Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | /* * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver * * Copyright (C) 2015 Xilinx, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. * */ #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/rtc.h> /* RTC Registers */ #define RTC_SET_TM_WR 0x00 #define RTC_SET_TM_RD 0x04 #define RTC_CALIB_WR 0x08 #define RTC_CALIB_RD 0x0C #define RTC_CUR_TM 0x10 #define RTC_CUR_TICK 0x14 #define RTC_ALRM 0x18 #define RTC_INT_STS 0x20 #define RTC_INT_MASK 0x24 #define RTC_INT_EN 0x28 #define RTC_INT_DIS 0x2C #define RTC_CTRL 0x40 #define RTC_FR_EN BIT(20) #define RTC_FR_DATSHIFT 16 #define RTC_TICK_MASK 0xFFFF #define RTC_INT_SEC BIT(0) #define RTC_INT_ALRM BIT(1) #define RTC_OSC_EN BIT(24) #define RTC_BATT_EN BIT(31) #define RTC_CALIB_DEF 0x198233 #define RTC_CALIB_MASK 0x1FFFFF #define RTC_SEC_MAX_VAL 0xFFFFFFFF struct xlnx_rtc_dev { struct rtc_device *rtc; void __iomem *reg_base; int alarm_irq; int sec_irq; int calibval; }; static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned long new_time; /* * The value written will be updated after 1 sec into the * seconds read register, so we need to program time +1 sec * to get the correct time on read. */ new_time = rtc_tm_to_time64(tm) + 1; if (new_time > RTC_SEC_MAX_VAL) return -EINVAL; /* * Writing into calibration register will clear the Tick Counter and * force the next second to be signaled exactly in 1 second period */ xrtcdev->calibval &= RTC_CALIB_MASK; writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR)); writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR); /* * Clear the rtc interrupt status register after setting the * time. During a read_time function, the code should read the * RTC_INT_STATUS register and if bit 0 is still 0, it means * that one second has not elapsed yet since RTC was set and * the current time should be read from SET_TIME_READ register; * otherwise, CURRENT_TIME register is read to report the time */ writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS); return 0; } static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm) { u32 status; unsigned long read_time; struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); status = readl(xrtcdev->reg_base + RTC_INT_STS); if (status & RTC_INT_SEC) { /* * RTC has updated the CURRENT_TIME with the time written into * SET_TIME_WRITE register. */ rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_CUR_TM), tm); } else { /* * Time written in SET_TIME_WRITE has not yet updated into * the seconds read register, so read the time from the * SET_TIME_WRITE instead of CURRENT_TIME register. * Since we add +1 sec while writing, we need to -1 sec while * reading. */ read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1; rtc_time64_to_tm(read_time, tm); } return 0; } static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time); alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM; return 0; } static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); if (enabled) writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN); else writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS); return 0; } static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); unsigned long alarm_time; alarm_time = rtc_tm_to_time64(&alrm->time); if (alarm_time > RTC_SEC_MAX_VAL) return -EINVAL; writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM)); xlnx_rtc_alarm_irq_enable(dev, alrm->enabled); return 0; } static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev) { u32 rtc_ctrl; /* Enable RTC switch to battery when VCC_PSAUX is not available */ rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL); rtc_ctrl |= RTC_BATT_EN; writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL); /* * Based on crystal freq of 33.330 KHz * set the seconds counter and enable, set fractions counter * to default value suggested as per design spec * to correct RTC delay in frequency over period of time. */ xrtcdev->calibval &= RTC_CALIB_MASK; writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR)); } static const struct rtc_class_ops xlnx_rtc_ops = { .set_time = xlnx_rtc_set_time, .read_time = xlnx_rtc_read_time, .read_alarm = xlnx_rtc_read_alarm, .set_alarm = xlnx_rtc_set_alarm, .alarm_irq_enable = xlnx_rtc_alarm_irq_enable, }; static irqreturn_t xlnx_rtc_interrupt(int irq, void *id) { struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id; unsigned int status; status = readl(xrtcdev->reg_base + RTC_INT_STS); /* Check if interrupt asserted */ if (!(status & (RTC_INT_SEC | RTC_INT_ALRM))) return IRQ_NONE; /* Clear RTC_INT_ALRM interrupt only */ writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS); if (status & RTC_INT_ALRM) rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF); return IRQ_HANDLED; } static int xlnx_rtc_probe(struct platform_device *pdev) { struct xlnx_rtc_dev *xrtcdev; struct resource *res; int ret; xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL); if (!xrtcdev) return -ENOMEM; platform_set_drvdata(pdev, xrtcdev); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); xrtcdev->reg_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(xrtcdev->reg_base)) return PTR_ERR(xrtcdev->reg_base); xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm"); if (xrtcdev->alarm_irq < 0) { dev_err(&pdev->dev, "no irq resource\n"); return xrtcdev->alarm_irq; } ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq, xlnx_rtc_interrupt, 0, dev_name(&pdev->dev), xrtcdev); if (ret) { dev_err(&pdev->dev, "request irq failed\n"); return ret; } xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec"); if (xrtcdev->sec_irq < 0) { dev_err(&pdev->dev, "no irq resource\n"); return xrtcdev->sec_irq; } ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq, xlnx_rtc_interrupt, 0, dev_name(&pdev->dev), xrtcdev); if (ret) { dev_err(&pdev->dev, "request irq failed\n"); return ret; } ret = of_property_read_u32(pdev->dev.of_node, "calibration", &xrtcdev->calibval); if (ret) xrtcdev->calibval = RTC_CALIB_DEF; xlnx_init_rtc(xrtcdev); device_init_wakeup(&pdev->dev, 1); xrtcdev->rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &xlnx_rtc_ops, THIS_MODULE); return PTR_ERR_OR_ZERO(xrtcdev->rtc); } static int xlnx_rtc_remove(struct platform_device *pdev) { xlnx_rtc_alarm_irq_enable(&pdev->dev, 0); device_init_wakeup(&pdev->dev, 0); return 0; } static int __maybe_unused xlnx_rtc_suspend(struct device *dev) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(xrtcdev->alarm_irq); else xlnx_rtc_alarm_irq_enable(dev, 0); return 0; } static int __maybe_unused xlnx_rtc_resume(struct device *dev) { struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(xrtcdev->alarm_irq); else xlnx_rtc_alarm_irq_enable(dev, 1); return 0; } static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume); static const struct of_device_id xlnx_rtc_of_match[] = { {.compatible = "xlnx,zynqmp-rtc" }, { } }; MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match); static struct platform_driver xlnx_rtc_driver = { .probe = xlnx_rtc_probe, .remove = xlnx_rtc_remove, .driver = { .name = KBUILD_MODNAME, .pm = &xlnx_rtc_pm_ops, .of_match_table = xlnx_rtc_of_match, }, }; module_platform_driver(xlnx_rtc_driver); MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver"); MODULE_AUTHOR("Xilinx Inc."); MODULE_LICENSE("GPL v2"); |