); for (i = 1; i < NR_IRQS; i++) { set_irq_chip_and_handler(i, &normal_irq_type, handle_edge_irq); } } /* * IRQ stack entry and exit: * * Unlike i386, UML doesn't receive IRQs on the normal kernel stack * and switch over to the IRQ stack after some preparation. We use * sigaltstack to receive signals on a separate stack from the start. * These two functions make sure the rest of the kernel won't be too * upset by being on a different stack. The IRQ stack has a * thread_info structure at the bottom so that current et al continue * to work. * * to_irq_stack copies the current task's thread_info to the IRQ stack * thread_info and sets the tasks's stack to point to the IRQ stack. * * from_irq_stack copies the thread_info struct back (flags may have * been modified) and resets the task's stack pointer. * * Tricky bits - * * What happens when two signals race each other? UML doesn't block * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal * could arrive while a previous one is still setting up the * thread_info. * * There are three cases - * The first interrupt on the stack - sets up the thread_info and * handles the interrupt * A nested interrupt interrupting the copying of the thread_info - * can't handle the interrupt, as the stack is in an unknown state * A nested interrupt not interrupting the copying of the * thread_info - doesn't do any setup, just handles the interrupt * * The first job is to figure out whether we interrupted stack setup. * This is done by xchging the signal mask with thread_info->pending. * If the value that comes back is zero, then there is no setup in * progress, and the interrupt can be handled. If the value is * non-zero, then there is stack setup in progress. In order to have * the interrupt handled, we leave our signal in the mask, and it will * be handled by the upper handler after it has set up the stack. * * Next is to figure out whether we are the outer handler or a nested * one. As part of setting up the stack, thread_info->real_thread is * set to non-NULL (and is reset to NULL on exit). This is the * nesting indicator. If it is non-NULL, then the stack is already * set up and the handler can run. */ static unsigned long pending_mask; unsigned long to_irq_stack(unsigned long *mask_out) { struct thread_info *ti; unsigned long mask, old; int nested; mask = xchg(&pending_mask, *mask_out); if (mask != 0) { /* * If any interrupts come in at this point, we want to * make sure that their bits aren't lost by our * putting our bit in. So, this loop accumulates bits * until xchg returns the same value that we put in. * When that happens, there were no new interrupts, * and pending_mask contains a bit for each interrupt * that came in. */ old = *mask_out; do { old |= mask; mask = xchg(&pending_mask, old); } while (mask != old); return 1; } ti = current_thread_info(); nested = (ti->real_thread != NULL); if (!nested) { struct task_struct *task; struct thread_info *tti; task = cpu_tasks[ti->cpu].task; tti = task_thread_info(task); *ti = *tti; ti->real_thread = tti; task->stack = ti; } mask = xchg(&pending_mask, 0); *mask_out |= mask | nested; return 0; } unsigned long from_irq_stack(int nested) { struct thread_info *ti, *to; unsigned long mask; ti = current_thread_info(); pending_mask = 1; to = ti->real_thread; current->stack = to; ti->real_thread = NULL; *to = *ti; mask = xchg(&pending_mask, 0); return mask & ~1; } |