Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 CRTC module * * In VC4, the Pixel Valve is what most closely corresponds to the * DRM's concept of a CRTC. The PV generates video timings from the * encoder's clock plus its configuration. It pulls scaled pixels from * the HVS at that timing, and feeds it to the encoder. * * However, the DRM CRTC also collects the configuration of all the * DRM planes attached to it. As a result, the CRTC is also * responsible for writing the display list for the HVS channel that * the CRTC will use. * * The 2835 has 3 different pixel valves. pv0 in the audio power * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the * image domain can feed either HDMI or the SDTV controller. The * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for * SDTV, etc.) according to which output type is chosen in the mux. * * For power management, the pixel valve's registers are all clocked * by the AXI clock, while the timings and FIFOs make use of the * output-specific clock. Since the encoders also directly consume * the CPRMAN clocks, and know what timings they need, they are the * ones that set the clock. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_atomic_uapi.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_framebuffer.h> #include <drm/drm_drv.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "vc4_drv.h" #include "vc4_hdmi.h" #include "vc4_regs.h" #define HVS_FIFO_LATENCY_PIX 6 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) static const struct debugfs_reg32 crtc_regs[] = { VC4_REG32(PV_CONTROL), VC4_REG32(PV_V_CONTROL), VC4_REG32(PV_VSYNCD_EVEN), VC4_REG32(PV_HORZA), VC4_REG32(PV_HORZB), VC4_REG32(PV_VERTA), VC4_REG32(PV_VERTB), VC4_REG32(PV_VERTA_EVEN), VC4_REG32(PV_VERTB_EVEN), VC4_REG32(PV_INTEN), VC4_REG32(PV_INTSTAT), VC4_REG32(PV_STAT), VC4_REG32(PV_HACT_ACT), }; static unsigned int vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) { struct vc4_hvs *hvs = vc4->hvs; u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); /* Top/base are supposed to be 4-pixel aligned, but the * Raspberry Pi firmware fills the low bits (which are * presumably ignored). */ u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; return top - base + 4; } static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); unsigned int cob_size; u32 val; int fifo_lines; int vblank_lines; bool ret = false; /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); /* * Read vertical scanline which is currently composed for our * pixelvalve by the HVS, and also the scaler status. */ val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ /* Vertical position of hvs composed scanline. */ *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); *hpos = 0; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { *vpos /= 2; /* Use hpos to correct for field offset in interlaced mode. */ if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2) *hpos += mode->crtc_htotal / 2; } cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); /* This is the offset we need for translating hvs -> pv scanout pos. */ fifo_lines = cob_size / mode->crtc_hdisplay; if (fifo_lines > 0) ret = true; /* HVS more than fifo_lines into frame for compositing? */ if (*vpos > fifo_lines) { /* * We are in active scanout and can get some meaningful results * from HVS. The actual PV scanout can not trail behind more * than fifo_lines as that is the fifo's capacity. Assume that * in active scanout the HVS and PV work in lockstep wrt. HVS * refilling the fifo and PV consuming from the fifo, ie. * whenever the PV consumes and frees up a scanline in the * fifo, the HVS will immediately refill it, therefore * incrementing vpos. Therefore we choose HVS read position - * fifo size in scanlines as a estimate of the real scanout * position of the PV. */ *vpos -= fifo_lines + 1; return ret; } /* * Less: This happens when we are in vblank and the HVS, after getting * the VSTART restart signal from the PV, just started refilling its * fifo with new lines from the top-most lines of the new framebuffers. * The PV does not scan out in vblank, so does not remove lines from * the fifo, so the fifo will be full quickly and the HVS has to pause. * We can't get meaningful readings wrt. scanline position of the PV * and need to make things up in a approximative but consistent way. */ vblank_lines = mode->vtotal - mode->vdisplay; if (in_vblank_irq) { /* * Assume the irq handler got called close to first * line of vblank, so PV has about a full vblank * scanlines to