Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// SPDX-License-Identifier: GPL-2.0
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/swapops.h>

#include "internal.h"
#include <asm/dma.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section **mem_section;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
	____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);

#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

int page_to_nid(const struct page *page)
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif

#ifdef CONFIG_SPARSEMEM_EXTREME
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

	if (slab_is_available()) {
		section = kzalloc_node(array_size, GFP_KERNEL, nid);
	} else {
		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
					      nid);
		if (!section)
			panic("%s: Failed to allocate %lu bytes nid=%d\n",
			      __func__, array_size, nid);
	}

	return section;
}

static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;

	/*
	 * An existing section is possible in the sub-section hotplug
	 * case. First hot-add instantiates, follow-on hot-add reuses
	 * the existing section.
	 *
	 * The mem_hotplug_lock resolves the apparent race below.
	 */
	if (mem_section[root])
		return 0;

	section = sparse_index_alloc(nid);
	if (!section)
		return -ENOMEM;

	mem_section[root] = section;

	return 0;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
}
#endif

#ifdef CONFIG_SPARSEMEM_EXTREME
unsigned long __section_nr(struct mem_section *ms)
{
	unsigned long root_nr;
	struct mem_section *root = NULL;

	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	VM_BUG_ON(!root);

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
#else
unsigned long __section_nr(struct mem_section *ms)
{
	return (unsigned long)(ms - mem_section[0]);
}
#endif

/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
{
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);

	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
	} else if (*end_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

/*
 * There are a number of times that we loop over NR_MEM_SECTIONS,
 * looking for section_present() on each.  But, when we have very
 * large physical address spaces, NR_MEM_SECTIONS can also be
 * very large which makes the loops quite long.
 *
 * Keeping track of this gives us an easy way to break out of
 * those loops early.
 */
unsigned long __highest_present_section_nr;
static void section_mark_present(struct mem_section *ms)
{
	unsigned long section_nr = __section_nr(ms);

	if (section_nr > __highest_present_section_nr)
		__highest_present_section_nr = section_nr;

	ms->section_mem_map |= SECTION_MARKED_PRESENT;
}

#define for_each_present_section_nr(start, section_nr)		\
	for (section_nr = next_present_section_nr(start-1);	\
	     ((section_nr != -1) &&				\
	      (section_nr <= __highest_present_section_nr));	\
	     section_nr = next_present_section_nr(section_nr))

static inline unsigned long first_present_section_nr(void)
{
	return next_present_section_nr(-1);
}

#ifdef CONFIG_SPARSEMEM_VMEMMAP
static void subsection_mask_set(unsigned long *map, unsigned long pfn,
		unsigned long nr_pages)
{
	int idx = subsection_map_index(pfn);
	int end = subsection_map_index(pfn + nr_pages - 1);

	bitmap_set(map, idx, end - idx + 1);
}

void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
	unsigned long nr, start_sec = pfn_to_section_nr(pfn);

	if (!nr_pages)
		return;

	for (nr = start_sec; nr <= end_sec; nr++) {
		struct mem_section *ms;
		unsigned long pfns;

		pfns = min(nr_pages, PAGES_PER_SECTION
				- (pfn & ~PAGE_SECTION_MASK));
		ms = __nr_to_section(nr);
		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);

		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
				pfns, subsection_map_index(pfn),
				subsection_map_index(pfn + pfns - 1));

		pfn += pfns;
		nr_pages -= pfns;
	}
}
#else
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
}
#endif

/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;

#ifdef CONFIG_SPARSEMEM_EXTREME
	if (unlikely(!mem_section)) {
		unsigned long size, align;

		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
		align = 1 << (INTERNODE_CACHE_SHIFT);
		mem_section = memblock_alloc(size, align);
		if (!mem_section)
			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
			      __func__, size, align);
	}
#endif

	start &= PAGE_SECTION_MASK;
	mminit_validate_memmodel_limits(&start, &end);
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
		struct mem_section *ms;

		sparse_index_init(section, nid);
		set_section_nid(section, nid);

		ms = __nr_to_section(section);
		if (!ms->section_mem_map) {
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_IS_ONLINE;
			section_mark_present(ms);
		}
	}
}

/*
 * Mark all memblocks as present using memory_present(). This is a
 * convienence function that is useful for a number of arches
 * to mark all of the systems memory as present during initialization.
 */
void __init memblocks_present(void)
{
	struct memblock_region *reg;

	for_each_memblock(memory, reg) {
		memory_present(memblock_get_region_node(reg),
			       memblock_region_memory_base_pfn(reg),
			       memblock_region_memory_end_pfn(reg));
	}
}

/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	unsigned long coded_mem_map =
		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
	return coded_mem_map;
}

