Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | /* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "ummu.h" #include "vmm.h" #include <subdev/bar.h> #include <subdev/fb.h> #include <nvif/if500d.h> #include <nvif/if900d.h> struct nvkm_mmu_ptp { struct nvkm_mmu_pt *pt; struct list_head head; u8 shift; u16 mask; u16 free; }; static void nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt) { const int slot = pt->base >> pt->ptp->shift; struct nvkm_mmu_ptp *ptp = pt->ptp; /* If there were no free slots in the parent allocation before, * there will be now, so return PTP to the cache. */ if (!ptp->free) list_add(&ptp->head, &mmu->ptp.list); ptp->free |= BIT(slot); /* If there's no more sub-allocations, destroy PTP. */ if (ptp->free == ptp->mask) { nvkm_mmu_ptc_put(mmu, force, &ptp->pt); list_del(&ptp->head); kfree(ptp); } kfree(pt); } static struct nvkm_mmu_pt * nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero) { struct nvkm_mmu_pt *pt; struct nvkm_mmu_ptp *ptp; int slot; if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL))) return NULL; ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head); if (!ptp) { /* Need to allocate a new parent to sub-allocate from. */ if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) { kfree(pt); return NULL; } ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false); if (!ptp->pt) { kfree(ptp); kfree(pt); return NULL; } ptp->shift = order_base_2(size); slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift; ptp->mask = (1 << slot) - 1; ptp->free = ptp->mask; list_add(&ptp->head, &mmu->ptp.list); } pt->ptp = ptp; pt->sub = true; /* Sub-allocate from parent object, removing PTP from cache * if there's no more free slots left. */ slot = __ffs(ptp->free); ptp->free &= ~BIT(slot); if (!ptp->free) list_del(&ptp->head); pt->memory = pt->ptp->pt->memory; pt->base = slot << ptp->shift; pt->addr = pt->ptp->pt->addr + pt->base; return pt; } struct nvkm_mmu_ptc { struct list_head head; struct list_head item; u32 size; u32 refs; }; static inline struct nvkm_mmu_ptc * nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { if (ptc->size == size) return ptc; } ptc = kmalloc(sizeof(*ptc), GFP_KERNEL); if (ptc) { INIT_LIST_HEAD(&ptc->item); ptc->size = size; ptc->refs = 0; list_add(&ptc->head, &mmu->ptc.list); } return ptc; } void nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt) { struct nvkm_mmu_pt *pt = *ppt; if (pt) { /* Handle sub-allocated page tables. */ if (pt->sub) { mutex_lock(&mmu->ptp.mutex); nvkm_mmu_ptp_put(mmu, force, pt); mutex_unlock(&mmu->ptp.mutex); return; } /* Either cache or free the object. */ mutex_lock(&mmu->ptc.mutex); if (pt->ptc->refs < 8 /* Heuristic. */ && !force) { list_add_tail(&pt->head, &pt->ptc->item); pt->ptc->refs++; } else { nvkm_memory_unref(&pt->memory); kfree(pt); } mutex_unlock(&mmu->ptc.mutex); } } struct nvkm_mmu_pt * nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero) { struct nvkm_mmu_ptc *ptc; struct nvkm_mmu_pt *pt; int ret; /* Sub-allocated page table (ie. GP100 LPT). */ if (align < 0x1000) { mutex_lock(&mmu->ptp.mutex); pt = nvkm_mmu_ptp_get(mmu, align, zero); mutex_unlock(&mmu->ptp.mutex); return pt; } /* Lookup cache for this page table size. */ mutex_lock(&mmu->ptc.mutex); ptc = nvkm_mmu_ptc_find(mmu, size); if (!ptc) { mutex_unlock(&mmu->ptc.mutex); return NULL; } /* If there's a free PT in the cache, reuse it. */ pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head); if (pt) { if (zero) nvkm_fo64(pt->memory, 0, 0, size >> 3); list_del(&pt->head); ptc->refs--; mutex_unlock(&mmu->ptc.mutex); return pt; } mutex_unlock(&mmu->ptc.mutex); /* No such luck, we need to allocate. */ if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL))) return NULL; pt->ptc = ptc; pt->sub = false; ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, size, align, zero, &pt->memory); if (ret) { kfree(pt); return NULL; } pt->base = 0; pt->addr = nvkm_memory_addr(pt->memory); return pt; } void nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { struct nvkm_mmu_pt *pt, *tt; list_for_each_entry_safe(pt, tt, &ptc->item, head) { nvkm_memory_unref(&pt->memory); list_del(&pt->head); kfree(pt); } } } static void nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc, *ptct; list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) { WARN_ON(!list_empty(&ptc->item)); list_del(&ptc->head); kfree(ptc); } } static void nvkm_mmu_ptc_init(struct nvkm_mmu *mmu) { mutex_init(&mmu->ptc.mutex); INIT_LIST_HEAD(&mmu->ptc.list); mutex_init(&mmu->ptp.mutex); INIT_LIST_HEAD(&mmu->ptp.list); } static void nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type) { if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) { mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type; mmu->type[mmu->type_nr].heap = heap; mmu->type_nr++; } } static int nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size) { if (size) { if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) { mmu->heap[mmu->heap_nr].type = type; mmu->heap[mmu->heap_nr].size = size; return mmu->heap_nr++; } } return -EINVAL; } static void nvkm_mmu_host(struct nvkm_mmu *mmu) { struct nvkm_device *device = mmu->subdev.device; u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys; int heap; /* Non-mappable system memory. */ heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL); nvkm_mmu_type(mmu, heap, type); /* Non-coherent, cached, system memory. * * Block-linear mappings of system memory must be done through * BAR1, and cannot be supported on systems where we're unable * to map BAR1 with write-combining. */ type |= NVKM_MEM_MAPPABLE; if (!device->bar || device->bar->iomap_uncached) nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); else nvkm_mmu_type(mmu, heap, type); /* Coherent, cached, system memory. * * Unsupported on systems that aren't able to support snooped * mappings, and also for block-linear mappings which must be * done through BAR1. */ type |= NVKM_MEM_COHERENT; if (device->func->cpu_coherent) nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); /* Uncached system memory. */ nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED); } static void nvkm_mmu_vram(struct nvkm_mmu *mmu) { struct nvkm_device *device = mmu->subdev.device; struct nvkm_mm *mm = &device->fb->ram->vram; const u64 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL); const u64 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP); const u64 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED); u8 type = NVKM_MEM_KIND * !!mmu->func->kind; u8 heap = NVKM_MEM_VRAM; int heapM, heapN, heapU; /* Mixed-memory doesn't support compression or display. */ heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT); heap |= NVKM_MEM_COMP; heap |= NVKM_MEM_DISP; heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT); heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT); /* Add non-mappable VRAM types first so that they're preferred * over anything else. Mixed-memory will be slower than other * heaps, it's prioritised last. */ nvkm_mmu_type(mmu, heapU, type); nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); /* Add host memory types next, under the assumption that users * wanting mappable memory want to use them as staging buffers * or the like. */ nvkm_mmu_host(mmu); /* Mappable VRAM types go last, as they're basically the worst * possible type to ask for unless there's no other choice. */ if (device->bar) { /* Write-combined BAR1 access. */ type |= NVKM_MEM_MAPPABLE; if (!device->bar->iomap_uncached) { nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); } /* Uncached BAR1 access. */ type |= NVKM_MEM_COHERENT; type |= NVKM_MEM_UNCACHED; nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); } } static int nvkm_mmu_oneinit(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); /* Determine available memory types. */ if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram) nvkm_mmu_vram(mmu); else nvkm_mmu_host(mmu); if (mmu->func->vmm.global) { int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL, "gart", &mmu->vmm); if (ret) return ret; } return 0; } static int nvkm_mmu_init(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); if (mmu->func->init) mmu->func->init(mmu); return 0; } static void * nvkm_mmu_dtor(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); nvkm_vmm_unref(&mmu->vmm); nvkm_mmu_ptc_fini(mmu); mutex_destroy(&mmu->mutex); return mmu; } static const struct nvkm_subdev_func nvkm_mmu = { .dtor = nvkm_mmu_dtor, .oneinit = nvkm_mmu_oneinit, .init = nvkm_mmu_init, }; void nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_mmu *mmu) { nvkm_subdev_ctor(&nvkm_mmu, device, type, inst, &mmu->subdev); mmu->func = func; mmu->dma_bits = func->dma_bits; nvkm_mmu_ptc_init(mmu); mutex_init(&mmu->mutex); mmu->user.ctor = nvkm_ummu_new; mmu->user.base = func->mmu.user; } int nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_mmu **pmmu) { if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL))) return -ENOMEM; nvkm_mmu_ctor(func, device, type, inst, *pmmu); return 0; } |