Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | // SPDX-License-Identifier: GPL-2.0 /* * HugeTLB Vmemmap Optimization (HVO) * * Copyright (c) 2020, ByteDance. All rights reserved. * * Author: Muchun Song <songmuchun@bytedance.com> * * See Documentation/mm/vmemmap_dedup.rst */ #define pr_fmt(fmt) "HugeTLB: " fmt #include <linux/pgtable.h> #include <linux/moduleparam.h> #include <linux/bootmem_info.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> #include "hugetlb_vmemmap.h" /** * struct vmemmap_remap_walk - walk vmemmap page table * * @remap_pte: called for each lowest-level entry (PTE). * @nr_walked: the number of walked pte. * @reuse_page: the page which is reused for the tail vmemmap pages. * @reuse_addr: the virtual address of the @reuse_page page. * @vmemmap_pages: the list head of the vmemmap pages that can be freed * or is mapped from. */ struct vmemmap_remap_walk { void (*remap_pte)(pte_t *pte, unsigned long addr, struct vmemmap_remap_walk *walk); unsigned long nr_walked; struct page *reuse_page; unsigned long reuse_addr; struct list_head *vmemmap_pages; }; static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) { pmd_t __pmd; int i; unsigned long addr = start; struct page *page = pmd_page(*pmd); pte_t *pgtable = pte_alloc_one_kernel(&init_mm); if (!pgtable) return -ENOMEM; pmd_populate_kernel(&init_mm, &__pmd, pgtable); for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { pte_t entry, *pte; pgprot_t pgprot = PAGE_KERNEL; entry = mk_pte(page + i, pgprot); pte = pte_offset_kernel(&__pmd, addr); set_pte_at(&init_mm, addr, pte, entry); } spin_lock(&init_mm.page_table_lock); if (likely(pmd_leaf(*pmd))) { /* * Higher order allocations from buddy allocator must be able to * be treated as indepdenent small pages (as they can be freed * individually). */ if (!PageReserved(page)) split_page(page, get_order(PMD_SIZE)); /* Make pte visible before pmd. See comment in pmd_install(). */ smp_wmb(); pmd_populate_kernel(&init_mm, pmd, pgtable); flush_tlb_kernel_range(start, start + PMD_SIZE); } else { pte_free_kernel(&init_mm, pgtable); } spin_unlock(&init_mm.page_table_lock); return 0; } static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) { int leaf; spin_lock(&init_mm.page_table_lock); leaf = pmd_leaf(*pmd); spin_unlock(&init_mm.page_table_lock); if (!leaf) return 0; return __split_vmemmap_huge_pmd(pmd, start); } static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct vmemmap_remap_walk *walk) { pte_t *pte = pte_offset_kernel(pmd, addr); /* * The reuse_page is found 'first' in table walk before we start * remapping (which is calling @walk->remap_pte). */ if (!walk->reuse_page) { walk->reuse_page = pte_page(*pte); /* * Because the reuse address is part of the range that we are * walking, skip the reuse address range. */ addr += PAGE_SIZE; pte++; walk->nr_walked++; } for (; addr != end; addr += PAGE_SIZE, pte++) { walk->remap_pte(pte, addr, walk); walk->nr_walked++; } } static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, struct vmemmap_remap_walk *walk) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { int ret; ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); if (ret) return ret; next = pmd_addr_end(addr, end); vmemmap_pte_range(pmd, addr, next, walk); } while (pmd++, addr = next, addr != end); return 0; } static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, struct vmemmap_remap_walk *walk) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { int ret; next = pud_addr_end(addr, end); ret = vmemmap_pmd_range(pud, addr, next, walk); if (ret) return ret; } while (pud++, addr = next, addr != end); return 0; } static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, struct vmemmap_remap_walk *walk) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { int ret; next = p4d_addr_end(addr, end); ret = vmemmap_pud_range(p4d, addr, next, walk); if (ret) return ret; } while (p4d++, addr = next, addr != end); return 0; } static int vmemmap_remap_range(unsigned long start, unsigned long end, struct vmemmap_remap_walk *walk) { unsigned long addr = start; unsigned long next; pgd_t *pgd; VM_BUG_ON(!PAGE_ALIGNED(start)); VM_BUG_ON(!PAGE_ALIGNED(end)); pgd = pgd_offset_k(addr); do { int ret; next = pgd_addr_end(addr, end); ret = vmemmap_p4d_range(pgd, addr, next, walk); if (ret) return ret; } while (pgd++, addr = next, addr != end); /* * We only change the mapping of the vmemmap virtual address range * [@start + PAGE_SIZE, end), so we only need to flush the TLB which * belongs to the range. */ flush_tlb_kernel_range(start + PAGE_SIZE, end); return 0; } /* * Free a vmemmap page. A vmemmap page can be allocated from the memblock * allocator or buddy allocator. If the PG_reserved flag is set, it means * that it allocated from the memblock allocator, just free it via