Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 Broadcom
 */

/**
 * DOC: VC4 CRTC module
 *
 * In VC4, the Pixel Valve is what most closely corresponds to the
 * DRM's concept of a CRTC.  The PV generates video timings from the
 * encoder's clock plus its configuration.  It pulls scaled pixels from
 * the HVS at that timing, and feeds it to the encoder.
 *
 * However, the DRM CRTC also collects the configuration of all the
 * DRM planes attached to it.  As a result, the CRTC is also
 * responsible for writing the display list for the HVS channel that
 * the CRTC will use.
 *
 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 * image domain can feed either HDMI or the SDTV controller.  The
 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 * SDTV, etc.) according to which output type is chosen in the mux.
 *
 * For power management, the pixel valve's registers are all clocked
 * by the AXI clock, while the timings and FIFOs make use of the
 * output-specific clock.  Since the encoders also directly consume
 * the CPRMAN clocks, and know what timings they need, they are the
 * ones that set the clock.
 */

#include <linux/clk.h>
#include <linux/component.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>

#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_drv.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>

#include "vc4_drv.h"
#include "vc4_hdmi.h"
#include "vc4_regs.h"

#define HVS_FIFO_LATENCY_PIX	6

#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))

static const struct debugfs_reg32 crtc_regs[] = {
	VC4_REG32(PV_CONTROL),
	VC4_REG32(PV_V_CONTROL),
	VC4_REG32(PV_VSYNCD_EVEN),
	VC4_REG32(PV_HORZA),
	VC4_REG32(PV_HORZB),
	VC4_REG32(PV_VERTA),
	VC4_REG32(PV_VERTB),
	VC4_REG32(PV_VERTA_EVEN),
	VC4_REG32(PV_VERTB_EVEN),
	VC4_REG32(PV_INTEN),
	VC4_REG32(PV_INTSTAT),
	VC4_REG32(PV_STAT),
	VC4_REG32(PV_HACT_ACT),
};

static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
{
	struct vc4_hvs *hvs = vc4->hvs;
	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
	/* Top/base are supposed to be 4-pixel aligned, but the
	 * Raspberry Pi firmware fills the low bits (which are
	 * presumably ignored).
	 */
	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;

	return top - base + 4;
}

static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
					  bool in_vblank_irq,
					  int *vpos, int *hpos,
					  ktime_t *stime, ktime_t *etime,
					  const struct drm_display_mode *mode)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_hvs *hvs = vc4->hvs;
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
	unsigned int cob_size;
	u32 val;
	int fifo_lines;
	int vblank_lines;
	bool ret = false;

	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */

	/* Get optional system timestamp before query. */
	if (stime)
		*stime = ktime_get();

	/*
	 * Read vertical scanline which is currently composed for our
	 * pixelvalve by the HVS, and also the scaler status.
	 */
	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));

	/* Get optional system timestamp after query. */
	if (etime)
		*etime = ktime_get();

	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */

	/* Vertical position of hvs composed scanline. */
	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
	*hpos = 0;

	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		*vpos /= 2;

		/* Use hpos to correct for field offset in interlaced mode. */
		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
			*hpos += mode->crtc_htotal / 2;
	}

	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
	/* This is the offset we need for translating hvs -> pv scanout pos. */
	fifo_lines = cob_size / mode->crtc_hdisplay;

	if (fifo_lines > 0)
		ret = true;

	/* HVS more than fifo_lines into frame for compositing? */
	if (*vpos > fifo_lines) {
		/*
		 * We are in active scanout and can get some meaningful results
		 * from HVS. The actual PV scanout can not trail behind more
		 * than fifo_lines as that is the fifo's capacity. Assume that
		 * in active scanout the HVS and PV work in lockstep wrt. HVS
		 * refilling the fifo and PV consuming from the fifo, ie.
		 * whenever the PV consumes and frees up a scanline in the
		 * fifo, the HVS will immediately refill it, therefore
		 * incrementing vpos. Therefore we choose HVS read position -
		 * fifo size in scanlines as a estimate of the real scanout
		 * position of the PV.
		 */
		*vpos -= fifo_lines + 1;

