Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/cpu.h>
#include <linux/debugfs.h>
#include <linux/sched/smt.h>
#include <linux/task_work.h>

#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/nospec-branch.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/apic.h>
#include <asm/perf_event.h>

#include "mm_internal.h"

#ifdef CONFIG_PARAVIRT
# define STATIC_NOPV
#else
# define STATIC_NOPV			static
# define __flush_tlb_local		native_flush_tlb_local
# define __flush_tlb_global		native_flush_tlb_global
# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
#endif

/*
 *	TLB flushing, formerly SMP-only
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 *
 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 *
 *	More scalable flush, from Andi Kleen
 *
 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 */

/*
 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
 * stored in cpu_tlb_state.last_user_mm_spec.
 */
#define LAST_USER_MM_IBPB	0x1UL
#define LAST_USER_MM_L1D_FLUSH	0x2UL
#define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)

/* Bits to set when tlbstate and flush is (re)initialized */
#define LAST_USER_MM_INIT	LAST_USER_MM_IBPB

/*
 * The x86 feature is called PCID (Process Context IDentifier). It is similar
 * to what is traditionally called ASID on the RISC processors.
 *
 * We don't use the traditional ASID implementation, where each process/mm gets
 * its own ASID and flush/restart when we run out of ASID space.
 *
 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
 * that came by on this CPU, allowing cheaper switch_mm between processes on
 * this CPU.
 *
 * We end up with different spaces for different things. To avoid confusion we
 * use different names for each of them:
 *
 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
 *         the canonical identifier for an mm
 *
 * kPCID - [1, TLB_NR_DYN_ASIDS]
 *         the value we write into the PCID part of CR3; corresponds to the
 *         ASID+1, because PCID 0 is special.
 *
 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
 *         for KPTI each mm has two address spaces and thus needs two
 *         PCID values, but we can still do with a single ASID denomination
 *         for each mm. Corresponds to kPCID + 2048.
 *
 */

/* There are 12 bits of space for ASIDS in CR3 */
#define CR3_HW_ASID_BITS		12

/*
 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
 * user/kernel switches
 */
#ifdef CONFIG_PAGE_TABLE_ISOLATION
# define PTI_CONSUMED_PCID_BITS	1
#else
# define PTI_CONSUMED_PCID_BITS	0
#endif

#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)

/*
 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
 * use by non-PCID-aware users.
 */
#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)

/*
 * Given @asid, compute kPCID
 */
static inline u16 kern_pcid(u16 asid)
{
	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);

#ifdef CONFIG_PAGE_TABLE_ISOLATION
	/*
	 * Make sure that the dynamic ASID space does not conflict with the
	 * bit we are using to switch between user and kernel ASIDs.
	 */
	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));

	/*
	 * The ASID being passed in here should have respected the
	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
	 */
	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
#endif
	/*
	 * The dynamically-assigned ASIDs that get passed in are small
	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
	 * so do not bother to clear it.
	 *
	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
	 * PCID bits.  This serves two purposes.  It prevents a nasty
	 * situation in which PCID-unaware code saves CR3, loads some other
	 * value (with PCID == 0), and then restores CR3, thus corrupting
	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
	 * that any bugs involving loading a PCID-enabled CR3 with
	 * CR4.PCIDE off will trigger deterministically.
	 */
	return asid + 1;
}

/*
 * Given @asid, compute uPCID
 */
static inline u16 user_pcid(u16 asid)
{
	u16 ret = kern_pcid(asid);
#ifdef CONFIG_PAGE_TABLE_ISOLATION
	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
#endif
	return ret;
}

static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
{
	if (static_cpu_has(X86_FEATURE_PCID)) {
		return __sme_pa(pgd) | kern_pcid(asid);
	} else {
		VM_WARN_ON_ONCE(asid != 0);
		return __sme_pa(pgd);
	}
}

static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
{
	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
	/*
	 * Use boot_cpu_has() instead of this_cpu_has() as this function
	 * might be called during early boot. This should work even after
	 * boot because all CPU's the have same capabilities:
	 */
	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
}

