Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | // SPDX-License-Identifier: GPL-2.0 /* * Free some vmemmap pages of HugeTLB * * Copyright (c) 2020, Bytedance. All rights reserved. * * Author: Muchun Song <songmuchun@bytedance.com> * * The struct page structures (page structs) are used to describe a physical * page frame. By default, there is a one-to-one mapping from a page frame to * it's corresponding page struct. * * HugeTLB pages consist of multiple base page size pages and is supported by * many architectures. See hugetlbpage.rst in the Documentation directory for * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB * are currently supported. Since the base page size on x86 is 4KB, a 2MB * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of * 4096 base pages. For each base page, there is a corresponding page struct. * * Within the HugeTLB subsystem, only the first 4 page structs are used to * contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides * this upper limit. The only 'useful' information in the remaining page structs * is the compound_head field, and this field is the same for all tail pages. * * By removing redundant page structs for HugeTLB pages, memory can be returned * to the buddy allocator for other uses. * * Different architectures support different HugeTLB pages. For example, the * following table is the HugeTLB page size supported by x86 and arm64 * architectures. Because arm64 supports 4k, 16k, and 64k base pages and * supports contiguous entries, so it supports many kinds of sizes of HugeTLB * page. * * +--------------+-----------+-----------------------------------------------+ * | Architecture | Page Size | HugeTLB Page Size | * +--------------+-----------+-----------+-----------+-----------+-----------+ * | x86-64 | 4KB | 2MB | 1GB | | | * +--------------+-----------+-----------+-----------+-----------+-----------+ * | | 4KB | 64KB | 2MB | 32MB | 1GB | * | +-----------+-----------+-----------+-----------+-----------+ * | arm64 | 16KB | 2MB | 32MB | 1GB | | * | +-----------+-----------+-----------+-----------+-----------+ * | | 64KB | 2MB | 512MB | 16GB | | * +--------------+-----------+-----------+-----------+-----------+-----------+ * * When the system boot up, every HugeTLB page has more than one struct page * structs which size is (unit: pages): * * struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE * * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following * relationship. * * HugeTLB_Size = n * PAGE_SIZE * * Then, * * struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE * = n * sizeof(struct page) / PAGE_SIZE * * We can use huge mapping at the pud/pmd level for the HugeTLB page. * * For the HugeTLB page of the pmd level mapping, then * * struct_size = n * sizeof(struct page) / PAGE_SIZE * = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE * = sizeof(struct page) / sizeof(pte_t) * = 64 / 8 * = 8 (pages) * * Where n is how many pte entries which one page can contains. So the value of * n is (PAGE_SIZE / sizeof(pte_t)). * * This optimization only supports 64-bit system, so the value of sizeof(pte_t) * is 8. And this optimization also applicable only when the size of struct page * is a power of two. In most cases, the size of struct page is 64 bytes (e.g. * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the * size of struct page structs of it is 8 page frames which size depends on the * size of the base page. * * For the HugeTLB page of the pud level mapping, then * * struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd) * = PAGE_SIZE / 8 * 8 (pages) * = PAGE_SIZE (pages) * * Where the struct_size(pmd) is the size of the struct page structs of a * HugeTLB page of the pmd level mapping. * * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB * HugeTLB page consists in 4096. * * Next, we take the pmd level mapping of the HugeTLB page as an example to * show the internal implementation of this optimization. There are 8 pages * struct page structs associated with a HugeTLB page which is pmd mapped. * * Here is how things look before optimization. * * HugeTLB struct pages(8 pages) page frame(8 pages) * +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+ * | | | 0 | -------------> | 0 | * | | +-----------+ +-----------+ * | | | 1 | -------------> | 1 | * | | +-----------+ +-----------+ * | | | 2 | -------------> | 2 | * | | +-----------+ +-----------+ * | | | 3 | -------------> | 3 | * | | +-----------+ +-----------+ * | | | 4 | -------------> | 4 | * | PMD | +-----------+ +-----------+ * | level | | 5 | -------------> | 5 | * | mapping | +-----------+ +-----------+ * | | | 6 | -------------> | 6 | * | | +-----------+ +-----------+ * | | | 7 | -------------> | 7 | * | | +-----------+ +-----------+ * | | * | | * | | * +-----------+ * * The value of page->compound_head is the same for all tail pages. The first * page of page structs (page 0) associated with the HugeTLB page contains the 4 * page structs necessary to describe the HugeTLB. The only use of the remaining * pages of page structs (page 1 to page 7) is to point to page->compound_head. * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs * will be used for each HugeTLB page. This will allow us to free the remaining * 6 pages to the buddy allocator. * * Here is how things look after remapping. * * HugeTLB