Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018-2020 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include <linux/memblock.h> /* for max_pfn */ #include <linux/export.h> #include <linux/mm.h> #include <linux/dma-map-ops.h> #include <linux/scatterlist.h> #include <linux/pfn.h> #include <linux/vmalloc.h> #include <linux/set_memory.h> #include <linux/slab.h> #include "direct.h" /* * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use * it for entirely different regions. In that case the arch code needs to * override the variable below for dma-direct to work properly. */ unsigned int zone_dma_bits __ro_after_init = 24; static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { if (force_dma_unencrypted(dev)) return phys_to_dma_unencrypted(dev, phys); return phys_to_dma(dev, phys); } static inline struct page *dma_direct_to_page(struct device *dev, dma_addr_t dma_addr) { return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); } u64 dma_direct_get_required_mask(struct device *dev) { phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; u64 max_dma = phys_to_dma_direct(dev, phys); return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; } static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, u64 *phys_limit) { u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); /* * Optimistically try the zone that the physical address mask falls * into first. If that returns memory that isn't actually addressable * we will fallback to the next lower zone and try again. * * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ *phys_limit = dma_to_phys(dev, dma_limit); if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) return GFP_DMA; if (*phys_limit <= DMA_BIT_MASK(32)) return GFP_DMA32; return 0; } static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); if (dma_addr == DMA_MAPPING_ERROR) return false; return dma_addr + size - 1 <= min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); } static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) { if (!force_dma_unencrypted(dev)) return 0; return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); } static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) { int ret; if (!force_dma_unencrypted(dev)) return 0; ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); if (ret) pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); return ret; } static void __dma_direct_free_pages(struct device *dev, struct page *page, size_t size) { if (swiotlb_free(dev, page, size)) return; dma_free_contiguous(dev, page, size); } static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) { struct page *page = swiotlb_alloc(dev, size); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { swiotlb_free(dev, page, size); return NULL; } return page; } static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, gfp_t gfp, bool allow_highmem) { int node = dev_to_node(dev); struct page *page = NULL; u64 phys_limit; WARN_ON_ONCE(!PAGE_ALIGNED(size)); if (is_swiotlb_for_alloc(dev)) return dma_direct_alloc_swiotlb(dev, size); gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, &phys_limit); page = dma_alloc_contiguous(dev, size, gfp); if (page) { if (!dma_coherent_ok(dev, page_to_phys(page), size) || (!allow_highmem && PageHighMem(page))) { dma_free_contiguous(dev, page, size); page = NULL; } } again: if (!page) page = alloc_pages_node(node, gfp, get_order(size)); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_free_contiguous(dev, page, size); page = NULL; if (IS_ENABLED(CONFIG_ZONE_DMA32) && phys_limit < DMA_BIT_MASK(64) && !(gfp & (GFP_DMA32 | GFP_DMA))) { gfp |= GFP_DMA32; goto again; } if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { gfp = (gfp & ~GFP_DMA32) | GFP_DMA; goto again; } } return page; } /* * Check if a potentially blocking operations needs to dip into the atomic * pools for the given device/gfp. */ static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) { return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); } static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { struct page *page; u64 phys_mask; void *ret; if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) return NULL; gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, &phys_mask); page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); if (!page) return NULL; *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); return ret; } static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { struct page *page; page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); if (!page) return NULL; /* remove any dirty cache lines on the kernel alias */ if (!PageHighMem(page)) arch_dma_prep_coherent(page, size); /* return the page pointer as the opaque cookie */ *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); return page; } void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { bool remap = false, set_uncached = false; struct page *page; void *ret; size = PAGE_ALIGN(size); if (attrs & DMA_ATTR_NO_WARN) gfp |= __GFP_NOWARN; if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); if (!dev_is_dma_coherent(dev)) { /* * Fallback to the arch handler if it exists. This should * eventually go away. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && !is_swiotlb_for_alloc(dev)) return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); /* * If there is a global pool, always allocate from it for * non-coherent devices. */ if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) return dma_alloc_from_global_coherent(dev, size, dma_handle); /* * Otherwise remap if the architecture is asking for it. But * given that remapping memory is a blocking operation we'll * instead have to dip into the atomic pools. */ remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); if (remap) { if (dma_direct_use_pool(dev, gfp)) return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); } else { if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) return NULL; set_uncached = true; } } /* * Decrypting memory may block, so allocate the memory from the atomic * pools if we can't block. */ if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); /* we always manually zero the memory once we are done */ page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); if (!page) return NULL; /* * dma_alloc_contiguous can return highmem pages depending on a * combination the cma= arguments and per-arch setup. These need to be * remapped to return a kernel virtual address. */ if (PageHighMem(page)) { remap = true; set_uncached = false; } if (remap) { pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); if (force_dma_unencrypted(dev)) prot = pgprot_decrypted(prot); /* remove any dirty cache lines on the kernel alias */ arch_dma_prep_coherent(page, size); /* create a coherent mapping */ ret = dma_common_contiguous_remap(page, size, prot, __builtin_return_address(0)); if (!ret) goto out_free_pages; } else { ret = page_address(page); if (dma_set_decrypted(dev, ret, size)) goto out_free_pages; } memset(ret, 0, size); if (set_uncached) { arch_dma_prep_coherent(page, size); ret = arch_dma_set_uncached(ret, size); if (IS_ERR(ret)) goto