go, and as a base timestamp use the * one taken at entry into vblank irq handler, so it * is not affected by random delays due to lock * contention on event_lock or vblank_time lock in * the core. */ *vpos = -vblank_lines; if (stime) *stime = vc4_crtc->t_vblank; if (etime) *etime = vc4_crtc->t_vblank; /* * If the HVS fifo is not yet full then we know for certain * we are at the very beginning of vblank, as the hvs just * started refilling, and the stime and etime timestamps * truly correspond to start of vblank. * * Unfortunately there's no way to report this to upper levels * and make it more useful. */ } else { /* * No clue where we are inside vblank. Return a vpos of zero, * which will cause calling code to just return the etime * timestamp uncorrected. At least this is no worse than the * standard fallback. */ *vpos = 0; } return ret; } static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) { const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); u32 fifo_len_bytes = pv_data->fifo_depth; /* * Pixels are pulled from the HVS if the number of bytes is * lower than the FIFO full level. * * The latency of the pixel fetch mechanism is 6 pixels, so we * need to convert those 6 pixels in bytes, depending on the * format, and then subtract that from the length of the FIFO * to make sure we never end up in a situation where the FIFO * is full. */ switch (format) { case PV_CONTROL_FORMAT_DSIV_16: case PV_CONTROL_FORMAT_DSIC_16: return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; case PV_CONTROL_FORMAT_DSIV_18: return fifo_len_bytes - 14; case PV_CONTROL_FORMAT_24: case PV_CONTROL_FORMAT_DSIV_24: default: /* * For some reason, the pixelvalve4 doesn't work with * the usual formula and will only work with 32. */ if (crtc_data->hvs_output == 5) return 32; /* * It looks like in some situations, we will overflow * the PixelValve FIFO (with the bit 10 of PV stat being * set) and stall the HVS / PV, eventually resulting in * a page flip timeout. * * Displaying the video overlay during a playback with * Kodi on an RPi3 seems to be a great solution with a * failure rate around 50%. * * Removing 1 from the FIFO full level however * seems to completely remove that issue. */ if (!vc4->is_vc5) return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; } } static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, u32 format) { u32 level = vc4_get_fifo_full_level(vc4_crtc, format); u32 ret = 0; ret |= VC4_SET_FIELD((level >> 6), PV5_CONTROL_FIFO_LEVEL_HIGH); return ret | VC4_SET_FIELD(level & 0x3f, PV_CONTROL_FIFO_LEVEL); } /* * Returns the encoder attached to the CRTC. * * VC4 can only scan out to one encoder at a time, while the DRM core * allows drivers to push pixels to more than one encoder from the * same CRTC. */ struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_encoder *encoder; WARN_ON(hweight32(state->encoder_mask) > 1); drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) return encoder; return NULL; } static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; int idx; if (!drm_dev_enter(dev, &idx)) return; /* The PV needs to be disabled before it can be flushed */ CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); drm_dev_exit(idx); } static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder, struct drm_atomic_state *state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); struct drm_crtc_state *crtc_state = crtc->state; struct drm_display_mode *mode = &crtc_state->adjusted_mode; bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 || vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1; u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1; bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; u8 ppc = pv_data->pixels_per_clock; bool debug_dump_regs = false; int idx; if (!drm_dev_enter(dev, &idx)) return; if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", drm_crtc_index(crtc)); drm_print_regset32(&p, &vc4_crtc->regset); } vc4_crtc_pixelvalve_reset(crtc); CRTC_WRITE(PV_HORZA, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, PV_HORZA_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, PV_HORZA_HSYNC)); CRTC_WRITE(PV_HORZB, VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, PV_HORZB_HFP) | VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, PV_HORZB_HACTIVE)); CRTC_WRITE(PV_VERTA, VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + interlace, PV_VERTA_VBP) | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB, VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); if (interlace) { CRTC_WRITE(PV_VERTA_EVEN, VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, PV_VERTA_VBP) | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB_EVEN, VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); /* We set up first field even mode for HDMI. VEC's * NTSC mode would want first field odd instead, once * we support it (to do so, set ODD_FIRST and put the * delay in VSYNCD_EVEN instead). */ CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (is_dsi ? PV_VCONTROL_DSI : 0) | PV_VCONTROL_INTERLACE | VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc), PV_VCONTROL_ODD_DELAY)); CRTC_WRITE(PV_VSYNCD_EVEN, 0); } else { CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (is_dsi ? PV_VCONTROL_DSI : 0)); } if (is_dsi) CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); if (vc4->is_vc5) CRTC_WRITE(PV_MUX_CFG, VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | PV_CONTROL_CLR_AT_START | PV_CONTROL_TRIGGER_UNDERFLOW | PV_CONTROL_WAIT_HSTART | VC4_SET_FIELD(vc4_encoder->clock_select, PV_CONTROL_CLK_SELECT)); if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", drm_crtc_index(crtc)); drm_print_regset32(&p, &vc4_crtc->regset); } drm_dev_exit(idx); } static void require_hvs_enabled(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != SCALER_DISPCTRL_ENABLE); } static int vc4_crtc_disable(struct drm_crtc *crtc, struct drm_encoder *encoder, struct drm_atomic_state *state, unsigned int channel) { struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); int idx, ret; if (!drm_dev_enter(dev, &idx)) return -ENODEV; CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); /* * This delay is needed to avoid to get a pixel stuck in an * unflushable FIFO between the pixelvalve and the HDMI * controllers on the BCM2711. * * Timing is fairly sensitive here, so mdelay is the safest * approach. * * If it was to be reworked, the stuck pixel happens on a * BCM2711 when changing mode with a good probability, so a * script that changes mode on a regular basis should trigger * the bug after less than 10 attempts. It manifests itself with * every pixels being shifted by one to the right, and thus the * last pixel of a line actually being displayed as the first * pixel on the next line. */ mdelay(20); if (vc4_encoder && vc4_encoder->post_crtc_disable) vc4_encoder->post_crtc_disable(encoder, state); vc4_crtc_pixelvalve_reset(crtc); vc4_hvs_stop_channel(vc4->hvs, channel); if (vc4_encoder && vc4_encoder->post_crtc_powerdown) vc4_encoder->post_crtc_powerdown(encoder, state); drm_dev_exit(idx); return 0; } static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc, enum vc4_encoder_type type) { struct drm_encoder *encoder; drm_for_each_encoder(encoder, crtc->dev) { struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); if (vc4_encoder->type == type) return encoder; } return NULL; } int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) { struct drm_device *drm = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); enum vc4_encoder_type encoder_type; const struct vc4_pv_data *pv_data; struct drm_encoder *encoder; struct vc4_hdmi *vc4_hdmi; unsigned encoder_sel; int channel; int ret; if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, "brcm,bcm2711-pixelvalve2") || of_device_is_compatible(vc4_crtc->pdev->dev.of_node, "brcm,bcm2711-pixelvalve4"))) return 0; if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) return 0; if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) return 0; channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output); if (channel < 0) return 0; encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); if (WARN_ON(encoder_sel != 0)) return 0; pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); encoder_type = pv_data->encoder_types[encoder_sel]; encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type); if (WARN_ON(!encoder)) return 0; vc4_hdmi = encoder_to_vc4_hdmi(encoder); ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); if (ret) return ret; ret = vc4_crtc_disable(crtc, encoder, NULL, channel); if (ret) return ret; /* * post_crtc_powerdown will have called pm_runtime_put, so we * don't need it here otherwise we'll get the reference counting * wrong. */ return 0; } void vc4_crtc_send_vblank(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; unsigned long flags; if (!crtc->state || !crtc->state->event) return; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); } static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state); struct