Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | /* * Copyright (c) 2014 Red Hat, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_trace.h" #include "xfs_cksum.h" #include "xfs_error.h" #include "xfs_extent_busy.h" #include "xfs_ag_resv.h" /* * Reverse map btree. * * This is a per-ag tree used to track the owner(s) of a given extent. With * reflink it is possible for there to be multiple owners, which is a departure * from classic XFS. Owner records for data extents are inserted when the * extent is mapped and removed when an extent is unmapped. Owner records for * all other block types (i.e. metadata) are inserted when an extent is * allocated and removed when an extent is freed. There can only be one owner * of a metadata extent, usually an inode or some other metadata structure like * an AG btree. * * The rmap btree is part of the free space management, so blocks for the tree * are sourced from the agfl. Hence we need transaction reservation support for * this tree so that the freelist is always large enough. This also impacts on * the minimum space we need to leave free in the AG. * * The tree is ordered by [ag block, owner, offset]. This is a large key size, * but it is the only way to enforce unique keys when a block can be owned by * multiple files at any offset. There's no need to order/search by extent * size for online updating/management of the tree. It is intended that most * reverse lookups will be to find the owner(s) of a particular block, or to * try to recover tree and file data from corrupt primary metadata. */ static struct xfs_btree_cur * xfs_rmapbt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agbp, cur->bc_private.a.agno); } STATIC void xfs_rmapbt_set_root( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, int inc) { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); int btnum = cur->bc_btnum; struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno); ASSERT(ptr->s != 0); agf->agf_roots[btnum] = ptr->s; be32_add_cpu(&agf->agf_levels[btnum], inc); pag->pagf_levels[btnum] += inc; xfs_perag_put(pag); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); } STATIC int xfs_rmapbt_alloc_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); int error; xfs_agblock_t bno; /* Allocate the new block from the freelist. If we can't, give up. */ error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, &bno, 1); if (error) return error; trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno, bno, 1); if (bno == NULLAGBLOCK) { *stat = 0; return 0; } xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false); xfs_trans_agbtree_delta(cur->bc_tp, 1); new->s = cpu_to_be32(bno); be32_add_cpu(&agf->agf_rmap_blocks, 1); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_private.a.agno); *stat = 1; return 0; } STATIC int xfs_rmapbt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); xfs_agblock_t bno; int error; bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp)); trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno, bno, 1); be32_add_cpu(&agf->agf_rmap_blocks, -1); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS); error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1); if (error) return error; xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1, XFS_EXTENT_BUSY_SKIP_DISCARD); xfs_trans_agbtree_delta(cur->bc_tp, -1); xfs_ag_resv_rmapbt_free(cur->bc_mp, cur->bc_private.a.agno); return 0; } STATIC int xfs_rmapbt_get_minrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_rmap_mnr[level != 0]; } STATIC int xfs_rmapbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_rmap_mxr[level != 0]; } STATIC void xfs_rmapbt_init_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { key->rmap.rm_startblock = rec->rmap.rm_startblock; key->rmap.rm_owner = rec->rmap.rm_owner; key->rmap.rm_offset = rec->rmap.rm_offset; } /* * The high key for a reverse mapping record can be computed by shifting * the startblock and offset to the highest value that would still map * to that record. In practice this means that we add blockcount-1 to * the startblock for all records, and if the record is for a data/attr * fork mapping, we add blockcount-1 to the offset too. */ STATIC void xfs_rmapbt_init_high_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { uint64_t off; int