/*
 * Decode mem_map from the coded memmap
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

static void __meminit sparse_init_one_section(struct mem_section *ms,
		unsigned long pnum, struct page *mem_map,
		struct mem_section_usage *usage, unsigned long flags)
{
	ms->section_mem_map &= ~SECTION_MAP_MASK;
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
		| SECTION_HAS_MEM_MAP | flags;
	ms->usage = usage;
}

static unsigned long usemap_size(void)
{
	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
}

size_t mem_section_usage_size(void)
{
	return sizeof(struct mem_section_usage) + usemap_size();
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
					 unsigned long size)
{
	struct mem_section_usage *usage;
	unsigned long goal, limit;
	int nid;
	/*
	 * A page may contain usemaps for other sections preventing the
	 * page being freed and making a section unremovable while
	 * other sections referencing the usemap remain active. Similarly,
	 * a pgdat can prevent a section being removed. If section A
	 * contains a pgdat and section B contains the usemap, both
	 * sections become inter-dependent. This allocates usemaps
	 * from the same section as the pgdat where possible to avoid
	 * this problem.
	 */
	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
	limit = goal + (1UL << PA_SECTION_SHIFT);
	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
	if (!usage && limit) {
		limit = 0;
		goto again;
	}
	return usage;
}

static void __init check_usemap_section_nr(int nid,
		struct mem_section_usage *usage)
{
	unsigned long usemap_snr, pgdat_snr;
	static unsigned long old_usemap_snr;
	static unsigned long old_pgdat_snr;
	struct pglist_data *pgdat = NODE_DATA(nid);
	int usemap_nid;

	/* First call */
	if (!old_usemap_snr) {
		old_usemap_snr = NR_MEM_SECTIONS;
		old_pgdat_snr = NR_MEM_SECTIONS;
	}

	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	if (usemap_snr == pgdat_snr)
		return;

	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
		/* skip redundant message */
		return;

	old_usemap_snr = usemap_snr;
	old_pgdat_snr = pgdat_snr;

	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
	if (usemap_nid != nid) {
		pr_info("node %d must be removed before remove section %ld\n",
			nid, usemap_snr);
		return;
	}
	/*
	 * There is a circular dependency.
	 * Some platforms allow un-removable section because they will just
	 * gather other removable sections for dynamic partitioning.
	 * Just notify un-removable section's number here.
	 */
	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
		usemap_snr, pgdat_snr, nid);
}
#else
static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
					 unsigned long size)
{
	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
}

static void __init check_usemap_section_nr(int nid,
		struct mem_section_usage *usage)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */

#ifdef CONFIG_SPARSEMEM_VMEMMAP
static unsigned long __init section_map_size(void)
{
	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
}

#else
static unsigned long __init section_map_size(void)
{
	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}

struct page __init *__populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
	unsigned long size = section_map_size();
	struct page *map = sparse_buffer_alloc(size);
	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);

	if (map)
		return map;

	map = memblock_alloc_try_nid_raw(size, size, addr,
					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
	if (!map)
		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
		      __func__, size, PAGE_SIZE, nid, &addr);

	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

static void *sparsemap_buf __meminitdata;
static void *sparsemap_buf_end __meminitdata;

static inline void __meminit sparse_buffer_free(unsigned long size)
{
	WARN_ON(!sparsemap_buf || size == 0);
	memblock_free_early(__pa(sparsemap_buf), size);
}

static void __init sparse_buffer_init(unsigned long size, int nid)
{
	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
	/*
	 * Pre-allocated buffer is mainly used by __populate_section_memmap
	 * and we want it to be properly aligned to the section size - this is
	 * especially the case for VMEMMAP which maps memmap to PMDs
	 */
	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
	sparsemap_buf_end = sparsemap_buf + size;
}

static void __init sparse_buffer_fini(void)
{
	unsigned long size = sparsemap_buf_end - sparsemap_buf;

	if (sparsemap_buf && size > 0)
		sparse_buffer_free(size);
	sparsemap_buf = NULL;
}

void * __meminit sparse_buffer_alloc(unsigned long size)
{
	void *ptr = NULL;

	if (sparsemap_buf) {
		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
		if (ptr + size > sparsemap_buf_end)
			ptr = NULL;
		else {
			/* Free redundant aligned space */
			if ((unsigned long)(ptr - sparsemap_buf) > 0)
				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
			sparsemap_buf = ptr + size;
		}
	}
	return ptr;
}

void __weak __meminit vmemmap_populate_print_last(void)
{
}

/*
 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
 * And number of present sections in this node is map_count.
 */
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
				   unsigned long pnum_end,
				   unsigned long map_count)
{
	struct mem_section_usage *usage;
	unsigned long pnum;
	struct page *map;

	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
			mem_section_usage_size() * map_count);
	if (!usage) {
		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
		goto failed;
	}
	sparse_buffer_init(map_count * section_map_size(), nid);
	for_each_present_section_nr(pnum_begin, pnum) {
		unsigned long pfn = section_nr_to_pfn(pnum);

		if (pnum >= pnum_end)
			break;

