Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Designware SPI core controller driver (refer pxa2xx_spi.c)
 *
 * Copyright (c) 2009, Intel Corporation.
 */

#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <linux/highmem.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/string.h>
#include <linux/of.h>

#include "internals.h"
#include "spi-dw.h"

#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif

/* Slave spi_device related */
struct dw_spi_chip_data {
	u32 cr0;
	u32 rx_sample_dly;	/* RX sample delay */
};

#ifdef CONFIG_DEBUG_FS

#define DW_SPI_DBGFS_REG(_name, _off)	\
{					\
	.name = _name,			\
	.offset = _off,			\
}

static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
};

static void dw_spi_debugfs_init(struct dw_spi *dws)
{
	char name[32];

	snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
	dws->debugfs = debugfs_create_dir(name, NULL);

	dws->regset.regs = dw_spi_dbgfs_regs;
	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
	dws->regset.base = dws->regs;
	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
}

static void dw_spi_debugfs_remove(struct dw_spi *dws)
{
	debugfs_remove_recursive(dws->debugfs);
}

#else
static inline void dw_spi_debugfs_init(struct dw_spi *dws)
{
}

static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
{
}
#endif /* CONFIG_DEBUG_FS */

void dw_spi_set_cs(struct spi_device *spi, bool enable)
{
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
	bool cs_high = !!(spi->mode & SPI_CS_HIGH);

	/*
	 * DW SPI controller demands any native CS being set in order to
	 * proceed with data transfer. So in order to activate the SPI
	 * communications we must set a corresponding bit in the Slave
	 * Enable register no matter whether the SPI core is configured to
	 * support active-high or active-low CS level.
	 */
	if (cs_high == enable)
		dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
	else
		dw_writel(dws, DW_SPI_SER, 0);
}
EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);

/* Return the max entries we can fill into tx fifo */
static inline u32 dw_spi_tx_max(struct dw_spi *dws)
{
	u32 tx_room, rxtx_gap;

	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);

	/*
	 * Another concern is about the tx/rx mismatch, we
	 * though to use (dws->fifo_len - rxflr - txflr) as
	 * one maximum value for tx, but it doesn't cover the
	 * data which is out of tx/rx fifo and inside the
	 * shift registers. So a control from sw point of
	 * view is taken.
	 */
	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);

	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
}

/* Return the max entries we should read out of rx fifo */
static inline u32 dw_spi_rx_max(struct dw_spi *dws)
{
	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
}

static void dw_writer(struct dw_spi *dws)
{
	u32 max = dw_spi_tx_max(dws);
	u32 txw = 0;

	while (max--) {
		if (dws->tx) {
			if (dws->n_bytes == 1)
				txw = *(u8 *)(dws->tx);
			else if (dws->n_bytes == 2)
				txw = *(u16 *)(dws->tx);
			else
				txw = *(u32 *)(dws->tx);

			dws->tx += dws->n_bytes;
		}
		dw_write_io_reg(dws, DW_SPI_DR, txw);
		--dws->tx_len;
	}
}

static void dw_reader(struct dw_spi *dws)
{
	u32 max = dw_spi_rx_max(dws);
	u32 rxw;

	while (max--) {
		rxw = dw_read_io_reg(dws, DW_SPI_DR);
		if (dws->rx) {
			if (dws->n_bytes == 1)
				*(u8 *)(dws->rx) = rxw;
			else if (dws->n_bytes == 2)
				*(u16 *)(dws->rx) = rxw;
			else
				*(u32 *)(dws->rx) = rxw;

			dws->rx += dws->n_bytes;
		}
		--dws->rx_len;
	}
}

int dw_spi_check_status(struct dw_spi *dws, bool raw)
{
	u32 irq_status;
	int ret = 0;

	if (raw)
		irq_status = dw_readl(dws, DW_SPI_RISR);
	else
		irq_status = dw_readl(dws, DW_SPI_ISR);

	if (irq_status & DW_SPI_INT_RXOI) {
		dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
		ret = -EIO;
	}

	if (irq_status & DW_SPI_INT_RXUI) {
		dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
		ret = -EIO;
	}

	if (irq_status & DW_SPI_INT_TXOI) {
		dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
		ret = -EIO;
	}

	/* Generically handle the erroneous situation */
	if (ret) {
		dw_spi_reset_chip(dws);
		if (dws->host->cur_msg)
			dws->host->cur_msg->status = ret;
	}

	return ret;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);

static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
{
	u16 irq_status = dw_readl(dws, DW_SPI_ISR);

	if (dw_spi_check_status(dws, false)) {
		spi_finalize_current_transfer(dws->host);
		return IRQ_HANDLED;
	}