		return ret;
	}

	/*
	 * Less: This happens when we are in vblank and the HVS, after getting
	 * the VSTART restart signal from the PV, just started refilling its
	 * fifo with new lines from the top-most lines of the new framebuffers.
	 * The PV does not scan out in vblank, so does not remove lines from
	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
	 * We can't get meaningful readings wrt. scanline position of the PV
	 * and need to make things up in a approximative but consistent way.
	 */
	vblank_lines = mode->vtotal - mode->vdisplay;

	if (in_vblank_irq) {
		/*
		 * Assume the irq handler got called close to first
		 * line of vblank, so PV has about a full vblank
		 * scanlines to go, and as a base timestamp use the
		 * one taken at entry into vblank irq handler, so it
		 * is not affected by random delays due to lock
		 * contention on event_lock or vblank_time lock in
		 * the core.
		 */
		*vpos = -vblank_lines;

		if (stime)
			*stime = vc4_crtc->t_vblank;
		if (etime)
			*etime = vc4_crtc->t_vblank;

		/*
		 * If the HVS fifo is not yet full then we know for certain
		 * we are at the very beginning of vblank, as the hvs just
		 * started refilling, and the stime and etime timestamps
		 * truly correspond to start of vblank.
		 *
		 * Unfortunately there's no way to report this to upper levels
		 * and make it more useful.
		 */
	} else {
		/*
		 * No clue where we are inside vblank. Return a vpos of zero,
		 * which will cause calling code to just return the etime
		 * timestamp uncorrected. At least this is no worse than the
		 * standard fallback.
		 */
		*vpos = 0;
	}

	return ret;
}

static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
{
	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
	u32 fifo_len_bytes = pv_data->fifo_depth;

	/*
	 * Pixels are pulled from the HVS if the number of bytes is
	 * lower than the FIFO full level.
	 *
	 * The latency of the pixel fetch mechanism is 6 pixels, so we
	 * need to convert those 6 pixels in bytes, depending on the
	 * format, and then subtract that from the length of the FIFO
	 * to make sure we never end up in a situation where the FIFO
	 * is full.
	 */
	switch (format) {
	case PV_CONTROL_FORMAT_DSIV_16:
	case PV_CONTROL_FORMAT_DSIC_16:
		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
	case PV_CONTROL_FORMAT_DSIV_18:
		return fifo_len_bytes - 14;
	case PV_CONTROL_FORMAT_24:
	case PV_CONTROL_FORMAT_DSIV_24:
	default:
		/*
		 * For some reason, the pixelvalve4 doesn't work with
		 * the usual formula and will only work with 32.
		 */
		if (crtc_data->hvs_output == 5)
			return 32;

		/*
		 * It looks like in some situations, we will overflow
		 * the PixelValve FIFO (with the bit 10 of PV stat being
		 * set) and stall the HVS / PV, eventually resulting in
		 * a page flip timeout.
		 *
		 * Displaying the video overlay during a playback with
		 * Kodi on an RPi3 seems to be a great solution with a
		 * failure rate around 50%.
		 *
		 * Removing 1 from the FIFO full level however
		 * seems to completely remove that issue.
		 */
		if (!vc4->is_vc5)
			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;

		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
	}
}

static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
					     u32 format)
{
	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
	u32 ret = 0;

	ret |= VC4_SET_FIELD((level >> 6),
			     PV5_CONTROL_FIFO_LEVEL_HIGH);

	return ret | VC4_SET_FIELD(level & 0x3f,
				   PV_CONTROL_FIFO_LEVEL);
}

/*
 * Returns the encoder attached to the CRTC.
 *
 * VC4 can only scan out to one encoder at a time, while the DRM core
 * allows drivers to push pixels to more than one encoder from the
 * same CRTC.
 */
struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
					 struct drm_crtc_state *state)
{
	struct drm_encoder *encoder;

	WARN_ON(hweight32(state->encoder_mask) > 1);

