Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | // SPDX-License-Identifier: GPL-2.0 /* * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver * * Copyright (C) 2015 Xilinx, Inc. * */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/rtc.h> /* RTC Registers */ #define RTC_SET_TM_WR 0x00 #define RTC_SET_TM_RD 0x04 #define RTC_CALIB_WR 0x08 #define RTC_CALIB_RD 0x0C #define RTC_CUR_TM 0x10 #define RTC_CUR_TICK 0x14 #define RTC_ALRM 0x18 #define RTC_INT_STS 0x20 #define RTC_INT_MASK 0x24 #define RTC_INT_EN 0x28 #define RTC_INT_DIS 0x2C #define RTC_CTRL 0x40 #define RTC_FR_EN BIT(20) #define RTC_FR_DATSHIFT 16 #define RTC_TICK_MASK 0xFFFF #define RTC_INT_SEC BIT(0) #define RTC_INT_ALRM BIT(1) #define RTC_OSC_EN BIT(24) #define RTC_BATT_EN BIT(31) #define RTC_CALIB_DEF 0x7FFF #define RTC_CALIB_MASK 0x1FFFFF #define RTC_ALRM_MASK BIT(1) #define RTC_MSEC 1000 #define RTC_FR_MASK 0xF0000 #define RTC_FR_MAX_TICKS 16 #define RTC_PPB 1000000000LL #define RTC_MIN_OFFSET -32768000 #define RTC_MAX_OFFSET 32767000 struct xlnx_rtc_dev { struct rtc_device *rtc; void __iomem *reg_base; int alarm_irq; int sec_irq; struct clk *rtc_clk; unsigned int freq; }; static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned long new_time; /* * The value written will be updated after 1 sec into the * seconds read register, so we need to program time +1 sec * to get the correct time on read. */ new_time = rtc_tm_to_time64(tm) + 1; writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR); /* * Clear the rtc interrupt status register after setting the * time. During a read_time function, the code should read the * RTC_INT_STATUS register and if bit 0 is still 0, it means * that one second has not elapsed yet since RTC was set and * the current time should be read from SET_TIME_READ register; * otherwise, CURRENT_TIME register is read to report the time */ writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS); return 0; } static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm) { u32 status; unsigned long read_time; struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); status = readl(xrtcdev->reg_base + RTC_INT_STS); if (status & RTC_INT_SEC) { /* * RTC has updated the CURRENT_TIME with the time written into * SET_TIME_WRITE register. */ read_time = readl(xrtcdev->reg_base + RTC_CUR_TM); } else { /* * Time written in SET_TIME_WRITE has not yet updated into * the seconds read register, so read the time from the * SET_TIME_WRITE instead of CURRENT_TIME register. * Since we add +1 sec while writing, we need to -1 sec while * reading. */ read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1; } rtc_time64_to_tm(read_time, tm); return 0; } static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time); alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM; return 0; } static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned int status; ulong timeout; timeout = jiffies + msecs_to_jiffies(RTC_MSEC); if (enabled) { while (1) { status = readl(xrtcdev->reg_base + RTC_INT_STS); if (!((status & RTC_ALRM_MASK) == RTC_ALRM_MASK)) break; if (time_after_eq(jiffies, timeout)) { dev_err(dev, "Time out occur, while clearing alarm status bit\n"); return -ETIMEDOUT; } writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS); } writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN); } else { writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS); } return 0; } static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned long alarm_time; alarm_time = rtc_tm_to_time64(&alrm->time); writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM)); xlnx_rtc_alarm_irq_enable(dev, alrm->enabled); return 0; } static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev) { u32 rtc_ctrl; /* Enable RTC switch to battery when VCC_PSAUX is not available */ rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL); rtc_ctrl |= RTC_BATT_EN; writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL); } static int xlnx_rtc_read_offset(struct device *dev, long *offset) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned long long rtc_ppb = RTC_PPB; unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq); unsigned int calibval; long offset_val; calibval = readl(xrtcdev->reg_base + RTC_CALIB_RD); /* Offset with seconds ticks */ offset_val = calibval & RTC_TICK_MASK; offset_val = offset_val - RTC_CALIB_DEF; offset_val = offset_val * tick_mult; /* Offset with fractional ticks */ if (calibval & RTC_FR_EN) offset_val += ((calibval & RTC_FR_MASK) >> RTC_FR_DATSHIFT) * (tick_mult / RTC_FR_MAX_TICKS); *offset = offset_val; return 0; } static int xlnx_rtc_set_offset(struct device *dev, long