	/*
	 * Read data from the Rx FIFO every time we've got a chance executing
	 * this method. If there is nothing left to receive, terminate the
	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
	 * final stage of the transfer. By doing so we'll get the next IRQ
	 * right when the leftover incoming data is received.
	 */
	dw_reader(dws);
	if (!dws->rx_len) {
		dw_spi_mask_intr(dws, 0xff);
		spi_finalize_current_transfer(dws->host);
	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
	}

	/*
	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
	 * disabled after the data transmission is finished so not to
	 * have the TXE IRQ flood at the final stage of the transfer.
	 */
	if (irq_status & DW_SPI_INT_TXEI) {
		dw_writer(dws);
		if (!dws->tx_len)
			dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
	}

	return IRQ_HANDLED;
}

static irqreturn_t dw_spi_irq(int irq, void *dev_id)
{
	struct spi_controller *host = dev_id;
	struct dw_spi *dws = spi_controller_get_devdata(host);
	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;

	if (!irq_status)
		return IRQ_NONE;

	if (!host->cur_msg) {
		dw_spi_mask_intr(dws, 0xff);
		return IRQ_HANDLED;
	}

	return dws->transfer_handler(dws);
}

static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
{
	u32 cr0 = 0;

	if (dw_spi_ip_is(dws, PSSI)) {
		/* CTRLR0[ 5: 4] Frame Format */
		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);

		/*
		 * SPI mode (SCPOL|SCPH)
		 * CTRLR0[ 6] Serial Clock Phase
		 * CTRLR0[ 7] Serial Clock Polarity
		 */
		if (spi->mode & SPI_CPOL)
			cr0 |= DW_PSSI_CTRLR0_SCPOL;
		if (spi->mode & SPI_CPHA)
			cr0 |= DW_PSSI_CTRLR0_SCPHA;

		/* CTRLR0[11] Shift Register Loop */
		if (spi->mode & SPI_LOOP)
			cr0 |= DW_PSSI_CTRLR0_SRL;
	} else {
		/* CTRLR0[ 7: 6] Frame Format */
		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);

		/*
		 * SPI mode (SCPOL|SCPH)
		 * CTRLR0[ 8] Serial Clock Phase
		 * CTRLR0[ 9] Serial Clock Polarity
		 */
		if (spi->mode & SPI_CPOL)
			cr0 |= DW_HSSI_CTRLR0_SCPOL;
		if (spi->mode & SPI_CPHA)
			cr0 |= DW_HSSI_CTRLR0_SCPHA;

		/* CTRLR0[13] Shift Register Loop */
		if (spi->mode & SPI_LOOP)
			cr0 |= DW_HSSI_CTRLR0_SRL;

		/* CTRLR0[31] MST */
		if (dw_spi_ver_is_ge(dws, HSSI, 102A))
			cr0 |= DW_HSSI_CTRLR0_MST;
	}

	return cr0;
}

void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
			  struct dw_spi_cfg *cfg)
{
	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
	u32 cr0 = chip->cr0;
	u32 speed_hz;
	u16 clk_div;

	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;

	if (dw_spi_ip_is(dws, PSSI))
		/* CTRLR0[ 9:8] Transfer Mode */
		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
	else
		/* CTRLR0[11:10] Transfer Mode */
		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);

	dw_writel(dws, DW_SPI_CTRLR0, cr0);

	if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
	    cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);

	/* Note DW APB SSI clock divider doesn't support odd numbers */
	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
	speed_hz = dws->max_freq / clk_div;

	if (dws->current_freq != speed_hz) {
		dw_spi_set_clk(dws, clk_div);
		dws->current_freq = speed_hz;
	}

	/* Update RX sample delay if required */
	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
		dws->cur_rx_sample_dly = chip->rx_sample_dly;
	}
}
EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);

static void dw_spi_irq_setup(struct dw_spi *dws)
{
	u16 level;
	u8 imask;

	/*
	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
	 * will be adjusted at the final stage of the IRQ-based SPI transfer
	 * execution so not to lose the leftover of the incoming data.
	 */
	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
	dw_writel(dws, DW_SPI_TXFTLR, level);
	dw_writel(dws, DW_SPI_RXFTLR, level - 1);

	dws->transfer_handler = dw_spi_transfer_handler;

	imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
		DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
	dw_spi_umask_intr(dws, imask);
}