	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
		return encoder;

	return NULL;
}

static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	int idx;

	if (!drm_dev_enter(dev, &idx))
		return;

	/* The PV needs to be disabled before it can be flushed */
	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);

	drm_dev_exit(idx);
}

static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
			       struct drm_atomic_state *state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
	struct drm_crtc_state *crtc_state = crtc->state;
	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
	u8 ppc = pv_data->pixels_per_clock;
	bool debug_dump_regs = false;
	int idx;

	if (!drm_dev_enter(dev, &idx))
		return;

	if (debug_dump_regs) {
		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
			 drm_crtc_index(crtc));
		drm_print_regset32(&p, &vc4_crtc->regset);
	}

	vc4_crtc_pixelvalve_reset(crtc);

	CRTC_WRITE(PV_HORZA,
		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
				 PV_HORZA_HBP) |
		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
				 PV_HORZA_HSYNC));

	CRTC_WRITE(PV_HORZB,
		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
				 PV_HORZB_HFP) |
		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
				 PV_HORZB_HACTIVE));

	CRTC_WRITE(PV_VERTA,
		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
				 interlace,
				 PV_VERTA_VBP) |
		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
				 PV_VERTA_VSYNC));
	CRTC_WRITE(PV_VERTB,
		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
				 PV_VERTB_VFP) |
		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

	if (interlace) {
		CRTC_WRITE(PV_VERTA_EVEN,
			   VC4_SET_FIELD(mode->crtc_vtotal -
					 mode->crtc_vsync_end,
					 PV_VERTA_VBP) |
			   VC4_SET_FIELD(mode->crtc_vsync_end -
					 mode->crtc_vsync_start,
					 PV_VERTA_VSYNC));
		CRTC_WRITE(PV_VERTB_EVEN,
			   VC4_SET_FIELD(mode->crtc_vsync_start -
					 mode->crtc_vdisplay,
					 PV_VERTB_VFP) |
			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

		/* We set up first field even mode for HDMI.  VEC's
		 * NTSC mode would want first field odd instead, once
		 * we support it (to do so, set ODD_FIRST and put the
		 * delay in VSYNCD_EVEN instead).
		 */
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0) |
			   PV_VCONTROL_INTERLACE |
			   VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
					 PV_VCONTROL_ODD_DELAY));
		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
	} else {
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0));
	}

	if (is_dsi)
		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);

	if (vc4->is_vc5)
		CRTC_WRITE(PV_MUX_CFG,
			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));

	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
		   PV_CONTROL_CLR_AT_START |
		   PV_CONTROL_TRIGGER_UNDERFLOW |
		   PV_CONTROL_WAIT_HSTART |
		   VC4_SET_FIELD(vc4_encoder->clock_select,
				 PV_CONTROL_CLK_SELECT));

	if (debug_dump_regs) {
		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
			 drm_crtc_index(crtc));
		drm_print_regset32(&p, &vc4_crtc->regset);
	}

	drm_dev_exit(idx);
}

static void require_hvs_enabled(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_hvs *hvs = vc4->hvs;

	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
		     SCALER_DISPCTRL_ENABLE);
}

static int vc4_crtc_disable(struct drm_crtc *crtc,
			    struct drm_encoder *encoder,
			    struct drm_atomic_state *state,
			    unsigned int channel)
{
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	int idx, ret;

	if (!drm_dev_enter(dev, &idx))
		return -ENODEV;

	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");

	/*
	 * This delay is needed to avoid to get a pixel stuck in an
	 * unflushable FIFO between the pixelvalve and the HDMI
	 * controllers on the BCM2711.
	 *
	 * Timing is fairly sensitive here, so mdelay is the safest
	 * approach.
	 *
	 * If it was to be reworked, the stuck pixel happens on a
	 * BCM2711 when changing mode with a good probability, so a
	 * script that changes mode on a regular basis should trigger
	 * the bug after less than 10 attempts. It manifests itself with
	 * every pixels being shifted by one to the right, and thus the
	 * last pixel of a line actually being displayed as the first
	 * pixel on the next line.
	 */
	mdelay(20);

	if (vc4_encoder && vc4_encoder->post_crtc_disable)
		vc4_encoder->post_crtc_disable(encoder, state);

	vc4_crtc_pixelvalve_reset(crtc);
	vc4_hvs_stop_channel(vc4->hvs, channel);

