Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * Copyright 2010 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */
#include "ummu.h"
#include "vmm.h"

#include <subdev/bar.h>
#include <subdev/fb.h>

#include <nvif/if500d.h>
#include <nvif/if900d.h>

struct nvkm_mmu_ptp {
	struct nvkm_mmu_pt *pt;
	struct list_head head;
	u8  shift;
	u16 mask;
	u16 free;
};

static void
nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt)
{
	const int slot = pt->base >> pt->ptp->shift;
	struct nvkm_mmu_ptp *ptp = pt->ptp;

	/* If there were no free slots in the parent allocation before,
	 * there will be now, so return PTP to the cache.
	 */
	if (!ptp->free)
		list_add(&ptp->head, &mmu->ptp.list);
	ptp->free |= BIT(slot);

	/* If there's no more sub-allocations, destroy PTP. */
	if (ptp->free == ptp->mask) {
		nvkm_mmu_ptc_put(mmu, force, &ptp->pt);
		list_del(&ptp->head);
		kfree(ptp);
	}

	kfree(pt);
}

static struct nvkm_mmu_pt *
nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero)
{
	struct nvkm_mmu_pt *pt;
	struct nvkm_mmu_ptp *ptp;
	int slot;

	if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL)))
		return NULL;

	ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head);
	if (!ptp) {
		/* Need to allocate a new parent to sub-allocate from. */
		if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) {
			kfree(pt);
			return NULL;
		}

		ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false);
		if (!ptp->pt) {
			kfree(ptp);
			kfree(pt);
			return NULL;
		}

		ptp->shift = order_base_2(size);
		slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift;
		ptp->mask = (1 << slot) - 1;
		ptp->free = ptp->mask;
		list_add(&ptp->head, &mmu->ptp.list);
	}
	pt->ptp = ptp;
	pt->sub = true;

	/* Sub-allocate from parent object, removing PTP from cache
	 * if there's no more free slots left.
	 */
	slot = __ffs(ptp->free);
	ptp->free &= ~BIT(slot);
	if (!ptp->free)
		list_del(&ptp->head);

	pt->memory = pt->ptp->pt->memory;
	pt->base = slot << ptp->shift;
	pt->addr = pt->ptp->pt->addr + pt->base;
	return pt;
}

struct nvkm_mmu_ptc {
	struct list_head head;
	struct list_head item;
	u32 size;
	u32 refs;
};

static inline struct nvkm_mmu_ptc *
nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size)
{
	struct nvkm_mmu_ptc *ptc;

	list_for_each_entry(ptc, &mmu->ptc.list, head) {
		if (ptc->size == size)
			return ptc;
	}

	ptc = kmalloc(sizeof(*ptc), GFP_KERNEL);
	if (ptc) {
		INIT_LIST_HEAD(&ptc->item);
		ptc->size = size;
		ptc->refs = 0;
		list_add(&ptc->head, &mmu->ptc.list);
	}

	return ptc;
}

void
nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt)
{
	struct nvkm_mmu_pt *pt = *ppt;
	if (pt) {
		/* Handle sub-allocated page tables. */
		if (pt->sub) {
			mutex_lock(&mmu->ptp.mutex);
			nvkm_mmu_ptp_put(mmu, force, pt);
			mutex_unlock(&mmu->ptp.mutex);
			return;
		}

		/* Either cache or free the object. */
		mutex_lock(&mmu->ptc.mutex);
		if (pt->ptc->refs < 8 /* Heuristic. */ && !force) {
			list_add_tail(&pt->head, &pt->ptc->item);
			pt->ptc->refs++;
		} else {
			nvkm_memory_unref(&pt->memory);
			kfree(pt);
		}
		mutex_unlock(&mmu->ptc.mutex);
	}
}

struct nvkm_mmu_pt *
nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero)
{
	struct nvkm_mmu_ptc *ptc;
	struct nvkm_mmu_pt *pt;
	int ret;

	/* Sub-allocated page table (ie. GP100 LPT). */
	if (align < 0x1000) {
		mutex_lock(&mmu->ptp.mutex);
		pt = nvkm_mmu_ptp_get(mmu, align, zero);
		mutex_unlock(&mmu->ptp.mutex);
		return pt;
	}

	/* Lookup cache for this page table size. */
	mutex_lock(&mmu->ptc.mutex);
	ptc = nvkm_mmu_ptc_find(mmu, size);
	if (!ptc) {
		mutex_unlock(&mmu->ptc.mutex);
		return NULL;
	}

	/* If there's a free PT in the cache, reuse it. */
	pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head);
	if (pt) {
		if (zero)
			nvkm_fo64(pt->memory, 0, 0, size >> 3);
		list_del(&pt->head);
		ptc->refs--;
		mutex_unlock(&mmu->ptc.mutex);
		return pt;
	}
	mutex_unlock(&mmu->ptc.mutex);

	/* No such luck, we need to allocate. */
	if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL)))
		return NULL;
	pt->ptc = ptc;
	pt->sub = false;

	ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
			      size, align, zero, &pt->memory);
	if (ret) {
		kfree(pt);
		return NULL;
	}

	pt->base = 0;
	pt->addr = nvkm_memory_addr(pt->memory);
	return pt;
}

void
nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu)
{
	struct nvkm_mmu_ptc *ptc;
	list_for_each_entry(ptc, &mmu->ptc.list, head) {
		struct nvkm_mmu_pt *pt, *tt;
		list_for_each_entry_safe(pt, tt, &ptc->item, head) {
			nvkm_memory_unref(&pt->memory);
			list_del(&pt->head);
			kfree(pt);
		}
	}
}

static void
nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu)
{
	struct nvkm_mmu_ptc *ptc, *ptct;

	list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) {
		WARN_ON(!list_empty(&ptc->item));
		list_del(&ptc->head);
		kfree(ptc);
	}
}

static void
nvkm_mmu_ptc_init(struct nvkm_mmu *mmu)
{
	mutex_init(&mmu->ptc.mutex);
	INIT_LIST_HEAD(&mmu->ptc.list);
	mutex_init(&mmu->ptp.mutex);
	INIT_LIST_HEAD(&mmu->ptp.list);
}

static void
nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type)
{
	if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) {
		mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type;
		mmu->type[mmu->type_nr].heap = heap;
		mmu->type_nr++;
	}
}

static int
nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size)
{
	if (size) {
		if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) {
			mmu->heap[mmu->heap_nr].type = type;
			mmu->heap[mmu->heap_nr].size = size;
			return mmu->heap_nr++;
		}
	}
	return -EINVAL;
}

static void
nvkm_mmu_host(struct nvkm_mmu *mmu)
{
	struct nvkm_device *device = mmu->subdev.device;
	u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys;
	int heap;

	/* Non-mappable system memory. */
	heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL);
	nvkm_mmu_type(mmu, heap, type);

	/* Non-coherent, cached, system memory.
	 *
	 * Block-linear mappings of system memory must be done through
	 * BAR1, and cannot be supported on systems where we're unable
	 * to map BAR1 with write-combining.
	 */
	type |= NVKM_MEM_MAPPABLE;
	if (!device->bar || device->bar->iomap_uncached)
		nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
	else
		nvkm_mmu_type(mmu, heap, type);

	/* Coherent, cached, system memory.
	 *
	 * Unsupported on systems that aren't able to support snooped
	 * mappings, and also for block-linear mappings which must be
	 * done through BAR1.
	 */
	type |= NVKM_MEM_COHERENT;
	if (device->func->cpu_coherent)
		nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);

	/* Uncached system memory. */
	nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED);
}

static void
nvkm_mmu_vram(struct nvkm_mmu *mmu)
{
	struct nvkm_device *device = mmu->subdev.device;
	struct nvkm_mm *mm = &device->fb->ram->vram;
	const u64 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL);
	const u64 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP);
	const u64 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED);
	u8 type = NVKM_MEM_KIND * !!mmu->func->kind;
	u8 heap = NVKM_MEM_VRAM;
	int heapM, heapN, heapU;

	/* Mixed-memory doesn't support compression or display. */
	heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT);

	heap |= NVKM_MEM_COMP;
	heap |= NVKM_MEM_DISP;
	heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT);
	heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT);

	/* Add non-mappable VRAM types first so that they're preferred
	 * over anything else.  Mixed-memory will be slower than other
	 * heaps, it's prioritised last.
	 */
	nvkm_mmu_type(mmu, heapU, type);
	nvkm_mmu_type(mmu, heapN, type);
	nvkm_mmu_type(mmu, heapM, type);

	/* Add host memory types next, under the assumption that users
	 * wanting mappable memory want to use them as staging buffers
	 * or the like.
	 */
	nvkm_mmu_host(mmu);

	/* Mappable VRAM types go last, as they're basically the worst
	 * possible type to ask for unless there's no other choice.
	 */
	if (device->bar) {
		/* Write-combined BAR1 access. */
		type |= NVKM_MEM_MAPPABLE;
		if (!device->bar->iomap_uncached) {
			nvkm_mmu_type(mmu, heapN, type);
			nvkm_mmu_type(mmu, heapM, type);
		}

		/* Uncached BAR1 access. */
		type |= NVKM_MEM_COHERENT;
		type |= NVKM_MEM_UNCACHED;
		nvkm_mmu_type(mmu, heapN, type);
		nvkm_mmu_type(mmu, heapM, type);
	}
}

static int
nvkm_mmu_oneinit(struct nvkm_subdev *subdev)
{
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);

	/* Determine available memory types. */
	if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram)
		nvkm_mmu_vram(mmu);
	else
		nvkm_mmu_host(mmu);

	if (mmu->func->vmm.global) {
		int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL,
				       "gart", &mmu->vmm);
		if (ret)
			return ret;
	}

	return 0;
}

static int
nvkm_mmu_init(struct nvkm_subdev *subdev)
{
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);
	if (mmu->func->init)
		mmu->func->init(mmu);
	return 0;
}

static void *
nvkm_mmu_dtor(struct nvkm_subdev *subdev)
{
	struct nvkm_mmu *mmu = nvkm_mmu(subdev);

	nvkm_vmm_unref(&mmu->vmm);

	nvkm_mmu_ptc_fini(mmu);
	return mmu;
}

static const struct nvkm_subdev_func
nvkm_mmu = {
	.dtor = nvkm_mmu_dtor,
	.oneinit = nvkm_mmu_oneinit,
	.init = nvkm_mmu_init,
};

void
nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device,
	      int index, struct nvkm_mmu *mmu)
{
	nvkm_subdev_ctor(&nvkm_mmu, device, index, &mmu->subdev);
	mmu->func = func;
	mmu->dma_bits = func->dma_bits;
	nvkm_mmu_ptc_init(mmu);
	mmu->user.ctor = nvkm_ummu_new;
	mmu->user.base = func->mmu.user;
}

int
nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device,
	      int index, struct nvkm_mmu **pmmu)
{
	if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL)))
		return -ENOMEM;
	nvkm_mmu_ctor(func, device, index, *pmmu);
	return 0;
}