/*
 * We get here when we do something requiring a TLB invalidation
 * but could not go invalidate all of the contexts.  We do the
 * necessary invalidation by clearing out the 'ctx_id' which
 * forces a TLB flush when the context is loaded.
 */
static void clear_asid_other(void)
{
	u16 asid;

	/*
	 * This is only expected to be set if we have disabled
	 * kernel _PAGE_GLOBAL pages.
	 */
	if (!static_cpu_has(X86_FEATURE_PTI)) {
		WARN_ON_ONCE(1);
		return;
	}

	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
		/* Do not need to flush the current asid */
		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
			continue;
		/*
		 * Make sure the next time we go to switch to
		 * this asid, we do a flush:
		 */
		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
	}
	this_cpu_write(cpu_tlbstate.invalidate_other, false);
}

atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);


static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
			    u16 *new_asid, bool *need_flush)
{
	u16 asid;

	if (!static_cpu_has(X86_FEATURE_PCID)) {
		*new_asid = 0;
		*need_flush = true;
		return;
	}

	if (this_cpu_read(cpu_tlbstate.invalidate_other))
		clear_asid_other();

	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
		    next->context.ctx_id)
			continue;

		*new_asid = asid;
		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
			       next_tlb_gen);
		return;
	}

	/*
	 * We don't currently own an ASID slot on this CPU.
	 * Allocate a slot.
	 */
	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
	if (*new_asid >= TLB_NR_DYN_ASIDS) {
		*new_asid = 0;
		this_cpu_write(cpu_tlbstate.next_asid, 1);
	}
	*need_flush = true;
}

/*
 * Given an ASID, flush the corresponding user ASID.  We can delay this
 * until the next time we switch to it.
 *
 * See SWITCH_TO_USER_CR3.
 */
static inline void invalidate_user_asid(u16 asid)
{
	/* There is no user ASID if address space separation is off */
	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
		return;

	/*
	 * We only have a single ASID if PCID is off and the CR3
	 * write will have flushed it.
	 */
	if (!cpu_feature_enabled(X86_FEATURE_PCID))
		return;

	if (!static_cpu_has(X86_FEATURE_PTI))
		return;

	__set_bit(kern_pcid(asid),
		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
}

static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
{
	unsigned long new_mm_cr3;

	if (need_flush) {
		invalidate_user_asid(new_asid);
		new_mm_cr3 = build_cr3(pgdir, new_asid);
	} else {
		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
	}

	/*
	 * Caution: many callers of this function expect
	 * that load_cr3() is serializing and orders TLB
	 * fills with respect to the mm_cpumask writes.
	 */
	write_cr3(new_mm_cr3);
}

void leave_mm(int cpu)
{
	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);

	/*
	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
	 * If so, our callers still expect us to flush the TLB, but there
	 * aren't any user TLB entries in init_mm to worry about.
	 *
	 * This needs to happen before any other sanity checks due to
	 * intel_idle's shenanigans.
	 */
	if (loaded_mm == &init_mm)
		return;

	/* Warn if we're not lazy. */
	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));

	switch_mm(NULL, &init_mm, NULL);
}
EXPORT_SYMBOL_GPL(leave_mm);

void switch_mm(struct mm_struct *prev, struct mm_struct *next,
	       struct task_struct *tsk)
{
	unsigned long flags;

	local_irq_save(flags);
	switch_mm_irqs_off(prev, next, tsk);
	local_irq_restore(flags);
}

/*
 * Invoked from return to user/guest by a task that opted-in to L1D
 * flushing but ended up running on an SMT enabled core due to wrong
 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
 * contract which this task requested.
 */
static void l1d_flush_force_sigbus(struct callback_head *ch)
{
	force_sig(SIGBUS);
}

static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
				struct task_struct *next)
{
	/* Flush L1D if the outgoing task requests it */
	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);

	/* Check whether the incoming task opted in for L1D flush */
	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
		return;

	/*
	 * Validate that it is not running on an SMT sibling as this would
	 * make the excercise pointless because the siblings share L1D. If
	 * it runs on a SMT sibling, notify it with SIGBUS on return to
	 * user/guest
	 */
	if (this_cpu_read(cpu_info.smt_active)) {
		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
	}
}

static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
{
	unsigned long next_tif = read_task_thread_flags(next);
	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;

