Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2014 Red Hat, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_trans.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_trace.h" #include "xfs_error.h" #include "xfs_extent_busy.h" #include "xfs_ag.h" #include "xfs_ag_resv.h" static struct kmem_cache *xfs_rmapbt_cur_cache; /* * Reverse map btree. * * This is a per-ag tree used to track the owner(s) of a given extent. With * reflink it is possible for there to be multiple owners, which is a departure * from classic XFS. Owner records for data extents are inserted when the * extent is mapped and removed when an extent is unmapped. Owner records for * all other block types (i.e. metadata) are inserted when an extent is * allocated and removed when an extent is freed. There can only be one owner * of a metadata extent, usually an inode or some other metadata structure like * an AG btree. * * The rmap btree is part of the free space management, so blocks for the tree * are sourced from the agfl. Hence we need transaction reservation support for * this tree so that the freelist is always large enough. This also impacts on * the minimum space we need to leave free in the AG. * * The tree is ordered by [ag block, owner, offset]. This is a large key size, * but it is the only way to enforce unique keys when a block can be owned by * multiple files at any offset. There's no need to order/search by extent * size for online updating/management of the tree. It is intended that most * reverse lookups will be to find the owner(s) of a particular block, or to * try to recover tree and file data from corrupt primary metadata. */ static struct xfs_btree_cur * xfs_rmapbt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp, cur->bc_ag.pag); } STATIC void xfs_rmapbt_set_root( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, int inc) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; int btnum = cur->bc_btnum; ASSERT(ptr->s != 0); agf->agf_roots[btnum] = ptr->s; be32_add_cpu(&agf->agf_levels[btnum], inc); cur->bc_ag.pag->pagf_levels[btnum] += inc; xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); } STATIC int xfs_rmapbt_alloc_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; struct xfs_perag *pag = cur->bc_ag.pag; int error; xfs_agblock_t bno; /* Allocate the new block from the freelist. If we can't, give up. */ error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp, &bno, 1); if (error) return error; trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1); if (bno == NULLAGBLOCK) { *stat = 0; return 0; } xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false); new->s = cpu_to_be32(bno); be32_add_cpu(&agf->agf_rmap_blocks, 1); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno); *stat = 1; return 0; } STATIC int xfs_rmapbt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; struct xfs_perag *pag = cur->bc_ag.pag; xfs_agblock_t bno; int error; bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp)); trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno, bno, 1); be32_add_cpu(&agf->agf_rmap_blocks, -1); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1); if (error) return error; xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1, XFS_EXTENT_BUSY_SKIP_DISCARD); xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1); return 0; } STATIC int xfs_rmapbt_get_minrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_rmap_mnr[level != 0]; } STATIC int xfs_rmapbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_rmap_mxr[level != 0]; } /* * Convert the ondisk record's offset field into the ondisk key's offset field. * Fork and bmbt are significant parts of the rmap record key, but written * status is merely a record attribute. */ static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec) { return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN); } STATIC void xfs_rmapbt_init_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->rmap.rm_startblock = rec->rmap.rm_startblock; key->rmap.rm_owner = rec->rmap.rm_owner; key->rmap.rm_offset = ondisk_rec_offset_to_key(rec); } /* * The high key for a reverse mapping record can be computed by shifting * the startblock and offset to the highest value that would still map * to that record. In practice this