	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
		vc4_encoder->post_crtc_powerdown(encoder, state);

	drm_dev_exit(idx);

	return 0;
}

static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
							enum vc4_encoder_type type)
{
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, crtc->dev) {
		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);

		if (vc4_encoder->type == type)
			return encoder;
	}

	return NULL;
}

int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
{
	struct drm_device *drm = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	enum vc4_encoder_type encoder_type;
	const struct vc4_pv_data *pv_data;
	struct drm_encoder *encoder;
	struct vc4_hdmi *vc4_hdmi;
	unsigned encoder_sel;
	int channel;
	int ret;

	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
				      "brcm,bcm2711-pixelvalve2") ||
	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
				      "brcm,bcm2711-pixelvalve4")))
		return 0;

	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
		return 0;

	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
		return 0;

	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
	if (channel < 0)
		return 0;

	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
	if (WARN_ON(encoder_sel != 0))
		return 0;

	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
	encoder_type = pv_data->encoder_types[encoder_sel];
	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
	if (WARN_ON(!encoder))
		return 0;

	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
	if (ret)
		return ret;

	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
	if (ret)
		return ret;

	/*
	 * post_crtc_powerdown will have called pm_runtime_put, so we
	 * don't need it here otherwise we'll get the reference counting
	 * wrong.
	 */

	return 0;
}

void vc4_crtc_send_vblank(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	unsigned long flags;

	if (!crtc->state || !crtc->state->event)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
	drm_crtc_send_vblank_event(crtc, crtc->state->event);
	crtc->state->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
				    struct drm_atomic_state *state)
{
	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
									 crtc);
	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
	struct drm_device *dev = crtc->dev;

	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
		crtc->name, crtc->base.id, encoder->name, encoder->base.id);

	require_hvs_enabled(dev);

	/* Disable vblank irq handling before crtc is disabled. */
	drm_crtc_vblank_off(crtc);

	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);

	/*
	 * Make sure we issue a vblank event after disabling the CRTC if
	 * someone was waiting it.
	 */
	vc4_crtc_send_vblank(crtc);
}

static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
				   struct drm_atomic_state *state)
{
	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
									 crtc);
	struct drm_device *dev = crtc->dev;
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
	int idx;

	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
		crtc->name, crtc->base.id, encoder->name, encoder->base.id);

	if (!drm_dev_enter(dev, &idx))
		return;

	require_hvs_enabled(dev);

	/* Enable vblank irq handling before crtc is started otherwise
	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
	 */
	drm_crtc_vblank_on(crtc);

	vc4_hvs_atomic_enable(crtc, state);

	if (vc4_encoder->pre_crtc_configure)
		vc4_encoder->pre_crtc_configure(encoder, state);

	vc4_crtc_config_pv(crtc, encoder, state);

	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);

	if (vc4_encoder->pre_crtc_enable)
		vc4_encoder->pre_crtc_enable(encoder, state);

	/* When feeding the transposer block the pixelvalve is unneeded and
	 * should not be enabled.
	 */
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);

	if (vc4_encoder->post_crtc_enable)
		vc4_encoder->post_crtc_enable(encoder, state);

	drm_dev_exit(idx);
}

static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
						const struct drm_display_mode *mode)
{
	/* Do not allow doublescan modes from user space */
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
			      crtc->base.id);
		return MODE_NO_DBLESCAN;
	}

	return MODE_OK;
}

void vc4_crtc_get_margins(struct drm_crtc_state *state,
			  unsigned int *left, unsigned int *right,
			  unsigned int *top, unsigned int *bottom)
{
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
	struct drm_connector_state *conn_state;
	struct drm_connector *conn;
	int i;