/*
 * The iterative procedure of the poll-based transfer is simple: write as much
 * as possible to the Tx FIFO, wait until the pending to receive data is ready
 * to be read, read it from the Rx FIFO and check whether the performed
 * procedure has been successful.
 *
 * Note this method the same way as the IRQ-based transfer won't work well for
 * the SPI devices connected to the controller with native CS due to the
 * automatic CS assertion/de-assertion.
 */
static int dw_spi_poll_transfer(struct dw_spi *dws,
				struct spi_transfer *transfer)
{
	struct spi_delay delay;
	u16 nbits;
	int ret;

	delay.unit = SPI_DELAY_UNIT_SCK;
	nbits = dws->n_bytes * BITS_PER_BYTE;

	do {
		dw_writer(dws);

		delay.value = nbits * (dws->rx_len - dws->tx_len);
		spi_delay_exec(&delay, transfer);

		dw_reader(dws);

		ret = dw_spi_check_status(dws, true);
		if (ret)
			return ret;
	} while (dws->rx_len);

	return 0;
}

static int dw_spi_transfer_one(struct spi_controller *host,
			       struct spi_device *spi,
			       struct spi_transfer *transfer)
{
	struct dw_spi *dws = spi_controller_get_devdata(host);
	struct dw_spi_cfg cfg = {
		.tmode = DW_SPI_CTRLR0_TMOD_TR,
		.dfs = transfer->bits_per_word,
		.freq = transfer->speed_hz,
	};
	int ret;

	dws->dma_mapped = 0;
	dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word));
	dws->tx = (void *)transfer->tx_buf;
	dws->tx_len = transfer->len / dws->n_bytes;
	dws->rx = transfer->rx_buf;
	dws->rx_len = dws->tx_len;

	/* Ensure the data above is visible for all CPUs */
	smp_mb();

	dw_spi_enable_chip(dws, 0);

	dw_spi_update_config(dws, spi, &cfg);

	transfer->effective_speed_hz = dws->current_freq;

	/* Check if current transfer is a DMA transaction */
	dws->dma_mapped = spi_xfer_is_dma_mapped(host, spi, transfer);

	/* For poll mode just disable all interrupts */
	dw_spi_mask_intr(dws, 0xff);

	if (dws->dma_mapped) {
		ret = dws->dma_ops->dma_setup(dws, transfer);
		if (ret)
			return ret;
	}

	dw_spi_enable_chip(dws, 1);

	if (dws->dma_mapped)
		return dws->dma_ops->dma_transfer(dws, transfer);
	else if (dws->irq == IRQ_NOTCONNECTED)
		return dw_spi_poll_transfer(dws, transfer);

	dw_spi_irq_setup(dws);

	return 1;
}

static void dw_spi_handle_err(struct spi_controller *host,
			      struct spi_message *msg)
{
	struct dw_spi *dws = spi_controller_get_devdata(host);

	if (dws->dma_mapped)
		dws->dma_ops->dma_stop(dws);

	dw_spi_reset_chip(dws);
}

static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	if (op->data.dir == SPI_MEM_DATA_IN)
		op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);

	return 0;
}

static bool dw_spi_supports_mem_op(struct spi_mem *mem,
				   const struct spi_mem_op *op)
{
	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
		return false;

	return spi_mem_default_supports_op(mem, op);
}

static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
{
	unsigned int i, j, len;
	u8 *out;

	/*
	 * Calculate the total length of the EEPROM command transfer and
	 * either use the pre-allocated buffer or create a temporary one.
	 */
	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
	if (op->data.dir == SPI_MEM_DATA_OUT)
		len += op->data.nbytes;

	if (len <= DW_SPI_BUF_SIZE) {
		out = dws->buf;
	} else {
		out = kzalloc(len, GFP_KERNEL);
		if (!out)
			return -ENOMEM;
	}