the * free_bootmem_page(). Otherwise, use __free_page(). */ static inline void free_vmemmap_page(struct page *page) { if (PageReserved(page)) free_bootmem_page(page); else __free_page(page); } /* Free a list of the vmemmap pages */ static void free_vmemmap_page_list(struct list_head *list) { struct page *page, *next; list_for_each_entry_safe(page, next, list, lru) { list_del(&page->lru); free_vmemmap_page(page); } } static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, struct vmemmap_remap_walk *walk) { /* * Remap the tail pages as read-only to catch illegal write operation * to the tail pages. */ pgprot_t pgprot = PAGE_KERNEL_RO; pte_t entry = mk_pte(walk->reuse_page, pgprot); struct page *page = pte_page(*pte); list_add_tail(&page->lru, walk->vmemmap_pages); set_pte_at(&init_mm, addr, pte, entry); } /* * How many struct page structs need to be reset. When we reuse the head * struct page, the special metadata (e.g. page->flags or page->mapping) * cannot copy to the tail struct page structs. The invalid value will be * checked in the free_tail_pages_check(). In order to avoid the message * of "corrupted mapping in tail page". We need to reset at least 3 (one * head struct page struct and two tail struct page structs) struct page * structs. */ #define NR_RESET_STRUCT_PAGE 3 static inline void reset_struct_pages(struct page *start) { struct page *from = start + NR_RESET_STRUCT_PAGE; BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); } static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, struct vmemmap_remap_walk *walk) { pgprot_t pgprot = PAGE_KERNEL; struct page *page; void *to; BUG_ON(pte_page(*pte) != walk->reuse_page); page = list_first_entry(walk->vmemmap_pages, struct page, lru); list_del(&page->lru); to = page_to_virt(page); copy_page(to, (void *)walk->reuse_addr); reset_struct_pages(to); /* * Makes sure that preceding stores to the page contents become visible * before the set_pte_at() write. */ smp_wmb(); set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); } /** * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) * to the page which @reuse is mapped to, then free vmemmap * which the range are mapped to. * @start: start address of the vmemmap virtual address range that we want * to remap. * @end: end address of the vmemmap virtual address range that we want to * remap. * @reuse: reuse address. * * Return: %0 on success, negative error code otherwise. */ static int vmemmap_remap_free(unsigned long start, unsigned long end, unsigned long reuse) { int ret; LIST_HEAD(vmemmap_pages); struct vmemmap_remap_walk walk = { .remap_pte = vmemmap_remap_pte, .reuse_addr = reuse, .vmemmap_pages = &vmemmap_pages, }; /* * In order to make remapping routine most efficient for the huge pages, * the routine of vmemmap page table walking has the following rules * (see more details from the vmemmap_pte_range()): * * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) * should be continuous. * - The @reuse address is part of the range [@reuse, @end) that we are * walking which is passed to vmemmap_remap_range(). * - The @reuse address is the first in the complete range. * * So we need to make sure that @start and @reuse meet the above rules. */ BUG_ON(start - reuse != PAGE_SIZE); mmap_read_lock(&init_mm); ret = vmemmap_remap_range(reuse, end, &walk); if (ret && walk.nr_walked) { end = reuse + walk.nr_walked * PAGE_SIZE; /* * vmemmap_pages contains pages from the previous * vmemmap_remap_range call which failed. These * are pages which were removed from the vmemmap. * They will be restored in the following call. */ walk = (struct vmemmap_remap_walk) { .remap_pte = vmemmap_restore_pte, .reuse_addr = reuse, .vmemmap_pages = &vmemmap_pages, }; vmemmap_remap_range(reuse, end, &walk); } mmap_read_unlock(&init_mm); free_vmemmap_page_list(&vmemmap_pages); return ret; } static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, gfp_t gfp_mask, struct list_head *list) { unsigned long nr_pages = (end - start) >> PAGE_SHIFT; int nid = page_to_nid((struct page *)start); struct page *page, *next; while (nr_pages--) { page = alloc_pages_node(nid, gfp_mask, 0); if (!page) goto out; list_add_tail(&page->lru, list); } return 0; out: list_for_each_entry_safe(page, next, list, lru) __free_pages(page, 0); return -ENOMEM; } /** * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) * to the page which is from the @vmemmap_pages * respectively. * @start: start address of the vmemmap virtual address range that we want * to remap. * @end: end address of the vmemmap virtual address range that we want to * remap. * @reuse: reuse address. * @gfp_mask: GFP flag for allocating vmemmap pages. * * Return: %0 on success, negative error code otherwise. */ static int vmemmap_remap_alloc(unsigned long start, unsigned