drm_device *dev = crtc->dev; drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)", crtc->name, crtc->base.id, encoder->name, encoder->base.id); require_hvs_enabled(dev); /* Disable vblank irq handling before crtc is disabled. */ drm_crtc_vblank_off(crtc); vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); /* * Make sure we issue a vblank event after disabling the CRTC if * someone was waiting it. */ vc4_crtc_send_vblank(crtc); } static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, crtc); struct drm_device *dev = crtc->dev; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state); struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); int idx; drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)", crtc->name, crtc->base.id, encoder->name, encoder->base.id); if (!drm_dev_enter(dev, &idx)) return; require_hvs_enabled(dev); /* Enable vblank irq handling before crtc is started otherwise * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). */ drm_crtc_vblank_on(crtc); vc4_hvs_atomic_enable(crtc, state); if (vc4_encoder->pre_crtc_configure) vc4_encoder->pre_crtc_configure(encoder, state); vc4_crtc_config_pv(crtc, encoder, state); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); if (vc4_encoder->pre_crtc_enable) vc4_encoder->pre_crtc_enable(encoder, state); /* When feeding the transposer block the pixelvalve is unneeded and * should not be enabled. */ CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); if (vc4_encoder->post_crtc_enable) vc4_encoder->post_crtc_enable(encoder, state); drm_dev_exit(idx); } static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { /* Do not allow doublescan modes from user space */ if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", crtc->base.id); return MODE_NO_DBLESCAN; } return MODE_OK; } void vc4_crtc_get_margins(struct drm_crtc_state *state, unsigned int *left, unsigned int *right, unsigned int *top, unsigned int *bottom) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); struct drm_connector_state *conn_state; struct drm_connector *conn; int i; *left = vc4_state->margins.left; *right = vc4_state->margins.right; *top = vc4_state->margins.top; *bottom = vc4_state->margins.bottom; /* We have to interate over all new connector states because * vc4_crtc_get_margins() might be called before * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state * might be outdated. */ for_each_new_connector_in_state(state->state, conn, conn_state, i) { if (conn_state->crtc != state->crtc) continue; *left = conn_state->tv.margins.left; *right = conn_state->tv.margins.right; *top = conn_state->tv.margins.top; *bottom = conn_state->tv.margins.bottom; break; } } static int vc4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); struct drm_connector *conn; struct drm_connector_state *conn_state; struct drm_encoder *encoder; int ret, i; ret = vc4_hvs_atomic_check(crtc, state); if (ret) return ret; encoder = vc4_get_crtc_encoder(crtc, crtc_state); if (encoder) { const struct drm_display_mode *mode = &crtc_state->adjusted_mode; struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) { vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000, mode->clock * 9 / 10) * 1000; } else { vc4_state->hvs_load = mode->clock * 1000; } } for_each_new_connector_in_state(state, conn, conn_state, i) { if (conn_state->crtc != crtc) continue; vc4_state->margins.left = conn_state->tv.margins.left; vc4_state->margins.right = conn_state->tv.margins.right; vc4_state->margins.top = conn_state->tv.margins.top; vc4_state->margins.bottom = conn_state->tv.margins.bottom; break; } return 0; } static int vc4_enable_vblank(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; int idx; if (!drm_dev_enter(dev, &idx)) return -ENODEV; CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); drm_dev_exit(idx); return 0; } static void vc4_disable_vblank(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; int idx; if (!drm_dev_enter(dev, &idx)) return; CRTC_WRITE(PV_INTEN, 0); drm_dev_exit(idx); } static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) { struct drm_crtc *crtc = &vc4_crtc->base; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; u32 chan = vc4_crtc->current_hvs_channel; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); spin_lock(&vc4_crtc->irq_lock); if (vc4_crtc->event && (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) || vc4_crtc->feeds_txp)) { drm_crtc_send_vblank_event(crtc, vc4_crtc->event); vc4_crtc->event = NULL; drm_crtc_vblank_put(crtc); /* Wait for the page flip