	/*
	 * Collect the operation code, address and dummy bytes into the single
	 * buffer. If it's a transfer with data to be sent, also copy it into the
	 * single buffer in order to speed the data transmission up.
	 */
	for (i = 0; i < op->cmd.nbytes; ++i)
		out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
	for (j = 0; j < op->addr.nbytes; ++i, ++j)
		out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
		out[i] = 0x0;

	if (op->data.dir == SPI_MEM_DATA_OUT)
		memcpy(&out[i], op->data.buf.out, op->data.nbytes);

	dws->n_bytes = 1;
	dws->tx = out;
	dws->tx_len = len;
	if (op->data.dir == SPI_MEM_DATA_IN) {
		dws->rx = op->data.buf.in;
		dws->rx_len = op->data.nbytes;
	} else {
		dws->rx = NULL;
		dws->rx_len = 0;
	}

	return 0;
}

static void dw_spi_free_mem_buf(struct dw_spi *dws)
{
	if (dws->tx != dws->buf)
		kfree(dws->tx);
}

static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
{
	u32 room, entries, sts;
	unsigned int len;
	u8 *buf;

	/*
	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
	 * since native CS hasn't been enabled yet and the automatic data
	 * transmission won't start til we do that.
	 */
	len = min(dws->fifo_len, dws->tx_len);
	buf = dws->tx;
	while (len--)
		dw_write_io_reg(dws, DW_SPI_DR, *buf++);

	/*
	 * After setting any bit in the SER register the transmission will
	 * start automatically. We have to keep up with that procedure
	 * otherwise the CS de-assertion will happen whereupon the memory
	 * operation will be pre-terminated.
	 */
	len = dws->tx_len - ((void *)buf - dws->tx);
	dw_spi_set_cs(spi, false);
	while (len) {
		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
		if (!entries) {
			dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
			return -EIO;
		}
		room = min(dws->fifo_len - entries, len);
		for (; room; --room, --len)
			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
	}

	/*
	 * Data fetching will start automatically if the EEPROM-read mode is
	 * activated. We have to keep up with the incoming data pace to
	 * prevent the Rx FIFO overflow causing the inbound data loss.
	 */
	len = dws->rx_len;
	buf = dws->rx;
	while (len) {
		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
		if (!entries) {
			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
			if (sts & DW_SPI_INT_RXOI) {
				dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
				return -EIO;
			}
			continue;
		}
		entries = min(entries, len);
		for (; entries; --entries, --len)
			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
	}

	return 0;
}

static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
{
	return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
}

static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
{
	int retry = DW_SPI_WAIT_RETRIES;
	struct spi_delay delay;
	unsigned long ns, us;
	u32 nents;

	nents = dw_readl(dws, DW_SPI_TXFLR);
	ns = NSEC_PER_SEC / dws->current_freq * nents;
	ns *= dws->n_bytes * BITS_PER_BYTE;
	if (ns <= NSEC_PER_USEC) {
		delay.unit = SPI_DELAY_UNIT_NSECS;
		delay.value = ns;
	} else {
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
		delay.unit = SPI_DELAY_UNIT_USECS;
		delay.value = clamp_val(us, 0, USHRT_MAX);
	}

	while (dw_spi_ctlr_busy(dws) && retry--)
		spi_delay_exec(&delay, NULL);

	if (retry < 0) {
		dev_err(&dws->host->dev, "Mem op hanged up\n");
		return -EIO;
	}

	return 0;
}

static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
{
	dw_spi_enable_chip(dws, 0);
	dw_spi_set_cs(spi, true);
	dw_spi_enable_chip(dws, 1);
}

/*
 * The SPI memory operation implementation below is the best choice for the
 * devices, which are selected by the native chip-select lane. It's
 * specifically developed to workaround the problem with automatic chip-select
 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
 * unavailable.
 */
static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
	struct dw_spi_cfg cfg;
	unsigned long flags;
	int ret;

	/*
	 * Collect the outbound data into a single buffer to speed the
	 * transmission up at least on the initial stage.
	 */
	ret = dw_spi_init_mem_buf(dws, op);
	if (ret)
		return ret;

	/*
	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
	 * operation. Transmit-only mode is suitable for the rest of them.
	 */
	cfg.dfs = 8;
	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
	if (op->data.dir == SPI_MEM_DATA_IN) {
		cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
		cfg.ndf = op->data.nbytes;
	} else {
		cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
	}

	dw_spi_enable_chip(dws, 0);

	dw_spi_update_config(dws, mem->spi, &cfg);

	dw_spi_mask_intr(dws, 0xff);

	dw_spi_enable_chip(dws, 1);