	*left = vc4_state->margins.left;
	*right = vc4_state->margins.right;
	*top = vc4_state->margins.top;
	*bottom = vc4_state->margins.bottom;

	/* We have to interate over all new connector states because
	 * vc4_crtc_get_margins() might be called before
	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
	 * might be outdated.
	 */
	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
		if (conn_state->crtc != state->crtc)
			continue;

		*left = conn_state->tv.margins.left;
		*right = conn_state->tv.margins.right;
		*top = conn_state->tv.margins.top;
		*bottom = conn_state->tv.margins.bottom;
		break;
	}
}

static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_atomic_state *state)
{
	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
									  crtc);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
	struct drm_connector *conn;
	struct drm_connector_state *conn_state;
	struct drm_encoder *encoder;
	int ret, i;

	ret = vc4_hvs_atomic_check(crtc, state);
	if (ret)
		return ret;

	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
	if (encoder) {
		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);

		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
						  mode->clock * 9 / 10) * 1000;
		} else {
			vc4_state->hvs_load = mode->clock * 1000;
		}
	}

	for_each_new_connector_in_state(state, conn, conn_state,
					i) {
		if (conn_state->crtc != crtc)
			continue;

		vc4_state->margins.left = conn_state->tv.margins.left;
		vc4_state->margins.right = conn_state->tv.margins.right;
		vc4_state->margins.top = conn_state->tv.margins.top;
		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
		break;
	}

	return 0;
}

static int vc4_enable_vblank(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	int idx;

	if (!drm_dev_enter(dev, &idx))
		return -ENODEV;

	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);

	drm_dev_exit(idx);

	return 0;
}

static void vc4_disable_vblank(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	int idx;

	if (!drm_dev_enter(dev, &idx))
		return;

	CRTC_WRITE(PV_INTEN, 0);

	drm_dev_exit(idx);
}

static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_hvs *hvs = vc4->hvs;
	u32 chan = vc4_crtc->current_hvs_channel;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	spin_lock(&vc4_crtc->irq_lock);
	if (vc4_crtc->event &&
	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
	     vc4_crtc->feeds_txp)) {
		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
		vc4_crtc->event = NULL;
		drm_crtc_vblank_put(crtc);

		/* Wait for the page flip to unmask the underrun to ensure that
		 * the display list was updated by the hardware. Before that
		 * happens, the HVS will be using the previous display list with
		 * the CRTC and encoder already reconfigured, leading to
		 * underruns. This can be seen when reconfiguring the CRTC.
		 */
		vc4_hvs_unmask_underrun(hvs, chan);
	}
	spin_unlock(&vc4_crtc->irq_lock);
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
{
	crtc->t_vblank = ktime_get();
	drm_crtc_handle_vblank(&crtc->base);
	vc4_crtc_handle_page_flip(crtc);
}

static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
	struct vc4_crtc *vc4_crtc = data;
	u32 stat = CRTC_READ(PV_INTSTAT);
	irqreturn_t ret = IRQ_NONE;

	if (stat & PV_INT_VFP_START) {
		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
		vc4_crtc_handle_vblank(vc4_crtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

struct vc4_async_flip_state {
	struct drm_crtc *crtc;
	struct drm_framebuffer *fb;
	struct drm_framebuffer *old_fb;
	struct drm_pending_vblank_event *event;

	union {
		struct dma_fence_cb fence;
		struct vc4_seqno_cb seqno;
	} cb;
};

/* Called when the V3D execution for the BO being flipped to is done, so that
 * we can actually update the plane's address to point to it.
 */
static void
vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
{
	struct drm_crtc *crtc = flip_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_plane *plane = crtc->primary;

	vc4_plane_async_set_fb(plane, flip_state->fb);
	if (flip_state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, flip_state->event);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	drm_crtc_vblank_put(crtc);
	drm_framebuffer_put(flip_state->fb);

	if (flip_state->old_fb)
		drm_framebuffer_put(flip_state->old_fb);

	kfree(flip_state);
}

static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb.seqno);
	struct vc4_bo *bo = NULL;

	if (flip_state->old_fb) {
		struct drm_gem_dma_object *dma_bo =
			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
		bo = to_vc4_bo(&dma_bo->base);
	}

	vc4_async_page_flip_complete(flip_state);