		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
				nid, NULL);
		if (!map) {
			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
			       __func__, nid);
			pnum_begin = pnum;
			goto failed;
		}
		check_usemap_section_nr(nid, usage);
		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
				SECTION_IS_EARLY);
		usage = (void *) usage + mem_section_usage_size();
	}
	sparse_buffer_fini();
	return;
failed:
	/* We failed to allocate, mark all the following pnums as not present */
	for_each_present_section_nr(pnum_begin, pnum) {
		struct mem_section *ms;

		if (pnum >= pnum_end)
			break;
		ms = __nr_to_section(pnum);
		ms->section_mem_map = 0;
	}
}

/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum_begin = first_present_section_nr();
	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
	unsigned long pnum_end, map_count = 1;

	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
	set_pageblock_order();

	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
		int nid = sparse_early_nid(__nr_to_section(pnum_end));

		if (nid == nid_begin) {
			map_count++;
			continue;
		}
		/* Init node with sections in range [pnum_begin, pnum_end) */
		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
		nid_begin = nid;
		pnum_begin = pnum_end;
		map_count = 1;
	}
	/* cover the last node */
	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
	vmemmap_populate_print_last();
}

#ifdef CONFIG_MEMORY_HOTPLUG

/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		unsigned long section_nr = pfn_to_section_nr(pfn);
		struct mem_section *ms;

		/* onlining code should never touch invalid ranges */
		if (WARN_ON(!valid_section_nr(section_nr)))
			continue;

		ms = __nr_to_section(section_nr);
		ms->section_mem_map |= SECTION_IS_ONLINE;
	}
}

#ifdef CONFIG_MEMORY_HOTREMOVE
/* Mark all memory sections within the pfn range as offline */
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		unsigned long section_nr = pfn_to_section_nr(pfn);
		struct mem_section *ms;

		/*
		 * TODO this needs some double checking. Offlining code makes
		 * sure to check pfn_valid but those checks might be just bogus
		 */
		if (WARN_ON(!valid_section_nr(section_nr)))
			continue;

		ms = __nr_to_section(section_nr);
		ms->section_mem_map &= ~SECTION_IS_ONLINE;
	}
}
#endif

#ifdef CONFIG_SPARSEMEM_VMEMMAP
static struct page * __meminit populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
}

static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
		struct vmem_altmap *altmap)
{
	unsigned long start = (unsigned long) pfn_to_page(pfn);
	unsigned long end = start + nr_pages * sizeof(struct page);

	vmemmap_free(start, end, altmap);
}
static void free_map_bootmem(struct page *memmap)
{
	unsigned long start = (unsigned long)memmap;
	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);

	vmemmap_free(start, end, NULL);
}

static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
	struct mem_section *ms = __pfn_to_section(pfn);
	unsigned long *subsection_map = ms->usage
		? &ms->usage->subsection_map[0] : NULL;

	subsection_mask_set(map, pfn, nr_pages);
	if (subsection_map)
		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);

	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
				"section already deactivated (%#lx + %ld)\n",
				pfn, nr_pages))
		return -EINVAL;

	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
	return 0;
}

static bool is_subsection_map_empty(struct mem_section *ms)
{
	return bitmap_empty(&ms->usage->subsection_map[0],
			    SUBSECTIONS_PER_SECTION);
}

static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
	unsigned long *subsection_map;
	int rc = 0;

	subsection_mask_set(map, pfn, nr_pages);

	subsection_map = &ms->usage->subsection_map[0];

	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
		rc = -EINVAL;
	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
		rc = -EEXIST;
	else
		bitmap_or(subsection_map, map, subsection_map,
				SUBSECTIONS_PER_SECTION);

	return rc;
}
#else
struct page * __meminit populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
	return kvmalloc_node(array_size(sizeof(struct page),
					PAGES_PER_SECTION), GFP_KERNEL, nid);
}

static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
		struct vmem_altmap *altmap)
{
	kvfree(pfn_to_page(pfn));
}

static void free_map_bootmem(struct page *memmap)
{
	unsigned long maps_section_nr, removing_section_nr, i;
	unsigned long magic, nr_pages;
	struct page *page = virt_to_page(memmap);

	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
		>> PAGE_SHIFT;

	for (i = 0; i < nr_pages; i++, page++) {
		magic = (unsigned long) page->freelist;

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
		removing_section_nr = page_private(page);

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}

static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	return 0;
}

static bool is_subsection_map_empty(struct mem_section *ms)
{
	return true;
}

static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
	return 0;
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */

/*
 * To deactivate a memory region, there are 3 cases to handle across
 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
 *
 * 1. deactivation of a partial hot-added section (only possible in
 *    the SPARSEMEM_VMEMMAP=y case).
 *      a) section was present at memory init.
 *      b) section was hot-added post memory init.
 * 2. deactivation of a complete hot-added section.
 * 3. deactivation of a complete section from memory init.
 *
 * For 1, when subsection_map does not empty we will not be freeing the
 * usage map, but still need to free the vmemmap range.
 *
 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
 */
static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
		struct vmem_altmap *altmap)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	bool section_is_early = early_section(ms);
	struct page *memmap = NULL;
	bool empty;

	if (clear_subsection_map(pfn, nr_pages))
		return;

	empty = is_subsection_map_empty(ms);
	if (empty) {
		unsigned long section_nr = pfn_to_section_nr(pfn);

		/*
		 * When removing an early section, the usage map is kept (as the
		 * usage maps of other sections fall into the same page). It
		 * will be re-used when re-adding the section - which is then no
		 * longer an early section. If the usage map is PageReserved, it
		 * was allocated during boot.
		 */
		if (!PageReserved(virt_to_page(ms->usage))) {
			kfree(ms->usage);
			ms->usage = NULL;
		}
		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
		/*
		 * Mark the section invalid so that valid_section()
		 * return false. This prevents code from dereferencing
		 * ms->usage array.
		 */
		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
	}

	if (section_is_early && memmap)
		free_map_bootmem(memmap);
	else
		depopulate_section_memmap(pfn, nr_pages, altmap);

	if (empty)
		ms->section_mem_map = (unsigned long)NULL;
}

static struct page * __meminit section_activate(int nid, unsigned long pfn,
		unsigned long nr_pages, struct vmem_altmap *altmap)
{
	struct mem_section *ms = __pfn_to_section(pfn);
	struct mem_section_usage *usage = NULL;
	struct page *memmap;
	int rc = 0;

	if (!ms->usage) {
		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
		if (!usage)
			return ERR_PTR(-ENOMEM);
		ms->usage = usage;
	}

	rc = fill_subsection_map(pfn, nr_pages);
	if (rc) {
		if (usage)
			ms->usage = NULL;
		kfree(usage);
		return ERR_PTR(rc);
	}

	/*
	 * The early init code does not consider partially populated
	 * initial sections, it simply assumes that memory will never be
	 * referenced.  If we hot-add memory into such a section then we
	 * do not need to populate the memmap and can simply reuse what
	 * is already there.
	 */
	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
		return pfn_to_page(pfn);

	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
	if (!memmap) {
		section_deactivate(pfn, nr_pages, altmap);
		return ERR_PTR(-ENOMEM);
	}

	return memmap;
}

/**
 * sparse_add_section - add a memory section, or populate an existing one
 * @nid: The node to add section on
 * @start_pfn: start pfn of the memory range
 * @nr_pages: number of pfns to add in the section
 * @altmap: device page map
 *
 * This is only intended for hotplug.
 *
 * Note that only VMEMMAP supports sub-section aligned hotplug,
 * the proper alignment and size are gated by check_pfn_span().
 *
 *
 * Return:
 * * 0		- On success.
 * * -EEXIST	- Section has been present.
 * * -ENOMEM	- Out of memory.
 */
int __meminit sparse_add_section(int nid, unsigned long start_pfn,
		unsigned long nr_pages, struct vmem_altmap *altmap)
{
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct mem_section *ms;
	struct page *memmap;
	int ret;

	ret = sparse_index_init(section_nr, nid);
	if (ret < 0)
		return ret;

	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
	if (IS_ERR(memmap))
		return PTR_ERR(memmap);

	/*
	 * Poison uninitialized struct pages in order to catch invalid flags
	 * combinations.
	 */
	page_init_poison(memmap, sizeof(struct page) * nr_pages);

	ms = __nr_to_section(section_nr);
	set_section_nid(section_nr, nid);
	section_mark_present(ms);

	/* Align memmap to section boundary in the subsection case */
	if (section_nr_to_pfn(section_nr) != start_pfn)
		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);

	return 0;
}

#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
	int i;

	/*
	 * A further optimization is to have per section refcounted
	 * num_poisoned_pages.  But that would need more space per memmap, so
	 * for now just do a quick global check to speed up this routine in the
	 * absence of bad pages.
	 */
	if (atomic_long_read(&num_poisoned_pages) == 0)
		return;

	for (i = 0; i < nr_pages; i++) {
		if (PageHWPoison(&memmap[i])) {
			num_poisoned_pages_dec();
			ClearPageHWPoison(&memmap[i]);
		}
	}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif

void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
		unsigned long nr_pages, unsigned long map_offset,
		struct vmem_altmap *altmap)
{
	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
			nr_pages - map_offset);
	section_deactivate(pfn, nr_pages, altmap);
}
#endif /* CONFIG_MEMORY_HOTPLUG */