to unmask the underrun to ensure that * the display list was updated by the hardware. Before that * happens, the HVS will be using the previous display list with * the CRTC and encoder already reconfigured, leading to * underruns. This can be seen when reconfiguring the CRTC. */ vc4_hvs_unmask_underrun(hvs, chan); } spin_unlock(&vc4_crtc->irq_lock); spin_unlock_irqrestore(&dev->event_lock, flags); } void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) { crtc->t_vblank = ktime_get(); drm_crtc_handle_vblank(&crtc->base); vc4_crtc_handle_page_flip(crtc); } static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) { struct vc4_crtc *vc4_crtc = data; u32 stat = CRTC_READ(PV_INTSTAT); irqreturn_t ret = IRQ_NONE; if (stat & PV_INT_VFP_START) { CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); vc4_crtc_handle_vblank(vc4_crtc); ret = IRQ_HANDLED; } return ret; } struct vc4_async_flip_state { struct drm_crtc *crtc; struct drm_framebuffer *fb; struct drm_framebuffer *old_fb; struct drm_pending_vblank_event *event; union { struct dma_fence_cb fence; struct vc4_seqno_cb seqno; } cb; }; /* Called when the V3D execution for the BO being flipped to is done, so that * we can actually update the plane's address to point to it. */ static void vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state) { struct drm_crtc *crtc = flip_state->crtc; struct drm_device *dev = crtc->dev; struct drm_plane *plane = crtc->primary; vc4_plane_async_set_fb(plane, flip_state->fb); if (flip_state->event) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, flip_state->event); spin_unlock_irqrestore(&dev->event_lock, flags); } drm_crtc_vblank_put(crtc); drm_framebuffer_put(flip_state->fb); if (flip_state->old_fb) drm_framebuffer_put(flip_state->old_fb); kfree(flip_state); } static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb.seqno); struct vc4_bo *bo = NULL; if (flip_state->old_fb) { struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(flip_state->old_fb, 0); bo = to_vc4_bo(&dma_bo->base); } vc4_async_page_flip_complete(flip_state); /* * Decrement the BO usecnt in order to keep the inc/dec * calls balanced when the planes are updated through * the async update path. * * FIXME: we should move to generic async-page-flip when * it's available, so that we can get rid of this * hand-made cleanup_fb() logic. */ if (bo) vc4_bo_dec_usecnt(bo); } static void vc4_async_page_flip_fence_complete(struct dma_fence *fence, struct dma_fence_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb.fence); vc4_async_page_flip_complete(flip_state); dma_fence_put(fence); } static int vc4_async_set_fence_cb(struct drm_device *dev, struct vc4_async_flip_state *flip_state) { struct drm_framebuffer *fb = flip_state->fb; struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); struct vc4_dev *vc4 = to_vc4_dev(dev); struct dma_fence *fence; int ret; if (!vc4->is_vc5) { struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno, vc4_async_page_flip_seqno_complete); } ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence); if (ret) return ret; /* If there's no fence, complete the page flip immediately */ if (!fence) { vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); return 0; } /* If the fence has already been completed, complete the page flip */ if (dma_fence_add_callback(fence, &flip_state->cb.fence, vc4_async_page_flip_fence_complete)) vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); return 0; } static int vc4_async_page_flip_common(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct drm_plane *plane = crtc->primary; struct vc4_async_flip_state *flip_state; flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); if (!flip_state) return -ENOMEM; drm_framebuffer_get(fb); flip_state->fb = fb; flip_state->crtc = crtc; flip_state->event = event; /* Save the current FB before it's replaced by the new one in * drm_atomic_set_fb_for_plane(). We'll need the old FB in * vc4_async_page_flip_complete() to decrement the BO usecnt and keep * it consistent. * FIXME: we should move to generic async-page-flip when it's * available, so that we can get rid of this hand-made cleanup_fb() * logic. */ flip_state->old_fb = plane->state->fb; if (flip_state->old_fb) drm_framebuffer_get(flip_state->old_fb); WARN_ON(drm_crtc_vblank_get(crtc) != 0); /* Immediately update the plane's legacy fb pointer, so that later * modeset prep sees the state that will be present when the semaphore * is released. */ drm_atomic_set_fb_for_plane(plane->state, fb); vc4_async_set_fence_cb(dev, flip_state); /* Driver