adj; adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1; key->rmap.rm_startblock = rec->rmap.rm_startblock; be32_add_cpu(&key->rmap.rm_startblock, adj); key->rmap.rm_owner = rec->rmap.rm_owner; key->rmap.rm_offset = rec->rmap.rm_offset; if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) || XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset))) return; off = be64_to_cpu(key->rmap.rm_offset); off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK); key->rmap.rm_offset = cpu_to_be64(off); } STATIC void xfs_rmapbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock); rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount); rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner); rec->rmap.rm_offset = cpu_to_be64( xfs_rmap_irec_offset_pack(&cur->bc_rec.r)); } STATIC void xfs_rmapbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno)); ASSERT(agf->agf_roots[cur->bc_btnum] != 0); ptr->s = agf->agf_roots[cur->bc_btnum]; } STATIC int64_t xfs_rmapbt_key_diff( struct xfs_btree_cur *cur, union xfs_btree_key *key) { struct xfs_rmap_irec *rec = &cur->bc_rec.r; struct xfs_rmap_key *kp = &key->rmap; __u64 x, y; int64_t d; d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock; if (d) return d; x = be64_to_cpu(kp->rm_owner); y = rec->rm_owner; if (x > y) return 1; else if (y > x) return -1; x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset)); y = rec->rm_offset; if (x > y) return 1; else if (y > x) return -1; return 0; } STATIC int64_t xfs_rmapbt_diff_two_keys( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { struct xfs_rmap_key *kp1 = &k1->rmap; struct xfs_rmap_key *kp2 = &k2->rmap; int64_t d; __u64 x, y; d = (int64_t)be32_to_cpu(kp1->rm_startblock) - be32_to_cpu(kp2->rm_startblock); if (d) return d; x = be64_to_cpu(kp1->rm_owner); y = be64_to_cpu(kp2->rm_owner); if (x > y) return 1; else if (y > x) return -1; x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset)); y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset)); if (x > y) return 1; else if (y > x) return -1; return 0; } static xfs_failaddr_t xfs_rmapbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_perag *pag = bp->b_pag; xfs_failaddr_t fa; unsigned int level; /* * magic number and level verification * * During growfs operations, we can't verify the exact level or owner as * the perag is not fully initialised and hence not attached to the * buffer. In this case, check against the maximum tree depth. * * Similarly, during log recovery we will have a perag structure * attached, but the agf information will not yet have been initialised * from the on disk AGF. Again, we can only check against maximum limits * in this case. */ if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC)) return __this_address; if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) return __this_address; fa = xfs_btree_sblock_v5hdr_verify(bp); if (fa) return fa; level = be16_to_cpu(block->bb_level); if (pag && pag->pagf_init) { if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi]) return __this_address; } else if (level >= mp->m_rmap_maxlevels) return __this_address; return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]); } static void xfs_rmapbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_sblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_rmapbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_rmapbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_rmapbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_sblock_calc_crc(bp); } const struct xfs_buf_ops xfs_rmapbt_buf_ops = { .name = "xfs_rmapbt", .verify_read = xfs_rmapbt_read_verify, .verify_write = xfs_rmapbt_write_verify, .verify_struct = xfs_rmapbt_verify, }; STATIC int xfs_rmapbt_keys_inorder( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { uint32_t x; uint32_t y; uint64_t a; uint64_t b; x = be32_to_cpu(k1->rmap.rm_startblock); y = be32_to_cpu(k2->rmap.rm_startblock); if (x < y) return 1; else if (x > y) return 0; a = be64_to_cpu(k1->rmap.rm_owner); b = be64_to_cpu(k2->rmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset)); b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset)); if (a <= b) return 1; return 0; } STATIC int xfs_rmapbt_recs_inorder( struct xfs_btree_cur *cur, union xfs_btree_rec *r1, union xfs_btree_rec *r2) { uint32_t x; uint32_t y; uint64_t a; uint64_t b; x = be32_to_cpu(r1->rmap.rm_startblock); y = be32_to_cpu(r2->rmap.rm_startblock); if (x < y) return 1; else if (x > y) return 0; a = be64_to_cpu(r1->rmap.rm_owner); b = be64_to_cpu(r2->rmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset)); b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset)); if (a <= b) return 1; return 0; } static const struct xfs_btree_ops xfs_rmapbt_ops = { .rec_len = sizeof(struct xfs_rmap_rec), .key_len = 2 * sizeof(struct xfs_rmap_key), .dup_cursor = xfs_rmapbt_dup_cursor, .set_root = xfs_rmapbt_set_root, .alloc_block = xfs_rmapbt_alloc_block, .free_block = xfs_rmapbt_free_block, .get_minrecs = xfs_rmapbt_get_minrecs, .get_maxrecs = xfs_rmapbt_get_maxrecs, .init_key_from_rec = xfs_rmapbt_init_key_from_rec, .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec, .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur, .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur, .key_diff = xfs_rmapbt_key_diff, .buf_ops = &xfs_rmapbt_buf_ops, .diff_two_keys = xfs_rmapbt_diff_two_keys, .keys_inorder = xfs_rmapbt_keys_inorder, .recs_inorder = xfs_rmapbt_recs_inorder, }; /* * Allocate a new allocation btree cursor. */ struct xfs_btree_cur * xfs_rmapbt_init_cursor( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agnumber_t agno) { struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); struct xfs_btree_cur *cur; cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); cur->bc_tp = tp; cur->bc_mp = mp; /* Overlapping btree; 2 keys per pointer. */ cur->bc_btnum = XFS_BTNUM_RMAP; cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING; cur->bc_blocklog = mp->m_sb.sb_blocklog; cur->bc_ops = &xfs_rmapbt_ops; cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]); cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2); cur->bc_private.a.agbp = agbp; cur->bc_private.a.agno = agno; return cur; } /* * Calculate number of records in an rmap btree block. */ int xfs_rmapbt_maxrecs( int blocklen, int leaf) { blocklen -= XFS_RMAP_BLOCK_LEN; if (leaf) return blocklen / sizeof(struct xfs_rmap_rec); return blocklen / (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t)); } /* Compute the maximum height of an rmap btree. */ void xfs_rmapbt_compute_maxlevels( struct xfs_mount *mp) { /* * On a non-reflink filesystem, the maximum number of rmap * records is the number of blocks in the AG, hence the max * rmapbt height is log_$maxrecs($agblocks). However, with * reflink each AG block can have up to 2^32 (per the refcount * record format) owners, which means that theoretically we * could face up to 2^64 rmap records. * * That effectively means that the max rmapbt height must be * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG * blocks to feed the rmapbt long before the rmapbt reaches * maximum height. The reflink code uses ag_resv_critical to * disallow reflinking when less than 10% of the per-AG metadata * block reservation since the fallback is a regular file copy. */ if (xfs_sb_version_hasreflink(&mp->m_sb)) mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS; else mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels( mp->m_rmap_mnr, mp->m_sb.sb_agblocks); } /* Calculate the refcount btree size for some records. */ xfs_extlen_t xfs_rmapbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(mp->m_rmap_mnr, len); } /* * Calculate the maximum refcount btree size. */ xfs_extlen_t xfs_rmapbt_max_size( struct xfs_mount *mp, xfs_agblock_t agblocks) { /* Bail out if we're uninitialized, which can happen in mkfs. */ if (mp->m_rmap_mxr[0] == 0) return 0; return xfs_rmapbt_calc_size(mp, agblocks); } /* * Figure out how many blocks to reserve and how many are used by this btree. */ int xfs_rmapbt_calc_reserves( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_extlen_t *ask, xfs_extlen_t *used) { struct xfs_buf *agbp; struct xfs_agf *agf; xfs_agblock_t agblocks; xfs_extlen_t tree_len; int error; if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) return 0; error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp); if (error) return error; agf = XFS_BUF_TO_AGF(agbp); agblocks = be32_to_cpu(agf->agf_length); tree_len = be32_to_cpu(agf->agf_rmap_blocks); xfs_buf_relse(agbp); /* Reserve 1% of the AG or enough for 1 block per record. */ *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks)); *used += tree_len; return error; } |