Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/init.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/cpu.h> #include <linux/debugfs.h> #include <linux/sched/smt.h> #include <linux/task_work.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> #include <asm/nospec-branch.h> #include <asm/cache.h> #include <asm/cacheflush.h> #include <asm/apic.h> #include <asm/perf_event.h> #include "mm_internal.h" #ifdef CONFIG_PARAVIRT # define STATIC_NOPV #else # define STATIC_NOPV static # define __flush_tlb_local native_flush_tlb_local # define __flush_tlb_global native_flush_tlb_global # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) #endif /* * TLB flushing, formerly SMP-only * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about * writing to user space from interrupts. (Its not allowed anyway). * * Optimizations Manfred Spraul <manfred@colorfullife.com> * * More scalable flush, from Andi Kleen * * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi */ /* * Bits to mangle the TIF_SPEC_* state into the mm pointer which is * stored in cpu_tlb_state.last_user_mm_spec. */ #define LAST_USER_MM_IBPB 0x1UL #define LAST_USER_MM_L1D_FLUSH 0x2UL #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) /* Bits to set when tlbstate and flush is (re)initialized */ #define LAST_USER_MM_INIT LAST_USER_MM_IBPB /* * The x86 feature is called PCID (Process Context IDentifier). It is similar * to what is traditionally called ASID on the RISC processors. * * We don't use the traditional ASID implementation, where each process/mm gets * its own ASID and flush/restart when we run out of ASID space. * * Instead we have a small per-cpu array of ASIDs and cache the last few mm's * that came by on this CPU, allowing cheaper switch_mm between processes on * this CPU. * * We end up with different spaces for different things. To avoid confusion we * use different names for each of them: * * ASID - [0, TLB_NR_DYN_ASIDS-1] * the canonical identifier for an mm * * kPCID - [1, TLB_NR_DYN_ASIDS] * the value we write into the PCID part of CR3; corresponds to the * ASID+1, because PCID 0 is special. * * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] * for KPTI each mm has two address spaces and thus needs two * PCID values, but we can still do with a single ASID denomination * for each mm. Corresponds to kPCID + 2048. * */ /* There are 12 bits of space for ASIDS in CR3 */ #define CR3_HW_ASID_BITS 12 /* * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for * user/kernel switches */ #ifdef CONFIG_PAGE_TABLE_ISOLATION # define PTI_CONSUMED_PCID_BITS 1 #else # define PTI_CONSUMED_PCID_BITS 0 #endif #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) /* * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account * for them being zero-based. Another -1 is because PCID 0 is reserved for * use by non-PCID-aware users. */ #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) /* * Given @asid, compute kPCID */ static inline u16 kern_pcid(u16 asid) { VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * Make sure that the dynamic ASID space does not conflict with the * bit we are using to switch between user and kernel ASIDs. */ BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); /* * The ASID being passed in here should have respected the * MAX_ASID_AVAILABLE and thus never have the switch bit set. */ VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); #endif /* * The dynamically-assigned ASIDs that get passed in are small * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, * so do not bother to clear it. * * If PCID is on, ASID-aware code paths put the ASID+1 into the * PCID bits. This serves two purposes. It prevents a nasty * situation in which PCID-unaware code saves CR3, loads some other * value (with PCID == 0), and then restores CR3, thus corrupting * the TLB for ASID 0 if the saved ASID was nonzero. It also means * that any bugs involving loading a PCID-enabled CR3 with * CR4.PCIDE off will trigger deterministically. */ return asid + 1; } /* * Given @asid, compute uPCID */ static inline u16 user_pcid(u16 asid) { u16 ret = kern_pcid(asid); #ifdef CONFIG_PAGE_TABLE_ISOLATION ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; #endif return ret; } static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) { if (static_cpu_has(X86_FEATURE_PCID)) { return __sme_pa(pgd) | kern_pcid(asid); } else { VM_WARN_ON_ONCE(asid != 0); return __sme_pa(pgd); } } static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) { VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); /* * Use boot_cpu_has() instead of this_cpu_has() as this function * might be called during early boot. This should work even after * boot because all CPU's the have same capabilities: */ VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; } /* * We get here when we do something requiring a TLB invalidation * but could not go invalidate all of the contexts. We do the * necessary invalidation by clearing out the 'ctx_id' which * forces a TLB flush when the context is loaded. */ static void clear_asid_other(void) { u16 asid; /* * This is only expected to be set if we have disabled * kernel _PAGE_GLOBAL pages. */ if (!static_cpu_has(X86_FEATURE_PTI)) { WARN_ON_ONCE(1); return; } for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { /* Do not need to flush the current asid */ if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) continue; /* * Make sure the next time we go to switch to * this asid, we do a flush: */ this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); } this_cpu_write(cpu_tlbstate.invalidate_other, false); } atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, u16 *new_asid, bool *need_flush) { u16 asid; if (!static_cpu_has(X86_FEATURE_PCID)) { *new_asid = 0; *need_flush = true; return; } if (this_cpu_read(cpu_tlbstate.invalidate_other)) clear_asid_other(); for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != next->context.ctx_id) continue; *new_asid = asid; *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen); return; } /* * We don't currently own an ASID slot on this CPU. * Allocate a slot. */ *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; if (*new_asid >= TLB_NR_DYN_ASIDS) { *new_asid = 0; this_cpu_write(cpu_tlbstate.next_asid, 1); } *need_flush = true; } /* * Given an ASID, flush the corresponding user ASID. We can delay this * until the next time we switch to it. * * See SWITCH_TO_USER_CR3. */ static inline void invalidate_user_asid(u16 asid) { /* There is no user ASID if address space separation is off */ if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) return; /* * We only have a single ASID if PCID is off and the CR3 * write will have flushed it. */ if (!cpu_feature_enabled(X86_FEATURE_PCID)) return; if (!static_cpu_has(X86_FEATURE_PTI)) return; __set_bit(kern_pcid(asid), (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); } static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) { unsigned long new_mm_cr3; if (need_flush) { invalidate_user_asid(new_asid); new_mm_cr3 = build_cr3(pgdir, new_asid); } else { new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); } /* * Caution: many callers of this function expect * that load_cr3() is serializing and orders TLB * fills with respect to the mm_cpumask writes. */ write_cr3(new_mm_cr3); } void leave_mm(int cpu) { struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); /* * It's plausible that we're in lazy TLB mode while our mm is init_mm. * If so, our callers still expect us to flush the TLB, but there * aren't any user TLB entries in init_mm to worry about. * * This needs to happen before any other sanity checks due to * intel_idle's shenanigans. */ if (loaded_mm == &init_mm) return; /* Warn if we're not lazy. */ WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); switch_mm(NULL, &init_mm, NULL); } EXPORT_SYMBOL_GPL(leave_mm); void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { unsigned long flags; local_irq_save(flags); switch_mm_irqs_off(prev, next, tsk); local_irq_restore(flags); } /* * Invoked from return to user/guest by a task that opted-in to L1D * flushing but ended up running on an SMT enabled core due to wrong * affinity settings or CPU hotplug. This is part of the paranoid L1D flush * contract which this task requested. */ static void l1d_flush_force_sigbus(struct callback_head *ch) { force_sig(SIGBUS); } static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, struct task_struct *next) { /* Flush L1D if the outgoing task requests it */ if (prev_mm & LAST_USER_MM_L1D_FLUSH) wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); /* Check whether the incoming task opted in for L1D flush */ if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) return; /* * Validate that it is not running on an SMT sibling as this would * make the excercise pointless because the siblings share L1D. If * it runs on a SMT sibling, notify it with SIGBUS on return to * user/guest */ if (this_cpu_read(cpu_info.smt_active)) { clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); next->l1d_flush_kill.func = l1d_flush_force_sigbus; task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); } } static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) { unsigned long next_tif = read_task_thread_flags(next); unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; /* * Ensure that the bit shift above works as expected and the two flags * end up in bit 0 and 1. */ BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); return (unsigned long)next->mm | spec_bits; } static void cond_mitigation(struct task_struct *next) { unsigned long prev_mm, next_mm; if (!next || !next->mm) return; next_mm = mm_mangle_tif_spec_bits(next); prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); /* * Avoid user/user BTB poisoning by flushing the branch predictor * when switching between processes. This stops one process from * doing Spectre-v2 attacks on another. * * Both, the conditional and the always IBPB mode use the mm * pointer to avoid the IBPB when switching between tasks of the * same process. Using the