takes ownership of state on successful async commit. */ return 0; } /* Implements async (non-vblank-synced) page flips. * * The page flip ioctl needs to return immediately, so we grab the * modeset semaphore on the pipe, and queue the address update for * when V3D is done with the BO being flipped to. */ static int vc4_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); int ret; if (WARN_ON_ONCE(vc4->is_vc5)) return -ENODEV; /* * Increment the BO usecnt here, so that we never end up with an * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the * plane is later updated through the non-async path. * * FIXME: we should move to generic async-page-flip when * it's available, so that we can get rid of this * hand-made prepare_fb() logic. */ ret = vc4_bo_inc_usecnt(bo); if (ret) return ret; ret = vc4_async_page_flip_common(crtc, fb, event, flags); if (ret) { vc4_bo_dec_usecnt(bo); return ret; } return 0; } static int vc5_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { return vc4_async_page_flip_common(crtc, fb, event, flags); } int vc4_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags, struct drm_modeset_acquire_ctx *ctx) { if (flags & DRM_MODE_PAGE_FLIP_ASYNC) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); if (vc4->is_vc5) return vc5_async_page_flip(crtc, fb, event, flags); else return vc4_async_page_flip(crtc, fb, event, flags); } else { return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); } } struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) { struct vc4_crtc_state *vc4_state, *old_vc4_state; vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return NULL; old_vc4_state = to_vc4_crtc_state(crtc->state); vc4_state->margins = old_vc4_state->margins; vc4_state->assigned_channel = old_vc4_state->assigned_channel; __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); return &vc4_state->base; } void vc4_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); if (drm_mm_node_allocated(&vc4_state->mm)) { unsigned long flags; spin_lock_irqsave(&vc4->hvs->mm_lock, flags); drm_mm_remove_node(&vc4_state->mm); spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); } drm_atomic_helper_crtc_destroy_state(crtc, state); } void vc4_crtc_reset(struct drm_crtc *crtc) { struct vc4_crtc_state *vc4_crtc_state; if (crtc->state) vc4_crtc_destroy_state(crtc, crtc->state); vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); if (!vc4_crtc_state) { crtc->state = NULL; return; } vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); } int vc4_crtc_late_register(struct drm_crtc *crtc) { struct drm_device *drm = crtc->dev; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); int ret; ret = vc4_debugfs_add_regset32(drm->primary, crtc_data->debugfs_name, &vc4_crtc->regset); if (ret) return ret; return 0; } static const struct drm_crtc_funcs vc4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .page_flip = vc4_page_flip, .set_property = NULL, .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .reset = vc4_crtc_reset, .atomic_duplicate_state = vc4_crtc_duplicate_state, .atomic_destroy_state = vc4_crtc_destroy_state, .enable_vblank = vc4_enable_vblank, .disable_vblank = vc4_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .late_register = vc4_crtc_late_register, }; static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { .mode_valid = vc4_crtc_mode_valid, .atomic_check = vc4_crtc_atomic_check, .atomic_begin = vc4_hvs_atomic_begin, .atomic_flush = vc4_hvs_atomic_flush, .atomic_enable = vc4_crtc_atomic_enable, .atomic_disable = vc4_crtc_atomic_disable, .get_scanout_position = vc4_crtc_get_scanout_position, }; static const struct vc4_pv_data bcm2835_pv0_data = { .base = { .debugfs_name = "crtc0_regs", .hvs_available_channels = BIT(0), .hvs_output = 0, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, }, }; static const struct vc4_pv_data bcm2835_pv1_data = { .base = { .debugfs_name = "crtc1_regs", .hvs_available_channels = BIT(2), .hvs_output = 2, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, }, }; static const struct vc4_pv_data bcm2835_pv2_data = { .base = { .debugfs_name = "crtc2_regs", .hvs_available_channels = BIT(1), .hvs_output = 1, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, }, }; static const struct vc4_pv_data bcm2711_pv0_data = { .base = { .debugfs_name = "crtc0_regs", .hvs_available_channels = BIT(0), .hvs_output = 0, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [0] = VC4_ENCODER_TYPE_DSI0, [1] = VC4_ENCODER_TYPE_DPI, }, }; static const struct vc4_pv_data bcm2711_pv1_data = { .base = { .debugfs_name = "crtc1_regs", .