	/*
	 * Ensure that the bit shift above works as expected and the two flags
	 * end up in bit 0 and 1.
	 */
	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);

	return (unsigned long)next->mm | spec_bits;
}

static void cond_mitigation(struct task_struct *next)
{
	unsigned long prev_mm, next_mm;

	if (!next || !next->mm)
		return;

	next_mm = mm_mangle_tif_spec_bits(next);
	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);

	/*
	 * Avoid user/user BTB poisoning by flushing the branch predictor
	 * when switching between processes. This stops one process from
	 * doing Spectre-v2 attacks on another.
	 *
	 * Both, the conditional and the always IBPB mode use the mm
	 * pointer to avoid the IBPB when switching between tasks of the
	 * same process. Using the mm pointer instead of mm->context.ctx_id
	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
	 * less impossible to control by an attacker. Aside of that it
	 * would only affect the first schedule so the theoretically
	 * exposed data is not really interesting.
	 */
	if (static_branch_likely(&switch_mm_cond_ibpb)) {
		/*
		 * This is a bit more complex than the always mode because
		 * it has to handle two cases:
		 *
		 * 1) Switch from a user space task (potential attacker)
		 *    which has TIF_SPEC_IB set to a user space task
		 *    (potential victim) which has TIF_SPEC_IB not set.
		 *
		 * 2) Switch from a user space task (potential attacker)
		 *    which has TIF_SPEC_IB not set to a user space task
		 *    (potential victim) which has TIF_SPEC_IB set.
		 *
		 * This could be done by unconditionally issuing IBPB when
		 * a task which has TIF_SPEC_IB set is either scheduled in
		 * or out. Though that results in two flushes when:
		 *
		 * - the same user space task is scheduled out and later
		 *   scheduled in again and only a kernel thread ran in
		 *   between.
		 *
		 * - a user space task belonging to the same process is
		 *   scheduled in after a kernel thread ran in between
		 *
		 * - a user space task belonging to the same process is
		 *   scheduled in immediately.
		 *
		 * Optimize this with reasonably small overhead for the
		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
		 * pointer of the incoming task which is stored in
		 * cpu_tlbstate.last_user_mm_spec for comparison.
		 *
		 * Issue IBPB only if the mm's are different and one or
		 * both have the IBPB bit set.
		 */
		if (next_mm != prev_mm &&
		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
			indirect_branch_prediction_barrier();
	}

	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
		/*
		 * Only flush when switching to a user space task with a
		 * different context than the user space task which ran
		 * last on this CPU.
		 */
		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
					(unsigned long)next->mm)
			indirect_branch_prediction_barrier();
	}

	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
		/*
		 * Flush L1D when the outgoing task requested it and/or
		 * check whether the incoming task requested L1D flushing
		 * and ended up on an SMT sibling.
		 */
		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
			l1d_flush_evaluate(prev_mm, next_mm, next);
	}

	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
}

#ifdef CONFIG_PERF_EVENTS
static inline void cr4_update_pce_mm(struct mm_struct *mm)
{
	if (static_branch_unlikely(&rdpmc_always_available_key) ||
	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
		/*
		 * Clear the existing dirty counters to
		 * prevent the leak for an RDPMC task.
		 */
		perf_clear_dirty_counters();
		cr4_set_bits_irqsoff(X86_CR4_PCE);
	} else
		cr4_clear_bits_irqsoff(X86_CR4_PCE);
}

void cr4_update_pce(void *ignored)
{
	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
}

#else
static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
#endif

void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			struct task_struct *tsk)
{
	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
	unsigned cpu = smp_processor_id();
	u64 next_tlb_gen;
	bool need_flush;
	u16 new_asid;

	/*
	 * NB: The scheduler will call us with prev == next when switching
	 * from lazy TLB mode to normal mode if active_mm isn't changing.
	 * When this happens, we don't assume that CR3 (and hence
	 * cpu_tlbstate.loaded_mm) matches next.
	 *
	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
	 */