	/*
	 * Decrement the BO usecnt in order to keep the inc/dec
	 * calls balanced when the planes are updated through
	 * the async update path.
	 *
	 * FIXME: we should move to generic async-page-flip when
	 * it's available, so that we can get rid of this
	 * hand-made cleanup_fb() logic.
	 */
	if (bo)
		vc4_bo_dec_usecnt(bo);
}

static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
					       struct dma_fence_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb.fence);

	vc4_async_page_flip_complete(flip_state);
	dma_fence_put(fence);
}

static int vc4_async_set_fence_cb(struct drm_device *dev,
				  struct vc4_async_flip_state *flip_state)
{
	struct drm_framebuffer *fb = flip_state->fb;
	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct dma_fence *fence;
	int ret;

	if (!vc4->is_vc5) {
		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);

		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
					  vc4_async_page_flip_seqno_complete);
	}

	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
	if (ret)
		return ret;

	/* If there's no fence, complete the page flip immediately */
	if (!fence) {
		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
		return 0;
	}

	/* If the fence has already been completed, complete the page flip */
	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
				   vc4_async_page_flip_fence_complete))
		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);

	return 0;
}

static int
vc4_async_page_flip_common(struct drm_crtc *crtc,
			   struct drm_framebuffer *fb,
			   struct drm_pending_vblank_event *event,
			   uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct drm_plane *plane = crtc->primary;
	struct vc4_async_flip_state *flip_state;

	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
	if (!flip_state)
		return -ENOMEM;

	drm_framebuffer_get(fb);
	flip_state->fb = fb;
	flip_state->crtc = crtc;
	flip_state->event = event;

	/* Save the current FB before it's replaced by the new one in
	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
	 * it consistent.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made cleanup_fb()
	 * logic.
	 */
	flip_state->old_fb = plane->state->fb;
	if (flip_state->old_fb)
		drm_framebuffer_get(flip_state->old_fb);

	WARN_ON(drm_crtc_vblank_get(crtc) != 0);

	/* Immediately update the plane's legacy fb pointer, so that later
	 * modeset prep sees the state that will be present when the semaphore
	 * is released.
	 */
	drm_atomic_set_fb_for_plane(plane->state, fb);

	vc4_async_set_fence_cb(dev, flip_state);

	/* Driver takes ownership of state on successful async commit. */
	return 0;
}

/* Implements async (non-vblank-synced) page flips.
 *
 * The page flip ioctl needs to return immediately, so we grab the
 * modeset semaphore on the pipe, and queue the address update for
 * when V3D is done with the BO being flipped to.
 */
static int vc4_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
	int ret;

	if (WARN_ON_ONCE(vc4->is_vc5))
		return -ENODEV;

	/*
	 * Increment the BO usecnt here, so that we never end up with an
	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
	 * plane is later updated through the non-async path.
	 *
	 * FIXME: we should move to generic async-page-flip when
	 * it's available, so that we can get rid of this
	 * hand-made prepare_fb() logic.
	 */
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
	if (ret) {
		vc4_bo_dec_usecnt(bo);
		return ret;
	}

	return 0;
}

static int vc5_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	return vc4_async_page_flip_common(crtc, fb, event, flags);
}

int vc4_page_flip(struct drm_crtc *crtc,
		  struct drm_framebuffer *fb,
		  struct drm_pending_vblank_event *event,
		  uint32_t flags,
		  struct drm_modeset_acquire_ctx *ctx)
{
	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
		struct drm_device *dev = crtc->dev;
		struct vc4_dev *vc4 = to_vc4_dev(dev);

		if (vc4->is_vc5)
			return vc5_async_page_flip(crtc, fb, event, flags);
		else
			return vc4_async_page_flip(crtc, fb, event, flags);
	} else {
		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
	}
}

struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
	struct vc4_crtc_state *vc4_state, *old_vc4_state;