struct pages(8 pages) page frame(8 pages) * +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+ * | | | 0 | -------------> | 0 | * | | +-----------+ +-----------+ * | | | 1 | -------------> | 1 | * | | +-----------+ +-----------+ * | | | 2 | ----------------^ ^ ^ ^ ^ ^ * | | +-----------+ | | | | | * | | | 3 | ------------------+ | | | | * | | +-----------+ | | | | * | | | 4 | --------------------+ | | | * | PMD | +-----------+ | | | * | level | | 5 | ----------------------+ | | * | mapping | +-----------+ | | * | | | 6 | ------------------------+ | * | | +-----------+ | * | | | 7 | --------------------------+ * | | +-----------+ * | | * | | * | | * +-----------+ * * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for * vmemmap pages and restore the previous mapping relationship. * * For the HugeTLB page of the pud level mapping. It is similar to the former. * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages. * * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures * (e.g. aarch64) provides a contiguous bit in the translation table entries * that hints to the MMU to indicate that it is one of a contiguous set of * entries that can be cached in a single TLB entry. * * The contiguous bit is used to increase the mapping size at the pmd and pte * (last) level. So this type of HugeTLB page can be optimized only when its * size of the struct page structs is greater than 2 pages. */ #define pr_fmt(fmt) "HugeTLB: " fmt #include "hugetlb_vmemmap.h" /* * There are a lot of struct page structures associated with each HugeTLB page. * For tail pages, the value of compound_head is the same. So we can reuse first * page of tail page structures. We map the virtual addresses of the remaining * pages of tail page structures to the first tail page struct, and then free * these page frames. Therefore, we need to reserve two pages as vmemmap areas. */ #define RESERVE_VMEMMAP_NR 2U #define RESERVE_VMEMMAP_SIZE (RESERVE_VMEMMAP_NR << PAGE_SHIFT) bool hugetlb_free_vmemmap_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON); static int __init early_hugetlb_free_vmemmap_param(char *buf) { /* We cannot optimize if a "struct page" crosses page boundaries. */ if ((!is_power_of_2(sizeof(struct page)))) { pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n"); return 0; } if (!buf) return -EINVAL; if (!strcmp(buf, "on")) hugetlb_free_vmemmap_enabled = true; else if (!strcmp(buf, "off")) hugetlb_free_vmemmap_enabled = false; else return -EINVAL; return 0; } early_param("hugetlb_free_vmemmap", early_hugetlb_free_vmemmap_param); static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h) { return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT; } /* * Previously discarded vmemmap pages will be allocated and remapping * after this function returns zero. */ int alloc_huge_page_vmemmap(struct hstate *h, struct page *head) { int ret; unsigned long vmemmap_addr = (unsigned long)head; unsigned long vmemmap_end, vmemmap_reuse; if (!HPageVmemmapOptimized(head)) return 0; vmemmap_addr += RESERVE_VMEMMAP_SIZE; vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h); vmemmap_reuse = vmemmap_addr - PAGE_SIZE; /* * The pages which the vmemmap virtual address range [@vmemmap_addr, * @vmemmap_end) are mapped to are freed to the buddy allocator, and * the range is mapped to the page which @vmemmap_reuse is mapped to. * When a HugeTLB page is freed to the buddy allocator, previously * discarded vmemmap pages must be allocated and remapping. */ ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse, GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); if (!ret) ClearHPageVmemmapOptimized(head); return ret; } void free_huge_page_vmemmap(struct hstate *h, struct page *head) { unsigned long vmemmap_addr = (unsigned long)head; unsigned long vmemmap_end, vmemmap_reuse; if (!free_vmemmap_pages_per_hpage(h)) return; vmemmap_addr += RESERVE_VMEMMAP_SIZE; vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h); vmemmap_reuse = vmemmap_addr - PAGE_SIZE; /* * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end) * to the page which @vmemmap_reuse is mapped to, then free the pages * which the range [@vmemmap_addr, @vmemmap_end] is mapped to. */ if (!vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse)) SetHPageVmemmapOptimized(head); } void __init hugetlb_vmemmap_init(struct hstate *h) { unsigned int nr_pages = pages_per_huge_page(h); unsigned int vmemmap_pages; /* * There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct * page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP, * so add a BUILD_BUG_ON to catch invalid usage of the tail struct page. */ BUILD_BUG_ON(__NR_USED_SUBPAGE >= RESERVE_VMEMMAP_SIZE / sizeof(struct page)); if (!hugetlb_free_vmemmap_enabled) return; vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT; /* * The head page and the first tail page are not to be freed to buddy * allocator, the other pages will map to the first tail page, so they * can be freed. * * Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true * on some architectures (e.g. aarch64). See Documentation/arm64/ * hugetlbpage.rst for more details. */ if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR)) h->nr_free_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR; pr_info("can free %d vmemmap pages for %s\n", h->nr_free_vmemmap_pages, h->name); } |