	/* We don't want flush_tlb_func() to run concurrently with us. */
	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
		WARN_ON_ONCE(!irqs_disabled());

	/*
	 * Verify that CR3 is what we think it is.  This will catch
	 * hypothetical buggy code that directly switches to swapper_pg_dir
	 * without going through leave_mm() / switch_mm_irqs_off() or that
	 * does something like write_cr3(read_cr3_pa()).
	 *
	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
	 * isn't free.
	 */
#ifdef CONFIG_DEBUG_VM
	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
		/*
		 * If we were to BUG here, we'd be very likely to kill
		 * the system so hard that we don't see the call trace.
		 * Try to recover instead by ignoring the error and doing
		 * a global flush to minimize the chance of corruption.
		 *
		 * (This is far from being a fully correct recovery.
		 *  Architecturally, the CPU could prefetch something
		 *  back into an incorrect ASID slot and leave it there
		 *  to cause trouble down the road.  It's better than
		 *  nothing, though.)
		 */
		__flush_tlb_all();
	}
#endif
	if (was_lazy)
		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);

	/*
	 * The membarrier system call requires a full memory barrier and
	 * core serialization before returning to user-space, after
	 * storing to rq->curr, when changing mm.  This is because
	 * membarrier() sends IPIs to all CPUs that are in the target mm
	 * to make them issue memory barriers.  However, if another CPU
	 * switches to/from the target mm concurrently with
	 * membarrier(), it can cause that CPU not to receive an IPI
	 * when it really should issue a memory barrier.  Writing to CR3
	 * provides that full memory barrier and core serializing
	 * instruction.
	 */
	if (real_prev == next) {
		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
			   next->context.ctx_id);

		/*
		 * Even in lazy TLB mode, the CPU should stay set in the
		 * mm_cpumask. The TLB shootdown code can figure out from
		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
		 */
		if (WARN_ON_ONCE(real_prev != &init_mm &&
				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
			cpumask_set_cpu(cpu, mm_cpumask(next));

		/*
		 * If the CPU is not in lazy TLB mode, we are just switching
		 * from one thread in a process to another thread in the same
		 * process. No TLB flush required.
		 */
		if (!was_lazy)
			return;

		/*
		 * Read the tlb_gen to check whether a flush is needed.
		 * If the TLB is up to date, just use it.
		 * The barrier synchronizes with the tlb_gen increment in
		 * the TLB shootdown code.
		 */
		smp_mb();
		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
				next_tlb_gen)
			return;

		/*
		 * TLB contents went out of date while we were in lazy
		 * mode. Fall through to the TLB switching code below.
		 */
		new_asid = prev_asid;
		need_flush = true;
	} else {
		/*
		 * Apply process to process speculation vulnerability
		 * mitigations if applicable.
		 */
		cond_mitigation(tsk);

		/*
		 * Stop remote flushes for the previous mm.
		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
		 * but the bitmap manipulation can cause cache line contention.
		 */
		if (real_prev != &init_mm) {
			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
						mm_cpumask(real_prev)));
			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
		}

		/*
		 * Start remote flushes and then read tlb_gen.
		 */
		if (next != &init_mm)
			cpumask_set_cpu(cpu, mm_cpumask(next));
		next_tlb_gen = atomic64_read(&next->context.tlb_gen);

		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);

		/* Let nmi_uaccess_okay() know that we're changing CR3. */
		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
		barrier();
	}

	if (need_flush) {
		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
		load_new_mm_cr3(next->pgd, new_asid, true);

		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
	} else {
		/* The new ASID is already up to date. */
		load_new_mm_cr3(next->pgd, new_asid, false);

		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
	}

	/* Make sure we write CR3 before loaded_mm. */
	barrier();

	this_cpu_write(cpu_tlbstate.loaded_mm, next);
	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);

	if (next != real_prev) {
		cr4_update_pce_mm(next);
		switch_ldt(real_prev, next);
	}
}

