Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include <linux/memblock.h> /* for max_pfn */ #include <linux/export.h> #include <linux/mm.h> #include <linux/dma-direct.h> #include <linux/scatterlist.h> #include <linux/dma-contiguous.h> #include <linux/dma-noncoherent.h> #include <linux/pfn.h> #include <linux/set_memory.h> #include <linux/swiotlb.h> /* * Most architectures use ZONE_DMA for the first 16 Megabytes, but * some use it for entirely different regions: */ #ifndef ARCH_ZONE_DMA_BITS #define ARCH_ZONE_DMA_BITS 24 #endif static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size) { if (!dev->dma_mask) { dev_err_once(dev, "DMA map on device without dma_mask\n"); } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) { dev_err_once(dev, "overflow %pad+%zu of DMA mask %llx bus mask %llx\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask); } WARN_ON_ONCE(1); } static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { if (force_dma_unencrypted(dev)) return __phys_to_dma(dev, phys); return phys_to_dma(dev, phys); } u64 dma_direct_get_required_mask(struct device *dev) { u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT); return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; } static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, u64 *phys_mask) { if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask) dma_mask = dev->bus_dma_mask; if (force_dma_unencrypted(dev)) *phys_mask = __dma_to_phys(dev, dma_mask); else *phys_mask = dma_to_phys(dev, dma_mask); /* * Optimistically try the zone that the physical address mask falls * into first. If that returns memory that isn't actually addressable * we will fallback to the next lower zone and try again. * * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) return GFP_DMA; if (*phys_mask <= DMA_BIT_MASK(32)) return GFP_DMA32; return 0; } static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { return phys_to_dma_direct(dev, phys) + size - 1 <= min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask); } struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { size_t alloc_size = PAGE_ALIGN(size); int node = dev_to_node(dev); struct page *page = NULL; u64 phys_mask; if (attrs & DMA_ATTR_NO_WARN) gfp |= __GFP_NOWARN; /* we always manually zero the memory once we are done: */ gfp &= ~__GFP_ZERO; gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, &phys_mask); page = dma_alloc_contiguous(dev, alloc_size, gfp); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_free_contiguous(dev, page, alloc_size); page = NULL; } again: if (!page) page = alloc_pages_node(node, gfp, get_order(alloc_size)); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_free_contiguous(dev, page, size); page = NULL; if (IS_ENABLED(CONFIG_ZONE_DMA32) && phys_mask < DMA_BIT_MASK(64) && !(gfp & (GFP_DMA32 | GFP_DMA))) { gfp |= GFP_DMA32; goto again; } if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { gfp = (gfp & ~GFP_DMA32) | GFP_DMA; goto again; } } return page; } void *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { struct page *page; void *ret; page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); if (!page) return NULL; if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) { /* remove any dirty cache lines on the kernel alias */ if (!PageHighMem(page)) arch_dma_prep_coherent(page, size); *dma_handle = phys_to_dma(dev, page_to_phys(page)); /* return the page pointer as the opaque cookie */ return page; } if (PageHighMem(page)) { /* * Depending on the cma= arguments and per-arch setup * dma_alloc_contiguous could return highmem pages. * Without remapping there is no way to return them here, * so log an error and fail. */ dev_info(dev, "Rejecting highmem page from CMA.\n"); __dma_direct_free_pages(dev, size, page); return NULL; } ret = page_address(page); if (force_dma_unencrypted(dev)) { set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); *dma_handle = __phys_to_dma(dev, page_to_phys(page)); } else { *dma_handle = phys_to_dma(dev, page_to_phys(page)); } memset(ret, 0, size); if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && dma_alloc_need_uncached(dev, attrs)) { arch_dma_prep_coherent(page, size); ret = uncached_kernel_address(ret); } return ret; } void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page) { dma_free_contiguous(dev, page, size); } void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) { /* cpu_addr is a struct page cookie, not a kernel address */ __dma_direct_free_pages(dev, size, cpu_addr); return; } if (force_dma_unencrypted(dev)) set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && dma_alloc_need_uncached(dev, attrs)) cpu_addr = cached_kernel_address(cpu_addr); __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr)); } void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && dma_alloc_need_uncached(dev, attrs)) return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); } void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && dma_alloc_need_uncached(dev, attrs)) arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); else dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); } #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(dev, paddr, size, dir); } EXPORT_SYMBOL(dma_direct_sync_single_for_device); void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(dev, paddr, sg->length, dir); } } EXPORT_SYMBOL(dma_direct_sync_sg_for_device); #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (!dev_is_dma_coherent(dev)) { arch_sync_dma_for_cpu(dev, paddr, size, dir); arch_sync_dma_for_cpu_all(dev); } if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); } EXPORT_SYMBOL(dma_direct_sync_single_for_cpu); void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu(dev, paddr, sg->length, dir); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, SYNC_FOR_CPU); } if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu_all(dev); } EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu); void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = dma_to_phys(dev, addr); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); if (unlikely(is_swiotlb_buffer(phys))) swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); } EXPORT_SYMBOL(dma_direct_unmap_page); void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, attrs); } EXPORT_SYMBOL(dma_direct_unmap_sg); #endif static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr, size_t size) { return swiotlb_force != SWIOTLB_FORCE && dma_capable(dev, dma_addr, size); } dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (unlikely(!dma_direct_possible(dev, dma_addr, size)) && !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) { report_addr(dev, dma_addr, size); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(dev, phys, size, dir); return dma_addr; } EXPORT_SYMBOL(dma_direct_map_page); int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { int i; struct scatterlist *sg; for_each_sg(sgl, sg, nents, i) { sg->dma_address = dma_direct_map_page(dev, sg_page(sg), sg->offset, sg->length, dir, attrs); if (sg->dma_address == DMA_MAPPING_ERROR) goto out_unmap; sg_dma_len(sg) = sg->length; } return nents; out_unmap: dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); return 0; } EXPORT_SYMBOL(dma_direct_map_sg); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t dma_addr = paddr; if (unlikely(!dma_direct_possible(dev, dma_addr, size))) { report_addr(dev, dma_addr, size); return DMA_MAPPING_ERROR; } return dma_addr; } EXPORT_SYMBOL(dma_direct_map_resource); /* * Because 32-bit DMA masks are so common we expect every architecture to be * able to satisfy them - either by not supporting more physical memory, or by * providing a ZONE_DMA32. If neither is the case, the architecture needs to * use an IOMMU instead of the direct mapping. */ int dma_direct_supported(struct device *dev, u64 mask) { u64 min_mask; if (IS_ENABLED(CONFIG_ZONE_DMA)) min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS); else min_mask = DMA_BIT_MASK(32); min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT); /* * This check needs to be against the actual bit mask value, so * use __phys_to_dma() here so that the SME encryption mask isn't * part of the check. */ return mask >= __phys_to_dma(dev, min_mask); } size_t dma_direct_max_mapping_size(struct device *dev) { /* If SWIOTLB is active, use its maximum mapping size */ if (is_swiotlb_active() && (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) return swiotlb_max_mapping_size(dev); return SIZE_MAX; } |