out_encrypt_pages; } *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); return ret; out_encrypt_pages: if (dma_set_encrypted(dev, page_address(page), size)) return NULL; out_free_pages: __dma_direct_free_pages(dev, page, size); return NULL; } void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { /* cpu_addr is a struct page cookie, not a kernel address */ dma_free_contiguous(dev, cpu_addr, size); return; } if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && !dev_is_dma_coherent(dev) && !is_swiotlb_for_alloc(dev)) { arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); return; } if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && !dev_is_dma_coherent(dev)) { if (!dma_release_from_global_coherent(page_order, cpu_addr)) WARN_ON_ONCE(1); return; } /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) return; if (is_vmalloc_addr(cpu_addr)) { vunmap(cpu_addr); } else { if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) arch_dma_clear_uncached(cpu_addr, size); if (dma_set_encrypted(dev, cpu_addr, size)) return; } __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); } struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) { struct page *page; void *ret; if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); page = __dma_direct_alloc_pages(dev, size, gfp, false); if (!page) return NULL; ret = page_address(page); if (dma_set_decrypted(dev, ret, size)) goto out_free_pages; memset(ret, 0, size); *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); return page; out_free_pages: __dma_direct_free_pages(dev, page, size); return NULL; } void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir) { void *vaddr = page_address(page); /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && dma_free_from_pool(dev, vaddr, size)) return; if (dma_set_encrypted(dev, vaddr, size)) return; __dma_direct_free_pages(dev, page, size); } #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); if (unlikely(is_swiotlb_buffer(dev, paddr))) swiotlb_sync_single_for_device(dev, paddr, sg->length, dir); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, sg->length, dir); } } #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu(paddr, sg->length, dir); if (unlikely(is_swiotlb_buffer(dev, paddr))) swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir); if (dir == DMA_FROM_DEVICE) arch_dma_mark_clean(paddr, sg->length); } if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu_all(); } /* * Unmaps segments, except for ones marked as pci_p2pdma which do not * require any further action as they contain a bus address. */ void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { if (sg_is_dma_bus_address(sg)) sg_dma_unmark_bus_address(sg); else dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, attrs); } } #endif int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct pci_p2pdma_map_state p2pdma_state = {}; enum pci_p2pdma_map_type map; struct scatterlist *sg; int i, ret; for_each_sg(sgl, sg, nents, i) { if (is_pci_p2pdma_page(sg_page(sg))) { map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); switch (map) { case PCI_P2PDMA_MAP_BUS_ADDR: continue; case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: /* * Any P2P mapping that traverses the PCI * host bridge must be mapped with CPU physical * address and not PCI bus addresses. This is * done with dma_direct_map_page() below. */ break; default: ret = -EREMOTEIO; goto out_unmap; } } sg->dma_address = dma_direct_map_page(dev, sg_page(sg), sg->offset, sg->length, dir, attrs); if (sg->dma_address == DMA_MAPPING_ERROR) { ret = -EIO; goto out_unmap; } sg_dma_len(sg) = sg->length; } return nents; out_unmap: dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); return ret; } dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t dma_addr = paddr; if (unlikely(!dma_capable(dev, dma_addr, size, false))) { dev_err_once(dev, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); WARN_ON_ONCE(1); return DMA_MAPPING_ERROR; } return dma_addr; } int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { struct page *page = dma_direct_to_page(dev, dma_addr); int ret; ret = sg_alloc_table(sgt, 1, GFP_KERNEL); if (!ret) sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); return ret; } bool dma_direct_can_mmap(struct device *dev) { return dev_is_dma_coherent(dev) || IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); } int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned long user_count = vma_pages(vma); unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); int ret = -ENXIO; vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); if (force_dma_unencrypted(dev)) vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) return ret; if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) return -ENXIO; return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, user_count << PAGE_SHIFT, vma->vm_page_prot); } int dma_direct_supported(struct device *dev, u64 mask) { u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; /* * Because 32-bit DMA masks are so common we expect every architecture * to be able to satisfy them - either by not supporting more physical * memory, or by providing a ZONE_DMA32. If neither is the case, the * architecture needs to use an IOMMU instead of the direct mapping. */ if (mask >= DMA_BIT_MASK(32)) return 1; /* * This check needs to be against the actual bit mask value, so use * phys_to_dma_unencrypted() here so that the SME encryption mask isn't * part of the check. */ if (IS_ENABLED(CONFIG_ZONE_DMA)) min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); return mask >= phys_to_dma_unencrypted(dev, min_mask); } size_t dma_direct_max_mapping_size(struct device *dev) { /* If SWIOTLB is active, use its maximum mapping size */ if (is_swiotlb_active(dev) && (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) return swiotlb_max_mapping_size(dev); return SIZE_MAX; } bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) { return !dev_is_dma_coherent(dev) || is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); } /** * dma_direct_set_offset - Assign scalar offset for a single DMA range. * @dev: device pointer; needed to "own" the alloced memory. * @cpu_start: beginning of memory region covered by this offset. * @dma_start: beginning of DMA/PCI region covered by this offset. * @size: size of the region. * * This is for the simple case of a uniform offset which cannot * be discovered by "dma-ranges". * * It returns -ENOMEM if out of memory, -EINVAL if a map * already exists, 0 otherwise. * * Note: any call to this from a driver is a bug. The mapping needs * to be described by the device tree or other firmware interfaces. */ int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, dma_addr_t dma_start, u64 size) { struct bus_dma_region *map; u64 offset = (u64)cpu_start - (u64)dma_start; if (dev->dma_range_map) { dev_err(dev, "attempt to add DMA range to existing map\n"); return -EINVAL; } if (!offset) return 0; map = kcalloc(2, sizeof(*map), GFP_KERNEL); if (!map) return -ENOMEM; map[0].cpu_start = cpu_start; map[0].dma_start = dma_start; map[0].offset = offset; map[0].size = size; dev->dma_range_map = map; return 0; } |