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

	old_vc4_state = to_vc4_crtc_state(crtc->state);
	vc4_state->margins = old_vc4_state->margins;
	vc4_state->assigned_channel = old_vc4_state->assigned_channel;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
	return &vc4_state->base;
}

void vc4_crtc_destroy_state(struct drm_crtc *crtc,
			    struct drm_crtc_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	if (drm_mm_node_allocated(&vc4_state->mm)) {
		unsigned long flags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
		drm_mm_remove_node(&vc4_state->mm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);

	}

	drm_atomic_helper_crtc_destroy_state(crtc, state);
}

void vc4_crtc_reset(struct drm_crtc *crtc)
{
	struct vc4_crtc_state *vc4_crtc_state;

	if (crtc->state)
		vc4_crtc_destroy_state(crtc, crtc->state);

	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
	if (!vc4_crtc_state) {
		crtc->state = NULL;
		return;
	}

	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
}

int vc4_crtc_late_register(struct drm_crtc *crtc)
{
	struct drm_device *drm = crtc->dev;
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
	int ret;

	ret = vc4_debugfs_add_regset32(drm->primary, crtc_data->debugfs_name,
				       &vc4_crtc->regset);
	if (ret)
		return ret;

	return 0;
}

static const struct drm_crtc_funcs vc4_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.page_flip = vc4_page_flip,
	.set_property = NULL,
	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
	.reset = vc4_crtc_reset,
	.atomic_duplicate_state = vc4_crtc_duplicate_state,
	.atomic_destroy_state = vc4_crtc_destroy_state,
	.enable_vblank = vc4_enable_vblank,
	.disable_vblank = vc4_disable_vblank,
	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
	.late_register = vc4_crtc_late_register,
};

static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
	.mode_valid = vc4_crtc_mode_valid,
	.atomic_check = vc4_crtc_atomic_check,
	.atomic_begin = vc4_hvs_atomic_begin,
	.atomic_flush = vc4_hvs_atomic_flush,
	.atomic_enable = vc4_crtc_atomic_enable,
	.atomic_disable = vc4_crtc_atomic_disable,
	.get_scanout_position = vc4_crtc_get_scanout_position,
};

static const struct vc4_pv_data bcm2835_pv0_data = {
	.base = {
		.debugfs_name = "crtc0_regs",
		.hvs_available_channels = BIT(0),
		.hvs_output = 0,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 1,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
	},
};

static const struct vc4_pv_data bcm2835_pv1_data = {
	.base = {
		.debugfs_name = "crtc1_regs",
		.hvs_available_channels = BIT(2),
		.hvs_output = 2,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 1,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
	},
};

static const struct vc4_pv_data bcm2835_pv2_data = {
	.base = {
		.debugfs_name = "crtc2_regs",
		.hvs_available_channels = BIT(1),
		.hvs_output = 1,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 1,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
	},
};

static const struct vc4_pv_data bcm2711_pv0_data = {
	.base = {
		.debugfs_name = "crtc0_regs",
		.hvs_available_channels = BIT(0),
		.hvs_output = 0,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 1,
	.encoder_types = {
		[0] = VC4_ENCODER_TYPE_DSI0,
		[1] = VC4_ENCODER_TYPE_DPI,
	},
};

static const struct vc4_pv_data bcm2711_pv1_data = {
	.base = {
		.debugfs_name = "crtc1_regs",
		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
		.hvs_output = 3,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 1,
	.encoder_types = {
		[0] = VC4_ENCODER_TYPE_DSI1,
		[1] = VC4_ENCODER_TYPE_SMI,
	},
};

static const struct vc4_pv_data bcm2711_pv2_data = {
	.base = {
		.debugfs_name = "crtc2_regs",
		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
		.hvs_output = 4,
	},
	.fifo_depth = 256,
	.pixels_per_clock = 2,
	.encoder_types = {
		[0] = VC4_ENCODER_TYPE_HDMI0,
	},
};