/*
 * Please ignore the name of this function.  It should be called
 * switch_to_kernel_thread().
 *
 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 * kernel thread or other context without an mm.  Acceptable implementations
 * include doing nothing whatsoever, switching to init_mm, or various clever
 * lazy tricks to try to minimize TLB flushes.
 *
 * The scheduler reserves the right to call enter_lazy_tlb() several times
 * in a row.  It will notify us that we're going back to a real mm by
 * calling switch_mm_irqs_off().
 */
void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
{
	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
		return;

	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
}

/*
 * Call this when reinitializing a CPU.  It fixes the following potential
 * problems:
 *
 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 *   because the CPU was taken down and came back up with CR3's PCID
 *   bits clear.  CPU hotplug can do this.
 *
 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 *
 * - The CPU went so far out to lunch that it may have missed a TLB
 *   flush.
 */
void initialize_tlbstate_and_flush(void)
{
	int i;
	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
	unsigned long cr3 = __read_cr3();

	/* Assert that CR3 already references the right mm. */
	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));

	/*
	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
	 * doesn't work like other CR4 bits because it can only be set from
	 * long mode.)
	 */
	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
		!(cr4_read_shadow() & X86_CR4_PCIDE));

	/* Force ASID 0 and force a TLB flush. */
	write_cr3(build_cr3(mm->pgd, 0));

	/* Reinitialize tlbstate. */
	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
	this_cpu_write(cpu_tlbstate.next_asid, 1);
	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);

	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
}

/*
 * flush_tlb_func()'s memory ordering requirement is that any
 * TLB fills that happen after we flush the TLB are ordered after we
 * read active_mm's tlb_gen.  We don't need any explicit barriers
 * because all x86 flush operations are serializing and the
 * atomic64_read operation won't be reordered by the compiler.
 */
static void flush_tlb_func(void *info)
{
	/*
	 * We have three different tlb_gen values in here.  They are:
	 *
	 * - mm_tlb_gen:     the latest generation.
	 * - local_tlb_gen:  the generation that this CPU has already caught
	 *                   up to.
	 * - f->new_tlb_gen: the generation that the requester of the flush
	 *                   wants us to catch up to.
	 */
	const struct flush_tlb_info *f = info;
	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
	bool local = smp_processor_id() == f->initiating_cpu;
	unsigned long nr_invalidate = 0;
	u64 mm_tlb_gen;

	/* This code cannot presently handle being reentered. */
	VM_WARN_ON(!irqs_disabled());

	if (!local) {
		inc_irq_stat(irq_tlb_count);
		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);

		/* Can only happen on remote CPUs */
		if (f->mm && f->mm != loaded_mm)
			return;
	}

	if (unlikely(loaded_mm == &init_mm))
		return;

	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
		   loaded_mm->context.ctx_id);

	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
		/*
		 * We're in lazy mode.  We need to at least flush our
		 * paging-structure cache to avoid speculatively reading
		 * garbage into our TLB.  Since switching to init_mm is barely
		 * slower than a minimal flush, just switch to init_mm.
		 *
		 * This should be rare, with native_flush_tlb_multi() skipping
		 * IPIs to lazy TLB mode CPUs.
		 */
		switch_mm_irqs_off(NULL, &init_mm, NULL);
		return;
	}

	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
		     f->new_tlb_gen <= local_tlb_gen)) {
		/*
		 * The TLB is already up to date in respect to f->new_tlb_gen.
		 * While the core might be still behind mm_tlb_gen, checking
		 * mm_tlb_gen unnecessarily would have negative caching effects
		 * so avoid it.
		 */
		return;
	}

	/*
	 * Defer mm_tlb_gen reading as long as possible to avoid cache
	 * contention.
	 */
	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);

	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
		/*
		 * There's nothing to do: we're already up to date.  This can
		 * happen if two concurrent flushes happen -- the first flush to
		 * be handled can catch us all the way up, leaving no work for
		 * the second flush.
		 */
		goto done;
	}

	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);