	/*
	 * DW APB SSI controller has very nasty peculiarities. First originally
	 * (without any vendor-specific modifications) it doesn't provide a
	 * direct way to set and clear the native chip-select signal. Instead
	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
	 * transmission is going on, and automatically de-asserts it back to
	 * the high level if the Tx FIFO doesn't have anything to be pushed
	 * out. Due to that a multi-tasking or heavy IRQs activity might be
	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
	 * getting empty and sudden CS de-assertion, which in the middle of the
	 * transfer will most likely cause the data loss. Secondly the
	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
	 * data being automatically pulled in into the Rx FIFO. So if the
	 * driver software is late in fetching the data from the FIFO before
	 * it's overflown, new incoming data will be lost. In order to make
	 * sure the executed memory operations are CS-atomic and to prevent the
	 * Rx FIFO overflow we have to disable the local interrupts so to block
	 * any preemption during the subsequent IO operations.
	 *
	 * Note. At some circumstances disabling IRQs may not help to prevent
	 * the problems described above. The CS de-assertion and Rx FIFO
	 * overflow may still happen due to the relatively slow system bus or
	 * CPU not working fast enough, so the write-then-read algo implemented
	 * here just won't keep up with the SPI bus data transfer. Such
	 * situation is highly platform specific and is supposed to be fixed by
	 * manually restricting the SPI bus frequency using the
	 * dws->max_mem_freq parameter.
	 */
	local_irq_save(flags);
	preempt_disable();

	ret = dw_spi_write_then_read(dws, mem->spi);

	local_irq_restore(flags);
	preempt_enable();

	/*
	 * Wait for the operation being finished and check the controller
	 * status only if there hasn't been any run-time error detected. In the
	 * former case it's just pointless. In the later one to prevent an
	 * additional error message printing since any hw error flag being set
	 * would be due to an error detected on the data transfer.
	 */
	if (!ret) {
		ret = dw_spi_wait_mem_op_done(dws);
		if (!ret)
			ret = dw_spi_check_status(dws, true);
	}

	dw_spi_stop_mem_op(dws, mem->spi);

	dw_spi_free_mem_buf(dws);

	return ret;
}

/*
 * Initialize the default memory operations if a glue layer hasn't specified
 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
 * controller doesn't have an embedded dirmap interface. Note the memory
 * operations implemented in this driver is the best choice only for the DW APB
 * SSI controller with standard native CS functionality. If a hardware vendor
 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
 * be safer to use the normal SPI-messages-based transfers implementation.
 */
static void dw_spi_init_mem_ops(struct dw_spi *dws)
{
	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
	    !dws->set_cs) {
		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
		if (!dws->max_mem_freq)
			dws->max_mem_freq = dws->max_freq;
	}
}

/* This may be called twice for each spi dev */
static int dw_spi_setup(struct spi_device *spi)
{
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
	struct dw_spi_chip_data *chip;

	/* Only alloc on first setup */
	chip = spi_get_ctldata(spi);
	if (!chip) {
		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
		u32 rx_sample_dly_ns;

		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
		if (!chip)
			return -ENOMEM;
		spi_set_ctldata(spi, chip);
		/* Get specific / default rx-sample-delay */
		if (device_property_read_u32(&spi->dev,
					     "rx-sample-delay-ns",
					     &rx_sample_dly_ns) != 0)
			/* Use default controller value */
			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
							NSEC_PER_SEC /
							dws->max_freq);
	}

	/*
	 * Update CR0 data each time the setup callback is invoked since
	 * the device parameters could have been changed, for instance, by
	 * the MMC SPI driver or something else.
	 */
	chip->cr0 = dw_spi_prepare_cr0(dws, spi);

	return 0;
}

static void dw_spi_cleanup(struct spi_device *spi)
{
	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);

	kfree(chip);
	spi_set_ctldata(spi, NULL);
}

/* Restart the controller, disable all interrupts, clean rx fifo */
static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
{
	dw_spi_reset_chip(dws);

	/*
	 * Retrieve the Synopsys component version if it hasn't been specified
	 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
	 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
	 */
	if (!dws->ver) {
		dws->ver = dw_readl(dws, DW_SPI_VERSION);

		dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
			dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
			DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
			DW_SPI_GET_BYTE(dws->ver, 1));
	}

	/*
	 * Try to detect the number of native chip-selects if the platform
	 * driver didn't set it up. There can be up to 16 lines configured.
	 */
	if (!dws->num_cs) {
		u32 ser;

		dw_writel(dws, DW_SPI_SER, 0xffff);
		ser = dw_readl(dws, DW_SPI_SER);
		dw_writel(dws, DW_SPI_SER, 0);

		dws->num_cs = hweight16(ser);
	}

	/*
	 * Try to detect the FIFO depth if not set by interface driver,
	 * the depth could be from 2 to 256 from HW spec
	 */
	if (!dws->fifo_len) {
		u32 fifo;

		for (fifo = 1; fifo < 256; fifo++) {
			dw_writel(dws, DW_SPI_TXFTLR, fifo);
			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
				break;
		}
		dw_writel(dws, DW_SPI_TXFTLR, 0);

		dws->fifo_len = (fifo == 1) ? 0 : fifo;
		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
	}