means that we add blockcount-1 to * the startblock for all records, and if the record is for a data/attr * fork mapping, we add blockcount-1 to the offset too. */ STATIC void xfs_rmapbt_init_high_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { uint64_t off; int adj; adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1; key->rmap.rm_startblock = rec->rmap.rm_startblock; be32_add_cpu(&key->rmap.rm_startblock, adj); key->rmap.rm_owner = rec->rmap.rm_owner; key->rmap.rm_offset = ondisk_rec_offset_to_key(rec); if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) || XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset))) return; off = be64_to_cpu(key->rmap.rm_offset); off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK); key->rmap.rm_offset = cpu_to_be64(off); } STATIC void xfs_rmapbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock); rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount); rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner); rec->rmap.rm_offset = cpu_to_be64( xfs_rmap_irec_offset_pack(&cur->bc_rec.r)); } STATIC void xfs_rmapbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno)); ptr->s = agf->agf_roots[cur->bc_btnum]; } /* * Mask the appropriate parts of the ondisk key field for a key comparison. * Fork and bmbt are significant parts of the rmap record key, but written * status is merely a record attribute. */ static inline uint64_t offset_keymask(uint64_t offset) { return offset & ~XFS_RMAP_OFF_UNWRITTEN; } STATIC int64_t xfs_rmapbt_key_diff( struct xfs_btree_cur *cur, const union xfs_btree_key *key) { struct xfs_rmap_irec *rec = &cur->bc_rec.r; const struct xfs_rmap_key *kp = &key->rmap; __u64 x, y; int64_t d; d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock; if (d) return d; x = be64_to_cpu(kp->rm_owner); y = rec->rm_owner; if (x > y) return 1; else if (y > x) return -1; x = offset_keymask(be64_to_cpu(kp->rm_offset)); y = offset_keymask(xfs_rmap_irec_offset_pack(rec)); if (x > y) return 1; else if (y > x) return -1; return 0; } STATIC int64_t xfs_rmapbt_diff_two_keys( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2, const union xfs_btree_key *mask) { const struct xfs_rmap_key *kp1 = &k1->rmap; const struct xfs_rmap_key *kp2 = &k2->rmap; int64_t d; __u64 x, y; /* Doesn't make sense to mask off the physical space part */ ASSERT(!mask || mask->rmap.rm_startblock); d = (int64_t)be32_to_cpu(kp1->rm_startblock) - be32_to_cpu(kp2->rm_startblock); if (d) return d; if (!mask || mask->rmap.rm_owner) { x = be64_to_cpu(kp1->rm_owner); y = be64_to_cpu(kp2->rm_owner); if (x > y) return 1; else if (y > x) return -1; } if (!mask || mask->rmap.rm_offset) { /* Doesn't make sense to allow offset but not owner */ ASSERT(!mask || mask->rmap.rm_owner); x = offset_keymask(be64_to_cpu(kp1->rm_offset)); y = offset_keymask(be64_to_cpu(kp2->rm_offset)); if (x > y) return 1; else if (y > x) return -1; } return 0; } static xfs_failaddr_t xfs_rmapbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_perag *pag = bp->b_pag; xfs_failaddr_t fa; unsigned int level; /* * magic number and level verification * * During growfs operations, we can't verify the exact level or owner as * the perag is not fully initialised and hence not attached to the * buffer. In this case, check against the maximum tree depth. * * Similarly, during log recovery we will have a perag structure * attached, but the agf information will not yet have been initialised * from the on disk AGF. Again, we can only check against maximum limits * in this case. */ if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; if (!xfs_has_rmapbt(mp)) return __this_address; fa = xfs_btree_sblock_v5hdr_verify(bp); if (fa) return fa; level = be16_to_cpu(block->bb_level); if (pag && xfs_perag_initialised_agf(pag)) { if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi]) return __this_address; } else if (level >= mp->m_rmap_maxlevels) return __this_address; return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]); } static void xfs_rmapbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_sblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_rmapbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_rmapbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_rmapbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_sblock_calc_crc(bp); } const struct xfs_buf_ops xfs_rmapbt_buf_ops = { .name = "xfs_rmapbt", .