	/*
	 * If we get to this point, we know that our TLB is out of date.
	 * This does not strictly imply that we need to flush (it's
	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
	 * going to need to flush in the very near future, so we might
	 * as well get it over with.
	 *
	 * The only question is whether to do a full or partial flush.
	 *
	 * We do a partial flush if requested and two extra conditions
	 * are met:
	 *
	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
	 *    we've always done all needed flushes to catch up to
	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
	 *    us up to date for tlb_gen 3 is the partial flush we're
	 *    processing.
	 *
	 *    As an example of why this check is needed, suppose that there
	 *    are two concurrent flushes.  The first is a full flush that
	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
	 *    processed on this CPU in reverse order, we'll see
	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
	 *    1 without the full flush that's needed for tlb_gen 2.
	 *
	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
	 *    Partial TLB flushes are not all that much cheaper than full TLB
	 *    flushes, so it seems unlikely that it would be a performance win
	 *    to do a partial flush if that won't bring our TLB fully up to
	 *    date.  By doing a full flush instead, we can increase
	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
	 *    avoid another flush in the very near future.
	 */
	if (f->end != TLB_FLUSH_ALL &&
	    f->new_tlb_gen == local_tlb_gen + 1 &&
	    f->new_tlb_gen == mm_tlb_gen) {
		/* Partial flush */
		unsigned long addr = f->start;

		/* Partial flush cannot have invalid generations */
		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);

		/* Partial flush must have valid mm */
		VM_WARN_ON(f->mm == NULL);

		nr_invalidate = (f->end - f->start) >> f->stride_shift;

		while (addr < f->end) {
			flush_tlb_one_user(addr);
			addr += 1UL << f->stride_shift;
		}
		if (local)
			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
	} else {
		/* Full flush. */
		nr_invalidate = TLB_FLUSH_ALL;

		flush_tlb_local();
		if (local)
			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
	}

	/* Both paths above update our state to mm_tlb_gen. */
	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);

	/* Tracing is done in a unified manner to reduce the code size */
done:
	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
						  TLB_LOCAL_MM_SHOOTDOWN,
			nr_invalidate);
}

static bool tlb_is_not_lazy(int cpu, void *data)
{
	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
}

DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);

STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
					 const struct flush_tlb_info *info)
{
	/*
	 * Do accounting and tracing. Note that there are (and have always been)
	 * cases in which a remote TLB flush will be traced, but eventually
	 * would not happen.
	 */
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
	if (info->end == TLB_FLUSH_ALL)
		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
	else
		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
				(info->end - info->start) >> PAGE_SHIFT);

	/*
	 * If no page tables were freed, we can skip sending IPIs to
	 * CPUs in lazy TLB mode. They will flush the CPU themselves
	 * at the next context switch.
	 *
	 * However, if page tables are getting freed, we need to send the
	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
	 * up on the new contents of what used to be page tables, while
	 * doing a speculative memory access.
	 */
	if (info->freed_tables)
		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
	else
		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
				(void *)info, 1, cpumask);
}

void flush_tlb_multi(const struct cpumask *cpumask,
		      const struct flush_tlb_info *info)
{
	__flush_tlb_multi(cpumask, info);
}

/*
 * See Documentation/x86/tlb.rst for details.  We choose 33
 * because it is large enough to cover the vast majority (at
 * least 95%) of allocations, and is small enough that we are
 * confident it will not cause too much overhead.  Each single
 * flush is about 100 ns, so this caps the maximum overhead at
 * _about_ 3,000 ns.
 *
 * This is in units of pages.
 */
unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;

static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);

#ifdef CONFIG_DEBUG_VM
static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
#endif

static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
			unsigned long start, unsigned long end,
			unsigned int stride_shift, bool freed_tables,
			u64 new_tlb_gen)
{
	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);

#ifdef CONFIG_DEBUG_VM
	/*
	 * Ensure that the following code is non-reentrant and flush_tlb_info
	 * is not overwritten. This means no TLB flushing is initiated by
	 * interrupt handlers and machine-check exception handlers.
	 */
	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
#endif

	info->start		= start;
	info->end		= end;
	info->mm		= mm;
	info->stride_shift	= stride_shift;
	info->freed_tables	= freed_tables;
	info->new_tlb_gen	= new_tlb_gen;
	info->initiating_cpu	= smp_processor_id();

	return info;
}

static void put_flush_tlb_info(void)
{
#ifdef CONFIG_DEBUG_VM
	/* Complete reentrancy prevention checks */
	barrier();
	this_cpu_dec(flush_tlb_info_idx);
#endif
}

void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
				unsigned long end, unsigned int stride_shift,
				bool freed_tables)
{
	struct flush_tlb_info *info;
	u64 new_tlb_gen;
	int cpu;

	cpu = get_cpu();