	/*
	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
	 * writability. Note DWC SSI controller also has the extended DFS, but
	 * with zero offset.
	 */
	if (dw_spi_ip_is(dws, PSSI)) {
		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);

		dw_spi_enable_chip(dws, 0);
		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
		dw_writel(dws, DW_SPI_CTRLR0, tmp);
		dw_spi_enable_chip(dws, 1);

		if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
			dws->caps |= DW_SPI_CAP_DFS32;
			dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
			dev_dbg(dev, "Detected 32-bits max data frame size\n");
		}
	} else {
		dws->caps |= DW_SPI_CAP_DFS32;
	}

	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
}

int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
{
	struct spi_controller *host;
	int ret;

	if (!dws)
		return -EINVAL;

	host = spi_alloc_host(dev, 0);
	if (!host)
		return -ENOMEM;

	device_set_node(&host->dev, dev_fwnode(dev));

	dws->host = host;
	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);

	spi_controller_set_devdata(host, dws);

	/* Basic HW init */
	dw_spi_hw_init(dev, dws);

	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
			  host);
	if (ret < 0 && ret != -ENOTCONN) {
		dev_err(dev, "can not get IRQ\n");
		goto err_free_host;
	}

	dw_spi_init_mem_ops(dws);

	host->use_gpio_descriptors = true;
	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
	if (dws->caps & DW_SPI_CAP_DFS32)
		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
	else
		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
	host->bus_num = dws->bus_num;
	host->num_chipselect = dws->num_cs;
	host->setup = dw_spi_setup;
	host->cleanup = dw_spi_cleanup;
	if (dws->set_cs)
		host->set_cs = dws->set_cs;
	else
		host->set_cs = dw_spi_set_cs;
	host->transfer_one = dw_spi_transfer_one;
	host->handle_err = dw_spi_handle_err;
	if (dws->mem_ops.exec_op)
		host->mem_ops = &dws->mem_ops;
	host->max_speed_hz = dws->max_freq;
	host->flags = SPI_CONTROLLER_GPIO_SS;
	host->auto_runtime_pm = true;

	/* Get default rx sample delay */
	device_property_read_u32(dev, "rx-sample-delay-ns",
				 &dws->def_rx_sample_dly_ns);

	if (dws->dma_ops && dws->dma_ops->dma_init) {
		ret = dws->dma_ops->dma_init(dev, dws);
		if (ret == -EPROBE_DEFER) {
			goto err_free_irq;
		} else if (ret) {
			dev_warn(dev, "DMA init failed\n");
		} else {
			host->can_dma = dws->dma_ops->can_dma;
			host->flags |= SPI_CONTROLLER_MUST_TX;
		}
	}

	ret = spi_register_controller(host);
	if (ret) {
		dev_err_probe(dev, ret, "problem registering spi host\n");
		goto err_dma_exit;
	}

	dw_spi_debugfs_init(dws);
	return 0;

err_dma_exit:
	if (dws->dma_ops && dws->dma_ops->dma_exit)
		dws->dma_ops->dma_exit(dws);
	dw_spi_enable_chip(dws, 0);
err_free_irq:
	free_irq(dws->irq, host);
err_free_host:
	spi_controller_put(host);
	return ret;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);

void dw_spi_remove_host(struct dw_spi *dws)
{
	dw_spi_debugfs_remove(dws);

	spi_unregister_controller(dws->host);

	if (dws->dma_ops && dws->dma_ops->dma_exit)
		dws->dma_ops->dma_exit(dws);

	dw_spi_shutdown_chip(dws);

	free_irq(dws->irq, dws->host);
}
EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);

int dw_spi_suspend_host(struct dw_spi *dws)
{
	int ret;

	ret = spi_controller_suspend(dws->host);
	if (ret)
		return ret;

	dw_spi_shutdown_chip(dws);
	return 0;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);

int dw_spi_resume_host(struct dw_spi *dws)
{
	dw_spi_hw_init(&dws->host->dev, dws);
	return spi_controller_resume(dws->host);
}
EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);

MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
MODULE_LICENSE("GPL v2");