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), .hvs_output = 3, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [0] = VC4_ENCODER_TYPE_DSI1, [1] = VC4_ENCODER_TYPE_SMI, }, }; static const struct vc4_pv_data bcm2711_pv2_data = { .base = { .debugfs_name = "crtc2_regs", .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), .hvs_output = 4, }, .fifo_depth = 256, .pixels_per_clock = 2, .encoder_types = { [0] = VC4_ENCODER_TYPE_HDMI0, }, }; static const struct vc4_pv_data bcm2711_pv3_data = { .base = { .debugfs_name = "crtc3_regs", .hvs_available_channels = BIT(1), .hvs_output = 1, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, }, }; static const struct vc4_pv_data bcm2711_pv4_data = { .base = { .debugfs_name = "crtc4_regs", .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), .hvs_output = 5, }, .fifo_depth = 64, .pixels_per_clock = 2, .encoder_types = { [0] = VC4_ENCODER_TYPE_HDMI1, }, }; static const struct of_device_id vc4_crtc_dt_match[] = { { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, {} }; static void vc4_set_crtc_possible_masks(struct drm_device *drm, struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; struct drm_encoder *encoder; drm_for_each_encoder(encoder, drm) { struct vc4_encoder *vc4_encoder; int i; if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) continue; vc4_encoder = to_vc4_encoder(encoder); for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { if (vc4_encoder->type == encoder_types[i]) { vc4_encoder->clock_select = i; encoder->possible_crtcs |= drm_crtc_mask(crtc); break; } } } } int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, const struct drm_crtc_funcs *crtc_funcs, const struct drm_crtc_helper_funcs *crtc_helper_funcs) { struct vc4_dev *vc4 = to_vc4_dev(drm); struct drm_crtc *crtc = &vc4_crtc->base; struct drm_plane *primary_plane; unsigned int i; int ret; /* For now, we create just the primary and the legacy cursor * planes. We should be able to stack more planes on easily, * but to do that we would need to compute the bandwidth * requirement of the plane configuration, and reject ones * that will take too much. */ primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0); if (IS_ERR(primary_plane)) { dev_err(drm->dev, "failed to construct primary plane\n"); return PTR_ERR(primary_plane); } spin_lock_init(&vc4_crtc->irq_lock); ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, crtc_funcs, NULL); if (ret) return ret; drm_crtc_helper_add(crtc, crtc_helper_funcs); if (!vc4->is_vc5) { drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); /* We support CTM, but only for one CRTC at a time. It's therefore * implemented as private driver state in vc4_kms, not here. */ drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); } for (i = 0; i < crtc->gamma_size; i++) { vc4_crtc->lut_r[i] = i; vc4_crtc->lut_g[i] = i; vc4_crtc->lut_b[i] = i; } return 0; } static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); const struct vc4_pv_data *pv_data; struct vc4_crtc *vc4_crtc; struct drm_crtc *crtc; int ret; vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL); if (!vc4_crtc) return -ENOMEM; crtc = &vc4_crtc->base; pv_data = of_device_get_match_data(dev); if (!pv_data) return -ENODEV; vc4_crtc->data = &pv_data->base; vc4_crtc->pdev = pdev; vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_crtc->regs)) return PTR_ERR(vc4_crtc->regs); vc4_crtc->regset.base = vc4_crtc->regs; vc4_crtc->regset.regs = crtc_regs; vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); ret = vc4_crtc_init(drm, vc4_crtc, &vc4_crtc_funcs, &vc4_crtc_helper_funcs); if (ret) return ret; vc4_set_crtc_possible_masks(drm, crtc); CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_crtc_irq_handler, IRQF_SHARED, "vc4 crtc", vc4_crtc); if (ret) return ret; platform_set_drvdata(pdev, vc4_crtc); return 0; } static void vc4_crtc_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); CRTC_WRITE(PV_INTEN, 0); platform_set_drvdata(pdev, NULL); } static const struct component_ops vc4_crtc_ops = { .bind = vc4_crtc_bind, .unbind = vc4_crtc_unbind, }; static int vc4_crtc_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_crtc_ops); } static int vc4_crtc_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_crtc_ops); return 0; } struct platform_driver vc4_crtc_driver = { .probe = vc4_crtc_dev_probe, .remove = vc4_crtc_dev_remove, .driver = { .name = "vc4_crtc", .of_match_table = vc4_crtc_dt_match, }, }; |