	/* Should we flush just the requested range? */
	if ((end == TLB_FLUSH_ALL) ||
	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
		start = 0;
		end = TLB_FLUSH_ALL;
	}

	/* This is also a barrier that synchronizes with switch_mm(). */
	new_tlb_gen = inc_mm_tlb_gen(mm);

	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
				  new_tlb_gen);

	/*
	 * flush_tlb_multi() is not optimized for the common case in which only
	 * a local TLB flush is needed. Optimize this use-case by calling
	 * flush_tlb_func_local() directly in this case.
	 */
	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
		flush_tlb_multi(mm_cpumask(mm), info);
	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
		lockdep_assert_irqs_enabled();
		local_irq_disable();
		flush_tlb_func(info);
		local_irq_enable();
	}

	put_flush_tlb_info();
	put_cpu();
}


static void do_flush_tlb_all(void *info)
{
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
	__flush_tlb_all();
}

void flush_tlb_all(void)
{
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
	on_each_cpu(do_flush_tlb_all, NULL, 1);
}

static void do_kernel_range_flush(void *info)
{
	struct flush_tlb_info *f = info;
	unsigned long addr;

	/* flush range by one by one 'invlpg' */
	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
		flush_tlb_one_kernel(addr);
}

void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
	/* Balance as user space task's flush, a bit conservative */
	if (end == TLB_FLUSH_ALL ||
	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
		on_each_cpu(do_flush_tlb_all, NULL, 1);
	} else {
		struct flush_tlb_info *info;

		preempt_disable();
		info = get_flush_tlb_info(NULL, start, end, 0, false,
					  TLB_GENERATION_INVALID);

		on_each_cpu(do_kernel_range_flush, info, 1);

		put_flush_tlb_info();
		preempt_enable();
	}
}

/*
 * This can be used from process context to figure out what the value of
 * CR3 is without needing to do a (slow) __read_cr3().
 *
 * It's intended to be used for code like KVM that sneakily changes CR3
 * and needs to restore it.  It needs to be used very carefully.
 */
unsigned long __get_current_cr3_fast(void)
{
	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
		this_cpu_read(cpu_tlbstate.loaded_mm_asid));

	/* For now, be very restrictive about when this can be called. */
	VM_WARN_ON(in_nmi() || preemptible());

	VM_BUG_ON(cr3 != __read_cr3());
	return cr3;
}
EXPORT_SYMBOL_GPL(__get_current_cr3_fast);

/*
 * Flush one page in the kernel mapping
 */
void flush_tlb_one_kernel(unsigned long addr)
{
	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);

	/*
	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
	 * use PCID if we also use global PTEs for the kernel mapping, and
	 * INVLPG flushes global translations across all address spaces.
	 *
	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
	 * __flush_tlb_one_user() will flush the given address for the current
	 * kernel address space and for its usermode counterpart, but it does
	 * not flush it for other address spaces.
	 */
	flush_tlb_one_user(addr);

	if (!static_cpu_has(X86_FEATURE_PTI))
		return;

	/*
	 * See above.  We need to propagate the flush to all other address
	 * spaces.  In principle, we only need to propagate it to kernelmode
	 * address spaces, but the extra bookkeeping we would need is not
	 * worth it.
	 */
	this_cpu_write(cpu_tlbstate.invalidate_other, true);
}

/*
 * Flush one page in the user mapping
 */
STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
{
	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);

	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");

	if (!static_cpu_has(X86_FEATURE_PTI))
		return;