long end, unsigned long reuse, gfp_t gfp_mask) { LIST_HEAD(vmemmap_pages); struct vmemmap_remap_walk walk = { .remap_pte = vmemmap_restore_pte, .reuse_addr = reuse, .vmemmap_pages = &vmemmap_pages, }; /* See the comment in the vmemmap_remap_free(). */ BUG_ON(start - reuse != PAGE_SIZE); if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) return -ENOMEM; mmap_read_lock(&init_mm); vmemmap_remap_range(reuse, end, &walk); mmap_read_unlock(&init_mm); return 0; } DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); /** * hugetlb_vmemmap_restore - restore previously optimized (by * hugetlb_vmemmap_optimize()) vmemmap pages which * will be reallocated and remapped. * @h: struct hstate. * @head: the head page whose vmemmap pages will be restored. * * Return: %0 if @head's vmemmap pages have been reallocated and remapped, * negative error code otherwise. */ int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head) { int ret; unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; unsigned long vmemmap_reuse; if (!HPageVmemmapOptimized(head)) return 0; vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); vmemmap_reuse = vmemmap_start; vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; /* * The pages which the vmemmap virtual address range [@vmemmap_start, * @vmemmap_end) are mapped to are freed to the buddy allocator, and * the range is mapped to the page which @vmemmap_reuse is mapped to. * When a HugeTLB page is freed to the buddy allocator, previously * discarded vmemmap pages must be allocated and remapping. */ ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); if (!ret) { ClearHPageVmemmapOptimized(head); static_branch_dec(&hugetlb_optimize_vmemmap_key); } return ret; } /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) { if (!READ_ONCE(vmemmap_optimize_enabled)) return false; if (!hugetlb_vmemmap_optimizable(h)) return false; if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { pmd_t *pmdp, pmd; struct page *vmemmap_page; unsigned long vaddr = (unsigned long)head; /* * Only the vmemmap page's vmemmap page can be self-hosted. * Walking the page tables to find the backing page of the * vmemmap page. */ pmdp = pmd_off_k(vaddr); /* * The READ_ONCE() is used to stabilize *pmdp in a register or * on the stack so that it will stop changing under the code. * The only concurrent operation where it can be changed is * split_vmemmap_huge_pmd() (*pmdp will be stable after this * operation). */ pmd = READ_ONCE(*pmdp); if (pmd_leaf(pmd)) vmemmap_page = pmd_page(pmd) + pte_index(vaddr); else vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); /* * Due to HugeTLB alignment requirements and the vmemmap pages * being at the start of the hotplugged memory region in * memory_hotplug.memmap_on_memory case. Checking any vmemmap * page's vmemmap page if it is marked as VmemmapSelfHosted is * sufficient. * * [ hotplugged memory ] * [ section ][...][ section ] * [ vmemmap ][ usable memory ] * ^ | | | * +---+ | | * ^ | | * +-------+ | * ^ | * +-------------------------------------------+ */ if (PageVmemmapSelfHosted(vmemmap_page)) return false; } return true; } /** * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages. * @h: struct hstate. * @head: the head page whose vmemmap pages will be optimized. * * This function only tries to optimize @head's vmemmap pages and does not * guarantee that the optimization will succeed after it returns. The caller * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages * have been optimized. */ void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head) { unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; unsigned long vmemmap_reuse; if (!vmemmap_should_optimize(h, head)) return; static_branch_inc(&hugetlb_optimize_vmemmap_key); vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); vmemmap_reuse = vmemmap_start; vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; /* * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) * to the page which @vmemmap_reuse is mapped to, then free the pages * which the range [@vmemmap_start, @vmemmap_end] is mapped to. */ if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse)) static_branch_dec(&hugetlb_optimize_vmemmap_key); else SetHPageVmemmapOptimized(head); } static struct ctl_table hugetlb_vmemmap_sysctls[] = { { .procname = "hugetlb_optimize_vmemmap", .data = &vmemmap_optimize_enabled, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dobool, }, { } }; static int __init hugetlb_vmemmap_init(void) { /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE); if (IS_ENABLED(CONFIG_PROC_SYSCTL)) { const struct hstate *h; for_each_hstate(h) { if (hugetlb_vmemmap_optimizable(h)) { register_sysctl_init("vm", hugetlb_vmemmap_sysctls); break; } } } return 0; } late_initcall(hugetlb_vmemmap_init); |