mm pointer instead of mm->context.ctx_id * opens a hypothetical hole vs. mm_struct reuse, which is more or * less impossible to control by an attacker. Aside of that it * would only affect the first schedule so the theoretically * exposed data is not really interesting. */ if (static_branch_likely(&switch_mm_cond_ibpb)) { /* * This is a bit more complex than the always mode because * it has to handle two cases: * * 1) Switch from a user space task (potential attacker) * which has TIF_SPEC_IB set to a user space task * (potential victim) which has TIF_SPEC_IB not set. * * 2) Switch from a user space task (potential attacker) * which has TIF_SPEC_IB not set to a user space task * (potential victim) which has TIF_SPEC_IB set. * * This could be done by unconditionally issuing IBPB when * a task which has TIF_SPEC_IB set is either scheduled in * or out. Though that results in two flushes when: * * - the same user space task is scheduled out and later * scheduled in again and only a kernel thread ran in * between. * * - a user space task belonging to the same process is * scheduled in after a kernel thread ran in between * * - a user space task belonging to the same process is * scheduled in immediately. * * Optimize this with reasonably small overhead for the * above cases. Mangle the TIF_SPEC_IB bit into the mm * pointer of the incoming task which is stored in * cpu_tlbstate.last_user_mm_spec for comparison. * * Issue IBPB only if the mm's are different and one or * both have the IBPB bit set. */ if (next_mm != prev_mm && (next_mm | prev_mm) & LAST_USER_MM_IBPB) indirect_branch_prediction_barrier(); } if (static_branch_unlikely(&switch_mm_always_ibpb)) { /* * Only flush when switching to a user space task with a * different context than the user space task which ran * last on this CPU. */ if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm) indirect_branch_prediction_barrier(); } if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { /* * Flush L1D when the outgoing task requested it and/or * check whether the incoming task requested L1D flushing * and ended up on an SMT sibling. */ if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) l1d_flush_evaluate(prev_mm, next_mm, next); } this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); } #ifdef CONFIG_PERF_EVENTS static inline void cr4_update_pce_mm(struct mm_struct *mm) { if (static_branch_unlikely(&rdpmc_always_available_key) || (!static_branch_unlikely(&rdpmc_never_available_key) && atomic_read(&mm->context.perf_rdpmc_allowed))) { /* * Clear the existing dirty counters to * prevent the leak for an RDPMC task. */ perf_clear_dirty_counters(); cr4_set_bits_irqsoff(X86_CR4_PCE); } else cr4_clear_bits_irqsoff(X86_CR4_PCE); } void cr4_update_pce(void *ignored) { cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); } #else static inline void cr4_update_pce_mm(struct mm_struct *mm) { } #endif void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); unsigned cpu = smp_processor_id(); u64 next_tlb_gen; bool need_flush; u16 new_asid; /* * NB: The scheduler will call us with prev == next when switching * from lazy TLB mode to normal mode if active_mm isn't changing. * When this happens, we don't assume that CR3 (and hence * cpu_tlbstate.loaded_mm) matches next. * * NB: leave_mm() calls us with prev == NULL and tsk == NULL. */ /* We don't want flush_tlb_func() to run concurrently with us. */ if (IS_ENABLED(CONFIG_PROVE_LOCKING)) WARN_ON_ONCE(!irqs_disabled()); /* * Verify that CR3 is what we think it is. This will catch * hypothetical buggy code that directly switches to swapper_pg_dir * without going through leave_mm() / switch_mm_irqs_off() or that * does something like write_cr3(read_cr3_pa()). * * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() * isn't free. */ #ifdef CONFIG_DEBUG_VM if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { /* * If we were to BUG here, we'd be very likely to kill * the system so hard that we don't see the call trace. * Try to recover instead by ignoring the error and doing * a global flush to minimize the chance of corruption. * * (This is far from being a fully correct recovery. * Architecturally, the CPU could prefetch something * back into an incorrect ASID slot and leave it there * to cause trouble down the road. It's better than * nothing, though.) */ __flush_tlb_all(); } #endif if (was_lazy) this_cpu_write(cpu_tlbstate_shared.is_lazy, false); /* * The membarrier system call requires a full memory barrier and * core serialization before returning to user-space, after * storing to rq->curr, when changing mm. This is because * membarrier() sends IPIs to all CPUs that are in the target mm * to make them issue memory barriers. However, if another CPU * switches to/from the target mm concurrently with * membarrier(), it can cause that CPU not to receive an IPI * when it really should issue a memory barrier. Writing to CR3 * provides that full memory barrier and core serializing * instruction. */ if (real_prev == next) { VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != next->context.ctx_id); /* * Even in lazy TLB mode, the CPU should stay set in the * mm_cpumask. The TLB shootdown code can figure out from * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. */ if (WARN_ON_ONCE(real_prev != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))) cpumask_set_cpu(cpu, mm_cpumask(next)); /* * If the CPU is not in lazy TLB mode, we are just switching * from one thread in a process to another thread in the same * process. No TLB flush required. */ if (!was_lazy) return; /* * Read the tlb_gen to check whether a flush is needed. * If the TLB is up to date, just use it. * The barrier synchronizes with the tlb_gen increment in * the TLB shootdown code. */ smp_mb(); next_tlb_gen = atomic64_read(&next->context.tlb_gen); if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == next_tlb_gen) return; /* * TLB contents went out of date while we were in lazy * mode. Fall through to the TLB switching code below. */ new_asid = prev_asid; need_flush = true; } else { /* * Apply process to process speculation vulnerability * mitigations if applicable. */ cond_mitigation(tsk); /* * Stop remote flushes for the previous mm. * Skip kernel threads; we never send init_mm TLB flushing IPIs, * but the bitmap manipulation can cause cache line contention. */ if (real_prev != &init_mm) { VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev))); cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); } /* * Start remote flushes and then read tlb_gen. */ if (next != &init_mm) cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); /* Let nmi_uaccess_okay() know that we're changing CR3. */ this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); barrier(); } if (need_flush) { this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); load_new_mm_cr3(next->pgd, new_asid, true); trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); } else { /* The new ASID is already up to date. */ load_new_mm_cr3(next->pgd, new_asid, false); trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); } /* Make sure we write CR3 before loaded_mm. */ barrier(); this_cpu_write(cpu_tlbstate.loaded_mm, next); this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); if (next != real_prev) { cr4_update_pce_mm(next); switch_ldt(real_prev, next); } } /* * Please ignore the name of this function. It should be called * switch_to_kernel_thread(). * * enter_lazy_tlb() is a hint from the scheduler that we are entering a * kernel thread or other context without an mm. Acceptable implementations * include doing nothing whatsoever, switching to init_mm, or various clever * lazy tricks to try to minimize TLB flushes. * * The scheduler reserves the right to call enter_lazy_tlb() several times * in a row. It will notify us that we're going back to a real mm by * calling switch_mm_irqs_off(). */ void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) { if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) return; this_cpu_write(cpu_tlbstate_shared.is_lazy, true); } /* * Call this when reinitializing a CPU. It fixes the following potential * problems: * * - The ASID changed from what cpu_tlbstate thinks it is (most likely * because the CPU was taken down and came back up with CR3's PCID * bits clear. CPU hotplug can do this. * * - The TLB contains junk in slots corresponding to inactive ASIDs. * * - The CPU went so far out to lunch that it may have missed a TLB * flush. */ void initialize_tlbstate_and_flush(void) { int i; struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); unsigned long cr3 = __read_cr3(); /* Assert that CR3 already references the right mm. */ WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); /* * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization * doesn't work like other CR4 bits because it can only be set from * long mode.) */ WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && !(cr4_read_shadow() & X86_CR4_PCIDE)); /* Force ASID 0 and force a TLB flush. */ write_cr3(build_cr3(mm->pgd, 0)); /* Reinitialize tlbstate. */ this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); this_cpu_write(cpu_tlbstate.next_asid, 1); this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); for (i = 1; i < TLB_NR_DYN_ASIDS; i++) this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); } /* * flush_tlb_func()'s memory ordering requirement is that any * TLB fills that happen after we flush the TLB are ordered after we * read active_mm's tlb_gen. We don't need any explicit barriers * because all x86 flush operations are serializing and the * atomic64_read operation won't be reordered by the compiler. */ static void flush_tlb_func(void *info) { /* * We have three different tlb_gen values in here. They are: * * - mm_tlb_gen: the latest generation. * - local_tlb_gen: the generation that this CPU has already caught * up to. * - f->new_tlb_gen: the generation that the requester of the flush * wants us to catch up to. */ const struct flush_tlb_info *f = info; struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); bool local = smp_processor_id() == f->initiating_cpu; unsigned long nr_invalidate = 0; u64 mm_tlb_gen; /* This code cannot presently handle being reentered. */ VM_WARN_ON(!irqs_disabled()); if (!local) { inc_irq_stat(irq_tlb_count); count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); /* Can only happen on remote CPUs */ if (f->mm && f->mm != loaded_mm) return; } if (unlikely(loaded_mm == &init_mm)) return; VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != loaded_mm->context.ctx_id); if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { /* * We're in lazy mode. We need to at least flush our * paging-structure cache to avoid speculatively reading * garbage into our TLB. Since switching to init_mm is barely * slower than a minimal flush, just switch to init_mm. * * This should be rare, with native_flush_tlb_multi() skipping * IPIs to lazy TLB mode CPUs. */ switch_mm_irqs_off(NULL, &init_mm, NULL); return; } if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && f->new_tlb_gen <= local_tlb_gen)) { /* * The TLB is already up to date in respect to f->new_tlb_gen. * While the core might be still behind mm_tlb_gen, checking * mm_tlb_gen unnecessarily would have negative caching effects * so avoid it. */ return; } /* * Defer mm_tlb_gen reading as long as possible to avoid cache * contention. */ mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); if (unlikely(local_tlb_gen == mm_tlb_gen)) { /* * There's nothing to do: we're already up to date. This can * happen if two concurrent flushes happen -- the first flush to * be handled can catch us all the way up, leaving no work for * the second flush. */ goto done; } WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); /* * If we get to this point, we know that our TLB is out of date. * This does not strictly imply that we need to flush (it's * possible that f->new_tlb_gen <= local_tlb_gen), but we're * going to need to flush in the very near future, so we might * as well get it over with. * * The only question is whether to do a full or partial flush. * * We do a partial flush if requested and two extra conditions * are met: * * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that * we've always done all needed flushes to catch up to * local_tlb_gen. If, for example, local_tlb_gen == 2 and * f->new_tlb_gen == 3, then we know that the flush needed to bring * us up to date for tlb_gen 3 is the partial flush we're * processing. * * As an example of why this check is needed, suppose that there * are two concurrent flushes. The first is a full flush that * changes context.tlb_gen from 1 to 2. The second is a partial * flush that changes context.tlb_gen from 2 to 3. If they get * processed on this CPU in reverse order, we'll see * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. * If we were to use __flush_tlb_one_user() and set local_tlb_gen to * 3, we'd be break the invariant: we'd update local_tlb_gen above * 1 without the full flush that's needed for tlb_gen 2. * * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. * Partial TLB flushes are not all that much cheaper than full TLB * flushes, so it seems unlikely that it would be a performance win * to do a partial flush if that won't bring our TLB fully up to * date. By doing a full flush instead, we can increase * local_tlb_gen all the way to mm_tlb_gen and we can probably * avoid another flush in the very near future. */ if (f->end != TLB_FLUSH_ALL && f->new_tlb_gen == local_tlb_gen + 1 && f->new_tlb_gen == mm_tlb_gen) { /* Partial flush */ unsigned long addr = f->start; /* Partial flush cannot have invalid generations */ VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); /* Partial flush must have valid mm */ VM_WARN_ON(f->mm == NULL); nr_invalidate = (f->end - f->start) >> f->stride_shift; while (addr < f->end) { flush_tlb_one_user(addr); addr += 1UL << f->stride_shift; } if (local) count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); } else { /* Full flush. */ nr_invalidate = TLB_FLUSH_ALL; flush_tlb_local(); if (local) count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); } /* Both paths above update our state to mm_tlb_gen. */ this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); /* Tracing is done in a unified manner to reduce the code size */ done: trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : TLB_LOCAL_MM_SHOOTDOWN, nr_invalidate); } static bool tlb_is_not_lazy(int cpu, void *data) { return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu); } DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, const struct flush_tlb_info *info) { /* * Do accounting and tracing. Note that there are (and have always been) * cases in which a remote TLB flush will be traced, but eventually * would not happen. */ count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); if (info->end == TLB_FLUSH_ALL) trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); else trace_tlb_flush(TLB_REMOTE_SEND_IPI, (info->end - info->start) >> PAGE_SHIFT); /* * If no page tables were freed, we can skip sending IPIs to * CPUs in lazy TLB mode. They will flush the CPU themselves * at the next context switch. * * However, if page tables are getting freed, we need to send the * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping * up on the new contents of what used to be page tables, while * doing a speculative memory access. */ if (info->freed_tables) on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); else on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func, (void *)info, 1, cpumask); } void flush_tlb_multi(const struct cpumask *cpumask, const struct flush_tlb_info *info) { __flush_tlb_multi(cpumask, info); } /* * See Documentation/x86/tlb.rst for details. We choose 33 * because it is large enough to cover the vast majority (at * least 95%) of allocations, and is small enough that we are * confident it will not cause too much overhead. Each single * flush is about 100 ns, so this caps the maximum overhead at * _about_ 3,000 ns. * * This is in units of pages. */ unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); #ifdef CONFIG_DEBUG_VM static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); #endif static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned int stride_shift, bool freed_tables, u64 new_tlb_gen) { struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); #ifdef CONFIG_DEBUG_VM /* * Ensure that the following code is non-reentrant and flush_tlb_info * is not overwritten. This means no TLB flushing is initiated by * interrupt handlers and machine-check exception handlers. */ BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); #endif info->start = start; info->end = end; info->mm = mm; info->stride_shift = stride_shift; info->freed_tables = freed_tables; info->new_tlb_gen = new_tlb_gen; info->initiating_cpu = smp_processor_id(); return info; } static void put_flush_tlb_info(void) { #ifdef CONFIG_DEBUG_VM /* Complete reentrancy prevention checks */ barrier(); this_cpu_dec(flush_tlb_info_idx); #endif } void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned int stride_shift, bool freed_tables) { struct flush_tlb_info *info; u64 new_tlb_gen; int cpu; cpu = get_cpu(); /* Should we flush just the requested range? */ if ((end == TLB_FLUSH_ALL) || ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { start = 0; end = TLB_FLUSH_ALL; } /* This is also a barrier that synchronizes with switch_mm(). */ new_tlb_gen = inc_mm_tlb_gen(mm); info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, new_tlb_gen); /* * flush_tlb_multi() is not optimized for the common case in which only * a local TLB flush is needed. Optimize this use-case by calling * flush_tlb_func_local() directly in this case. */ if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { flush_tlb_multi(mm_cpumask(mm), info); } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { lockdep_assert_irqs_enabled(); local_irq_disable(); flush_tlb_func(info); local_irq_enable(); } put_flush_tlb_info(); put_cpu(); } static void do_flush_tlb_all(void *info) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); __flush_tlb_all(); } void flush_tlb_all(void) { count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); on_each_cpu(do_flush_tlb_all, NULL, 1); } static void do_kernel_range_flush(void *info) { struct flush_tlb_info *f = info; unsigned long addr; /* flush range by one by one 'invlpg' */ for (addr = f->start; addr < f->end; addr += PAGE_SIZE) flush_tlb_one_kernel(addr); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { /* Balance as user space task's flush, a bit conservative */ if (end == TLB_FLUSH_ALL || (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { on_each_cpu(do_flush_tlb_all, NULL, 1); } else { struct flush_tlb_info *info; preempt_disable(); info = get_flush_tlb_info(NULL, start, end, 0, false, TLB_GENERATION_INVALID); on_each_cpu(do_kernel_range_flush, info, 1); put_flush_tlb_info(); preempt_enable(); } } /* * This can be used from process context to figure out what the value of * CR3 is without needing to do a (slow) __read_cr3(). * * It's intended to be used for code like KVM that sneakily changes CR3 * and needs to restore it. It needs to be used very carefully. */ unsigned long __get_current_cr3_fast(void) { unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, this_cpu_read(cpu_tlbstate.loaded_mm_asid)); /* For now, be very restrictive about when this can be called. */ VM_WARN_ON(in_nmi() || preemptible()); VM_BUG_ON(cr3 != __read_cr3()); return cr3; } EXPORT_SYMBOL_GPL(__get_current_cr3_fast); /* * Flush one page in the kernel mapping */ void flush_tlb_one_kernel(unsigned long addr) { count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); /* * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its * paravirt equivalent. Even with PCID, this is sufficient: we only * use PCID if we also use global PTEs for the kernel mapping, and * INVLPG flushes global translations across all address spaces. * * If PTI is on, then the kernel is mapped with non-global PTEs, and * __flush_tlb_one_user() will flush the given address for the current * kernel address space and for its usermode counterpart, but it does * not flush it for other address spaces. */ flush_tlb_one_user(addr); if (!static_cpu_has(X86_FEATURE_PTI)) return; /* * See above. We need to propagate the flush to all other address * spaces. In principle, we only need to propagate it to kernelmode * address spaces, but the extra bookkeeping we would need is not * worth it. */ this_cpu_write(cpu_tlbstate.invalidate_other, true); } /* * Flush one page in the user mapping */ STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) { u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); if (!static_cpu_has(X86_FEATURE_PTI)) return; /* * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. * Just use invalidate_user_asid() in case we are called early. */ if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) invalidate_user_asid(loaded_mm_asid); else invpcid_flush_one(user_pcid(loaded_mm_asid), addr); } void flush_tlb_one_user(unsigned long addr) { __flush_tlb_one_user(addr); } /* * Flush everything */ STATIC_NOPV void native_flush_tlb_global(void) { unsigned long flags; if (static_cpu_has(X86_FEATURE_INVPCID)) { /* * Using INVPCID is considerably faster than a pair of writes * to CR4 sandwiched inside an IRQ flag save/restore. * * Note, this works with CR4.PCIDE=0 or 1. */ invpcid_flush_all(); return; } /* * Read-modify-write to CR4 - protect it from preemption and * from interrupts. (Use the raw variant because this code can * be called from deep inside debugging code.) */ raw_local_irq_save(flags); __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); raw_local_irq_restore(flags); } /* * Flush the entire current user mapping */ STATIC_NOPV void native_flush_tlb_local(void) { /* * Preemption or interrupts must be disabled to protect the access * to the per CPU variable and to prevent being preempted between * read_cr3() and write_cr3(). */ WARN_ON_ONCE(preemptible()); invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); /* If current->mm == NULL then the read_cr3() "borrows" an mm */ native_write_cr3(__native_read_cr3()); } void flush_tlb_local(void) { __flush_tlb_local(); } /* * Flush everything */ void __flush_tlb_all(void) { /* * This is to catch users with enabled preemption and the PGE feature * and don't trigger the warning in __native_flush_tlb(). */ VM_WARN_ON_ONCE(preemptible()); if (cpu_feature_enabled(X86_FEATURE_PGE)) { __flush_tlb_global(); } else { /* * !PGE -> !PCID (setup_pcid()), thus every flush is total. */ flush_tlb_local(); } } EXPORT_SYMBOL_GPL(__flush_tlb_all); void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) { struct flush_tlb_info *info; int cpu = get_cpu(); info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, TLB_GENERATION_INVALID); /* * flush_tlb_multi() is not optimized for the common case in which only * a local TLB flush is needed. Optimize this use-case by calling * flush_tlb_func_local() directly in this case. */ if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { flush_tlb_multi(&batch->cpumask, info); } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { lockdep_assert_irqs_enabled(); local_irq_disable(); flush_tlb_func(info); local_irq_enable(); } cpumask_clear(&batch->cpumask); put_flush_tlb_info(); put_cpu(); } /* * Blindly accessing user memory from NMI context can be dangerous * if we're in the middle of switching the current user task or * switching the loaded mm. It can also be dangerous if we * interrupted some kernel code that was temporarily using a * different mm. */ bool nmi_uaccess_okay(void) { struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); struct mm_struct *current_mm = current->mm; VM_WARN_ON_ONCE(!loaded_mm); /* * The condition we want to check is * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, * if we're running in a VM with shadow paging, and nmi_uaccess_okay() * is supposed to be reasonably fast. * * Instead, we check the almost equivalent but somewhat conservative * condition below, and we rely on the fact that switch_mm_irqs_off() * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. */ if (loaded_mm != current_mm) return false; VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); return true; } static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; unsigned int len; len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t tlbflush_write_file(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; ssize_t len; int ceiling; len = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, len)) return -EFAULT; buf[len] = '\0'; if (kstrtoint(buf, 0, &ceiling)) return -EINVAL; if (ceiling < 0) return -EINVAL; tlb_single_page_flush_ceiling = ceiling; return count; } static const struct file_operations fops_tlbflush = { .read = tlbflush_read_file, .write = tlbflush_write_file, .llseek = default_llseek, }; static int __init create_tlb_single_page_flush_ceiling(void) { debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, arch_debugfs_dir, NULL, &fops_tlbflush); return 0; } late_initcall(create_tlb_single_page_flush_ceiling); |