	/*
	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
	 * Just use invalidate_user_asid() in case we are called early.
	 */
	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
		invalidate_user_asid(loaded_mm_asid);
	else
		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
}

void flush_tlb_one_user(unsigned long addr)
{
	__flush_tlb_one_user(addr);
}

/*
 * Flush everything
 */
STATIC_NOPV void native_flush_tlb_global(void)
{
	unsigned long flags;

	if (static_cpu_has(X86_FEATURE_INVPCID)) {
		/*
		 * Using INVPCID is considerably faster than a pair of writes
		 * to CR4 sandwiched inside an IRQ flag save/restore.
		 *
		 * Note, this works with CR4.PCIDE=0 or 1.
		 */
		invpcid_flush_all();
		return;
	}

	/*
	 * Read-modify-write to CR4 - protect it from preemption and
	 * from interrupts. (Use the raw variant because this code can
	 * be called from deep inside debugging code.)
	 */
	raw_local_irq_save(flags);

	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));

	raw_local_irq_restore(flags);
}

/*
 * Flush the entire current user mapping
 */
STATIC_NOPV void native_flush_tlb_local(void)
{
	/*
	 * Preemption or interrupts must be disabled to protect the access
	 * to the per CPU variable and to prevent being preempted between
	 * read_cr3() and write_cr3().
	 */
	WARN_ON_ONCE(preemptible());

	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));

	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
	native_write_cr3(__native_read_cr3());
}

void flush_tlb_local(void)
{
	__flush_tlb_local();
}

/*
 * Flush everything
 */
void __flush_tlb_all(void)
{
	/*
	 * This is to catch users with enabled preemption and the PGE feature
	 * and don't trigger the warning in __native_flush_tlb().
	 */
	VM_WARN_ON_ONCE(preemptible());

	if (boot_cpu_has(X86_FEATURE_PGE)) {
		__flush_tlb_global();
	} else {
		/*
		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
		 */
		flush_tlb_local();
	}
}
EXPORT_SYMBOL_GPL(__flush_tlb_all);

void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
{
	struct flush_tlb_info *info;

	int cpu = get_cpu();

	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
				  TLB_GENERATION_INVALID);
	/*
	 * flush_tlb_multi() is not optimized for the common case in which only
	 * a local TLB flush is needed. Optimize this use-case by calling
	 * flush_tlb_func_local() directly in this case.
	 */
	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
		flush_tlb_multi(&batch->cpumask, info);
	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
		lockdep_assert_irqs_enabled();
		local_irq_disable();
		flush_tlb_func(info);
		local_irq_enable();
	}

	cpumask_clear(&batch->cpumask);

	put_flush_tlb_info();
	put_cpu();
}

/*
 * Blindly accessing user memory from NMI context can be dangerous
 * if we're in the middle of switching the current user task or
 * switching the loaded mm.  It can also be dangerous if we
 * interrupted some kernel code that was temporarily using a
 * different mm.
 */
bool nmi_uaccess_okay(void)
{
	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
	struct mm_struct *current_mm = current->mm;

	VM_WARN_ON_ONCE(!loaded_mm);

	/*
	 * The condition we want to check is
	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
	 * is supposed to be reasonably fast.
	 *
	 * Instead, we check the almost equivalent but somewhat conservative
	 * condition below, and we rely on the fact that switch_mm_irqs_off()
	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
	 */
	if (loaded_mm != current_mm)
		return false;

	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));

	return true;
}

static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
			     size_t count, loff_t *ppos)
{
	char buf[32];
	unsigned int len;

	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}

static ssize_t tlbflush_write_file(struct file *file,
		 const char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[32];
	ssize_t len;
	int ceiling;

	len = min(count, sizeof(buf) - 1);
	if (copy_from_user(buf, user_buf, len))
		return -EFAULT;

	buf[len] = '\0';
	if (kstrtoint(buf, 0, &ceiling))
		return -EINVAL;

	if (ceiling < 0)
		return -EINVAL;

	tlb_single_page_flush_ceiling = ceiling;
	return count;
}

static const struct file_operations fops_tlbflush = {
	.read = tlbflush_read_file,
	.write = tlbflush_write_file,
	.llseek = default_llseek,
};

static int __init create_tlb_single_page_flush_ceiling(void)
{
	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
			    arch_debugfs_dir, NULL, &fops_tlbflush);
	return 0;
}
late_initcall(create_tlb_single_page_flush_ceiling);