offset) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned long long rtc_ppb = RTC_PPB; unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq); unsigned char fract_tick = 0; unsigned int calibval; short int max_tick; int fract_offset; if (offset < RTC_MIN_OFFSET || offset > RTC_MAX_OFFSET) return -ERANGE; /* Number ticks for given offset */ max_tick = div_s64_rem(offset, tick_mult, &fract_offset); /* Number fractional ticks for given offset */ if (fract_offset) { if (fract_offset < 0) { fract_offset = fract_offset + tick_mult; max_tick--; } if (fract_offset > (tick_mult / RTC_FR_MAX_TICKS)) { for (fract_tick = 1; fract_tick < 16; fract_tick++) { if (fract_offset <= (fract_tick * (tick_mult / RTC_FR_MAX_TICKS))) break; } } } /* Zynqmp RTC uses second and fractional tick * counters for compensation */ calibval = max_tick + RTC_CALIB_DEF; if (fract_tick) calibval |= RTC_FR_EN; calibval |= (fract_tick << RTC_FR_DATSHIFT); writel(calibval, (xrtcdev->reg_base + RTC_CALIB_WR)); return 0; } static const struct rtc_class_ops xlnx_rtc_ops = { .set_time = xlnx_rtc_set_time, .read_time = xlnx_rtc_read_time, .read_alarm = xlnx_rtc_read_alarm, .set_alarm = xlnx_rtc_set_alarm, .alarm_irq_enable = xlnx_rtc_alarm_irq_enable, .read_offset = xlnx_rtc_read_offset, .set_offset = xlnx_rtc_set_offset, }; static irqreturn_t xlnx_rtc_interrupt(int irq, void *id) { struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id; unsigned int status; status = readl(xrtcdev->reg_base + RTC_INT_STS); /* Check if interrupt asserted */ if (!(status & (RTC_INT_SEC | RTC_INT_ALRM))) return IRQ_NONE; /* Disable RTC_INT_ALRM interrupt only */ writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS); if (status & RTC_INT_ALRM) rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF); return IRQ_HANDLED; } static int xlnx_rtc_probe(struct platform_device *pdev) { struct xlnx_rtc_dev *xrtcdev; int ret; xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL); if (!xrtcdev) return -ENOMEM; platform_set_drvdata(pdev, xrtcdev); xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(xrtcdev->rtc)) return PTR_ERR(xrtcdev->rtc); xrtcdev->rtc->ops = &xlnx_rtc_ops; xrtcdev->rtc->range_max = U32_MAX; xrtcdev->reg_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(xrtcdev->reg_base)) return PTR_ERR(xrtcdev->reg_base); xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm"); if (xrtcdev->alarm_irq < 0) return xrtcdev->alarm_irq; ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq, xlnx_rtc_interrupt, 0, dev_name(&pdev->dev), xrtcdev); if (ret) { dev_err(&pdev->dev, "request irq failed\n"); return ret; } xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec"); if (xrtcdev->sec_irq < 0) return xrtcdev->sec_irq; ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq, xlnx_rtc_interrupt, 0, dev_name(&pdev->dev), xrtcdev); if (ret) { dev_err(&pdev->dev, "request irq failed\n"); return ret; } /* Getting the rtc_clk info */ xrtcdev->rtc_clk = devm_clk_get_optional(&pdev->dev, "rtc_clk"); if (IS_ERR(xrtcdev->rtc_clk)) { if (PTR_ERR(xrtcdev->rtc_clk) != -EPROBE_DEFER) dev_warn(&pdev->dev, "Device clock not found.\n"); } xrtcdev->freq = clk_get_rate(xrtcdev->rtc_clk); if (!xrtcdev->freq) { ret = of_property_read_u32(pdev->dev.of_node, "calibration", &xrtcdev->freq); if (ret) xrtcdev->freq = RTC_CALIB_DEF; } ret = readl(xrtcdev->reg_base + RTC_CALIB_RD); if (!ret) writel(xrtcdev->freq, (xrtcdev->reg_base + RTC_CALIB_WR)); xlnx_init_rtc(xrtcdev); device_init_wakeup(&pdev->dev, 1); return devm_rtc_register_device(xrtcdev->rtc); } static int xlnx_rtc_remove(struct platform_device *pdev) { xlnx_rtc_alarm_irq_enable(&pdev->dev, 0); device_init_wakeup(&pdev->dev, 0); return 0; } static int __maybe_unused xlnx_rtc_suspend(struct device *dev) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(xrtcdev->alarm_irq); else xlnx_rtc_alarm_irq_enable(dev, 0); return 0; } static int __maybe_unused xlnx_rtc_resume(struct device *dev) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(xrtcdev->alarm_irq); else xlnx_rtc_alarm_irq_enable(dev, 1); return 0; } static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume); static const struct of_device_id xlnx_rtc_of_match[] = { {.compatible = "xlnx,zynqmp-rtc" }, { } }; MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match); static struct platform_driver xlnx_rtc_driver = { .probe = xlnx_rtc_probe, .remove = xlnx_rtc_remove, .driver = { .name = KBUILD_MODNAME, .pm = &xlnx_rtc_pm_ops, .of_match_table = xlnx_rtc_of_match, }, }; module_platform_driver(xlnx_rtc_driver); MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver"); MODULE_AUTHOR("Xilinx Inc."); MODULE_LICENSE("GPL v2"); |