static const struct vc4_pv_data bcm2711_pv3_data = {
	.base = {
		.debugfs_name = "crtc3_regs",
		.hvs_available_channels = BIT(1),
		.hvs_output = 1,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 1,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
	},
};

static const struct vc4_pv_data bcm2711_pv4_data = {
	.base = {
		.debugfs_name = "crtc4_regs",
		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
		.hvs_output = 5,
	},
	.fifo_depth = 64,
	.pixels_per_clock = 2,
	.encoder_types = {
		[0] = VC4_ENCODER_TYPE_HDMI1,
	},
};

static const struct of_device_id vc4_crtc_dt_match[] = {
	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
	{}
};

static void vc4_set_crtc_possible_masks(struct drm_device *drm,
					struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, drm) {
		struct vc4_encoder *vc4_encoder;
		int i;

		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
			continue;

		vc4_encoder = to_vc4_encoder(encoder);
		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
			if (vc4_encoder->type == encoder_types[i]) {
				vc4_encoder->clock_select = i;
				encoder->possible_crtcs |= drm_crtc_mask(crtc);
				break;
			}
		}
	}
}

int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
		  const struct drm_crtc_funcs *crtc_funcs,
		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
{
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_plane *primary_plane;
	unsigned int i;
	int ret;

	/* For now, we create just the primary and the legacy cursor
	 * planes.  We should be able to stack more planes on easily,
	 * but to do that we would need to compute the bandwidth
	 * requirement of the plane configuration, and reject ones
	 * that will take too much.
	 */
	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
	if (IS_ERR(primary_plane)) {
		dev_err(drm->dev, "failed to construct primary plane\n");
		return PTR_ERR(primary_plane);
	}

	spin_lock_init(&vc4_crtc->irq_lock);
	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
					 crtc_funcs, NULL);
	if (ret)
		return ret;

	drm_crtc_helper_add(crtc, crtc_helper_funcs);

	if (!vc4->is_vc5) {
		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));

		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);

		/* We support CTM, but only for one CRTC at a time. It's therefore
		 * implemented as private driver state in vc4_kms, not here.
		 */
		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
	}

	for (i = 0; i < crtc->gamma_size; i++) {
		vc4_crtc->lut_r[i] = i;
		vc4_crtc->lut_g[i] = i;
		vc4_crtc->lut_b[i] = i;
	}

	return 0;
}

static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	const struct vc4_pv_data *pv_data;
	struct vc4_crtc *vc4_crtc;
	struct drm_crtc *crtc;
	int ret;

	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
	if (!vc4_crtc)
		return -ENOMEM;
	crtc = &vc4_crtc->base;

	pv_data = of_device_get_match_data(dev);
	if (!pv_data)
		return -ENODEV;
	vc4_crtc->data = &pv_data->base;
	vc4_crtc->pdev = pdev;

	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(vc4_crtc->regs))
		return PTR_ERR(vc4_crtc->regs);

	vc4_crtc->regset.base = vc4_crtc->regs;
	vc4_crtc->regset.regs = crtc_regs;
	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);

	ret = vc4_crtc_init(drm, vc4_crtc,
			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
	if (ret)
		return ret;
	vc4_set_crtc_possible_masks(drm, crtc);

	CRTC_WRITE(PV_INTEN, 0);
	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_crtc_irq_handler,
			       IRQF_SHARED,
			       "vc4 crtc", vc4_crtc);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, vc4_crtc);

	return 0;
}

static void vc4_crtc_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);

	CRTC_WRITE(PV_INTEN, 0);

	platform_set_drvdata(pdev, NULL);
}

static const struct component_ops vc4_crtc_ops = {
	.bind   = vc4_crtc_bind,
	.unbind = vc4_crtc_unbind,
};

static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_crtc_ops);
}

static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_crtc_ops);
	return 0;
}

struct platform_driver vc4_crtc_driver = {
	.probe = vc4_crtc_dev_probe,
	.remove = vc4_crtc_dev_remove,
	.driver = {
		.name = "vc4_crtc",
		.of_match_table = vc4_crtc_dt_match,
	},
};