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) }, .verify_read = xfs_rmapbt_read_verify, .verify_write = xfs_rmapbt_write_verify, .verify_struct = xfs_rmapbt_verify, }; STATIC int xfs_rmapbt_keys_inorder( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { uint32_t x; uint32_t y; uint64_t a; uint64_t b; x = be32_to_cpu(k1->rmap.rm_startblock); y = be32_to_cpu(k2->rmap.rm_startblock); if (x < y) return 1; else if (x > y) return 0; a = be64_to_cpu(k1->rmap.rm_owner); b = be64_to_cpu(k2->rmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset)); b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset)); if (a <= b) return 1; return 0; } STATIC int xfs_rmapbt_recs_inorder( struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2) { uint32_t x; uint32_t y; uint64_t a; uint64_t b; x = be32_to_cpu(r1->rmap.rm_startblock); y = be32_to_cpu(r2->rmap.rm_startblock); if (x < y) return 1; else if (x > y) return 0; a = be64_to_cpu(r1->rmap.rm_owner); b = be64_to_cpu(r2->rmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset)); b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset)); if (a <= b) return 1; return 0; } STATIC enum xbtree_key_contig xfs_rmapbt_keys_contiguous( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->rmap.rm_startblock); /* * We only support checking contiguity of the physical space component. * If any callers ever need more specificity than that, they'll have to * implement it here. */ ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset)); return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock), be32_to_cpu(key2->rmap.rm_startblock)); } static const struct xfs_btree_ops xfs_rmapbt_ops = { .rec_len = sizeof(struct xfs_rmap_rec), .key_len = 2 * sizeof(struct xfs_rmap_key), .dup_cursor = xfs_rmapbt_dup_cursor, .set_root = xfs_rmapbt_set_root, .alloc_block = xfs_rmapbt_alloc_block, .free_block = xfs_rmapbt_free_block, .get_minrecs = xfs_rmapbt_get_minrecs, .get_maxrecs = xfs_rmapbt_get_maxrecs, .init_key_from_rec = xfs_rmapbt_init_key_from_rec, .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec, .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur, .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur, .key_diff = xfs_rmapbt_key_diff, .buf_ops = &xfs_rmapbt_buf_ops, .diff_two_keys = xfs_rmapbt_diff_two_keys, .keys_inorder = xfs_rmapbt_keys_inorder, .recs_inorder = xfs_rmapbt_recs_inorder, .keys_contiguous = xfs_rmapbt_keys_contiguous, }; static struct xfs_btree_cur * xfs_rmapbt_init_common( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_perag *pag) { struct xfs_btree_cur *cur; /* Overlapping btree; 2 keys per pointer. */ cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RMAP, mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache); cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING; cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2); cur->bc_ops = &xfs_rmapbt_ops; cur->bc_ag.pag = xfs_perag_hold(pag); return cur; } /* Create a new reverse mapping btree cursor. */ struct xfs_btree_cur * xfs_rmapbt_init_cursor( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, struct xfs_perag *pag) { struct xfs_agf *agf = agbp->b_addr; struct xfs_btree_cur *cur; cur = xfs_rmapbt_init_common(mp, tp, pag); cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]); cur->bc_ag.agbp = agbp; return cur; } /* Create a new reverse mapping btree cursor with a fake root for staging. */ struct xfs_btree_cur * xfs_rmapbt_stage_cursor( struct xfs_mount *mp, struct xbtree_afakeroot *afake, struct xfs_perag *pag) { struct xfs_btree_cur *cur; cur = xfs_rmapbt_init_common(mp, NULL, pag); xfs_btree_stage_afakeroot(cur, afake); return cur; } /* * Install a new reverse mapping btree root. Caller is responsible for * invalidating and freeing the old btree blocks. */ void xfs_rmapbt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_agf *agf = agbp->b_addr; struct xbtree_afakeroot *afake = cur->bc_ag.afake; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root); agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels); agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks); xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS | XFS_AGF_RMAP_BLOCKS); xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops); } /* Calculate number of records in a reverse mapping btree block. */ static inline unsigned int xfs_rmapbt_block_maxrecs( unsigned int blocklen, bool leaf) { if (leaf) return blocklen / sizeof(struct xfs_rmap_rec); return blocklen / (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t)); } /* * Calculate number of records in an rmap btree block. */ int xfs_rmapbt_maxrecs( int blocklen, int leaf) { blocklen -= XFS_RMAP_BLOCK_LEN; return xfs_rmapbt_block_maxrecs(blocklen, leaf); } /* Compute the max possible height for reverse mapping btrees. */ unsigned int xfs_rmapbt_maxlevels_ondisk(void) { unsigned int minrecs[2]; unsigned int blocklen; blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2; /* * Compute the asymptotic maxlevels for an rmapbt on any reflink fs. * * On a reflink filesystem, each AG block can have up to 2^32 (per the * refcount record format) owners, which means that theoretically we * could face up to 2^64 rmap records. However, we're likely to run * out of blocks in the AG long before that happens, which means that * we must compute the max height based on what the btree will look * like if it consumes almost all the blocks in the AG due to maximal * sharing factor. */ return xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS); } /* Compute the maximum height of an rmap btree. */ void xfs_rmapbt_compute_maxlevels( struct xfs_mount *mp) { if (!xfs_has_rmapbt(mp)) { mp->m_rmap_maxlevels = 0; return; } if (xfs_has_reflink(mp)) { /* * Compute the asymptotic maxlevels for an rmap btree on a * filesystem that supports reflink. * * On a reflink filesystem, each AG block can have up to 2^32 * (per the refcount record format) owners, which means that * theoretically we could face up to 2^64 rmap records. * However, we're likely to run out of blocks in the AG long * before that happens, which means that we must compute the * max height based on what the btree will look like if it * consumes almost all the blocks in the AG due to maximal * sharing factor. */ mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr, mp->m_sb.sb_agblocks); } else { /* * If there's no block sharing, compute the maximum rmapbt * height assuming one rmap record per AG block. */ mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels( mp->m_rmap_mnr, mp->m_sb.sb_agblocks); } ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk()); } /* Calculate the refcount btree size for some records. */ xfs_extlen_t xfs_rmapbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(mp->m_rmap_mnr, len); } /* * Calculate the maximum refcount btree size. */ xfs_extlen_t xfs_rmapbt_max_size( struct xfs_mount *mp, xfs_agblock_t agblocks) { /* Bail out if we're uninitialized, which can happen in mkfs. */ if (mp->m_rmap_mxr[0] == 0) return 0; return xfs_rmapbt_calc_size(mp, agblocks); } /* * Figure out how many blocks to reserve and how many are used by this btree. */ int xfs_rmapbt_calc_reserves( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_perag *pag, xfs_extlen_t *ask, xfs_extlen_t *used) { struct xfs_buf *agbp; struct xfs_agf *agf; xfs_agblock_t agblocks; xfs_extlen_t tree_len; int error; if (!xfs_has_rmapbt(mp)) return 0; error = xfs_alloc_read_agf(pag, tp, 0, &agbp); if (error) return error; agf = agbp->b_addr; agblocks = be32_to_cpu(agf->agf_length); tree_len = be32_to_cpu(agf->agf_rmap_blocks); xfs_trans_brelse(tp, agbp); /* * The log is permanently allocated, so the space it occupies will * never be available for the kinds of things that would require btree * expansion. We therefore can pretend the space isn't there. */ if (xfs_ag_contains_log(mp, pag->pag_agno)) agblocks -= mp->m_sb.sb_logblocks; /* Reserve 1% of the AG or enough for 1 block per record. */ *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks)); *used += tree_len; return error; } int __init xfs_rmapbt_init_cur_cache(void) { xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur", xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()), 0, 0, NULL); if (!xfs_rmapbt_cur_cache) return -ENOMEM; return 0; } void xfs_rmapbt_destroy_cur_cache(void) { kmem_cache_destroy(xfs_rmapbt_cur_cache); xfs_rmapbt_cur_cache = NULL; } |