Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 | // SPDX-License-Identifier: GPL-2.0 /* * sparse memory mappings. */ #include <linux/mm.h> #include <linux/slab.h> #include <linux/mmzone.h> #include <linux/memblock.h> #include <linux/compiler.h> #include <linux/highmem.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/swap.h> #include <linux/swapops.h> #include "internal.h" #include <asm/dma.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> /* * Permanent SPARSEMEM data: * * 1) mem_section - memory sections, mem_map's for valid memory */ #ifdef CONFIG_SPARSEMEM_EXTREME struct mem_section **mem_section; #else struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] ____cacheline_internodealigned_in_smp; #endif EXPORT_SYMBOL(mem_section); #ifdef NODE_NOT_IN_PAGE_FLAGS /* * If we did not store the node number in the page then we have to * do a lookup in the section_to_node_table in order to find which * node the page belongs to. */ #if MAX_NUMNODES <= 256 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; #else static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; #endif int page_to_nid(const struct page *page) { return section_to_node_table[page_to_section(page)]; } EXPORT_SYMBOL(page_to_nid); static void set_section_nid(unsigned long section_nr, int nid) { section_to_node_table[section_nr] = nid; } #else /* !NODE_NOT_IN_PAGE_FLAGS */ static inline void set_section_nid(unsigned long section_nr, int nid) { } #endif #ifdef CONFIG_SPARSEMEM_EXTREME static noinline struct mem_section __ref *sparse_index_alloc(int nid) { struct mem_section *section = NULL; unsigned long array_size = SECTIONS_PER_ROOT * sizeof(struct mem_section); if (slab_is_available()) { section = kzalloc_node(array_size, GFP_KERNEL, nid); } else { section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, nid); if (!section) panic("%s: Failed to allocate %lu bytes nid=%d\n", __func__, array_size, nid); } return section; } static int __meminit sparse_index_init(unsigned long section_nr, int nid) { unsigned long root = SECTION_NR_TO_ROOT(section_nr); struct mem_section *section; /* * An existing section is possible in the sub-section hotplug * case. First hot-add instantiates, follow-on hot-add reuses * the existing section. * * The mem_hotplug_lock resolves the apparent race below. */ if (mem_section[root]) return 0; section = sparse_index_alloc(nid); if (!section) return -ENOMEM; mem_section[root] = section; return 0; } #else /* !SPARSEMEM_EXTREME */ static inline int sparse_index_init(unsigned long section_nr, int nid) { return 0; } #endif #ifdef CONFIG_SPARSEMEM_EXTREME unsigned long __section_nr(struct mem_section *ms) { unsigned long root_nr; struct mem_section *root = NULL; for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); if (!root) continue; if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) break; } VM_BUG_ON(!root); return (root_nr * SECTIONS_PER_ROOT) + (ms - root); } #else unsigned long __section_nr(struct mem_section *ms) { return (unsigned long)(ms - mem_section[0]); } #endif /* * During early boot, before section_mem_map is used for an actual * mem_map, we use section_mem_map to store the section's NUMA * node. This keeps us from having to use another data structure. The * node information is cleared just before we store the real mem_map. */ static inline unsigned long sparse_encode_early_nid(int nid) { return (nid << SECTION_NID_SHIFT); } static inline int sparse_early_nid(struct mem_section *section) { return (section->section_mem_map >> SECTION_NID_SHIFT); } /* Validate the physical addressing limitations of the model */ void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn) { unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); /* * Sanity checks - do not allow an architecture to pass * in larger pfns than the maximum scope of sparsemem: */ if (*start_pfn > max_sparsemem_pfn) { mminit_dprintk(MMINIT_WARNING, "pfnvalidation", "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", *start_pfn, *end_pfn, max_sparsemem_pfn); WARN_ON_ONCE(1); *start_pfn = max_sparsemem_pfn; *end_pfn = max_sparsemem_pfn; } else if (*end_pfn > max_sparsemem_pfn) { mminit_dprintk(MMINIT_WARNING, "pfnvalidation", "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", *start_pfn, *end_pfn, max_sparsemem_pfn); WARN_ON_ONCE(1); *end_pfn = max_sparsemem_pfn; } } /* * There are a number of times that we loop over NR_MEM_SECTIONS, * looking for section_present() on each. But, when we have very * large physical address spaces, NR_MEM_SECTIONS can also be * very large which makes the loops quite long. * * Keeping track of this gives us an easy way to break out of * those loops early. */ unsigned long __highest_present_section_nr; static void section_mark_present(struct mem_section *ms) { unsigned long section_nr = __section_nr(ms); if (section_nr > __highest_present_section_nr) __highest_present_section_nr = section_nr; ms->section_mem_map |= SECTION_MARKED_PRESENT; } #define for_each_present_section_nr(start, section_nr) \ for (section_nr = next_present_section_nr(start-1); \ ((section_nr != -1) && \ (section_nr <= __highest_present_section_nr)); \ section_nr = next_present_section_nr(section_nr)) static inline unsigned long first_present_section_nr(void) { return next_present_section_nr(-1); } #ifdef CONFIG_SPARSEMEM_VMEMMAP static void subsection_mask_set(unsigned long *map, unsigned long pfn, unsigned long nr_pages) { int idx = subsection_map_index(pfn); int end = subsection_map_index(pfn + nr_pages - 1); bitmap_set(map, idx, end - idx + 1); } void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) { int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); unsigned long nr, start_sec = pfn_to_section_nr(pfn); if (!nr_pages) return; for (nr = start_sec; nr <= end_sec; nr++) { struct mem_section *ms; unsigned long pfns; pfns = min(nr_pages, PAGES_PER_SECTION - (pfn & ~PAGE_SECTION_MASK)); ms = __nr_to_section(nr); subsection_mask_set(ms->usage->subsection_map, pfn, pfns); pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, pfns, subsection_map_index(pfn), subsection_map_index(pfn + pfns - 1)); pfn += pfns; nr_pages -= pfns; } } #else void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) { } #endif /* Record a memory area against a node. */ void __init memory_present(int nid, unsigned long start, unsigned long end) { unsigned long pfn; #ifdef CONFIG_SPARSEMEM_EXTREME if (unlikely(!mem_section)) { unsigned long size, align; size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; align = 1 << (INTERNODE_CACHE_SHIFT); mem_section = memblock_alloc(size, align); if (!mem_section) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align); } #endif start &= PAGE_SECTION_MASK; mminit_validate_memmodel_limits(&start, &end); for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { unsigned long section = pfn_to_section_nr(pfn); struct mem_section *ms; sparse_index_init(section, nid); set_section_nid(section, nid); ms = __nr_to_section(section); if (!ms->section_mem_map) { ms->section_mem_map = sparse_encode_early_nid(nid) | SECTION_IS_ONLINE; section_mark_present(ms); } } } /* * Mark all memblocks as present using memory_present(). This is a * convienence function that is useful for a number of arches * to mark all of the systems memory as present during initialization. */ void __init memblocks_present(void) { struct memblock_region *reg; for_each_memblock(memory, reg) { memory_present(memblock_get_region_node(reg), memblock_region_memory_base_pfn(reg), memblock_region_memory_end_pfn(reg)); } } /* * Subtle, we encode the real pfn into the mem_map such that * the identity pfn - section_mem_map will return the actual * physical page frame number. */ static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) { unsigned long coded_mem_map = (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); return coded_mem_map; } /* * Decode mem_map from the coded memmap */ struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) { /* mask off the extra low bits of information */ coded_mem_map &= SECTION_MAP_MASK; return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); } static void __meminit sparse_init_one_section(struct mem_section *ms, unsigned long pnum, struct page *mem_map, struct mem_section_usage *usage, unsigned long flags) { ms->section_mem_map &= ~SECTION_MAP_MASK; ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | SECTION_HAS_MEM_MAP | flags; ms->usage = usage; } static unsigned long usemap_size(void) { return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); } size_t mem_section_usage_size(void) { return sizeof(struct mem_section_usage) + usemap_size(); } #ifdef CONFIG_MEMORY_HOTREMOVE static struct mem_section_usage * __init sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, unsigned long size) { struct mem_section_usage *usage; unsigned long goal, limit; int nid; /* * A page may contain usemaps for other sections preventing the * page being freed and making a section unremovable while * other sections referencing the usemap remain active. Similarly, * a pgdat can prevent a section being removed. If section A * contains a pgdat and section B contains the usemap, both * sections become inter-dependent. This allocates usemaps * from the same section as the pgdat where possible to avoid * this problem. */ goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); limit = goal + (1UL << PA_SECTION_SHIFT); nid = early_pfn_to_nid(goal >> PAGE_SHIFT); again: usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); if (!usage && limit) { limit = 0; goto again; } return usage; } static void __init check_usemap_section_nr(int nid, struct mem_section_usage *usage) { unsigned long usemap_snr, pgdat_snr; static unsigned long old_usemap_snr; static unsigned long old_pgdat_snr; struct pglist_data *pgdat = NODE_DATA(nid); int usemap_nid; /* First call */ if (!old_usemap_snr) { old_usemap_snr = NR_MEM_SECTIONS; old_pgdat_snr = NR_MEM_SECTIONS; } usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); if (usemap_snr == pgdat_snr) return; if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) /* skip redundant message */ return; old_usemap_snr = usemap_snr; old_pgdat_snr = pgdat_snr; usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); if (usemap_nid != nid) { pr_info("node %d must be removed before remove section %ld\n", nid, usemap_snr); return; } /* * There is a circular dependency. * Some platforms allow un-removable section because they will just * gather other removable sections for dynamic partitioning. * Just notify un-removable section's number here. */ pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", usemap_snr, pgdat_snr, nid); } #else static struct mem_section_usage * __init sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, unsigned long size) { return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); } static void __init check_usemap_section_nr(int nid, struct mem_section_usage *usage) { } #endif /* CONFIG_MEMORY_HOTREMOVE */ #ifdef CONFIG_SPARSEMEM_VMEMMAP static unsigned long __init section_map_size(void) { return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); } #else static unsigned long __init section_map_size(void) { return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); } struct page __init *__populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap) { unsigned long size = section_map_size(); struct page *map = sparse_buffer_alloc(size); phys_addr_t addr = __pa(MAX_DMA_ADDRESS); if (map) return map; map = memblock_alloc_try_nid_raw(size, size, addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); if (!map) panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", __func__, size, PAGE_SIZE, nid, &addr); return map; } #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ static void *sparsemap_buf __meminitdata; static void *sparsemap_buf_end __meminitdata; static inline void __meminit sparse_buffer_free(unsigned long size) { WARN_ON(!sparsemap_buf || size == 0); memblock_free_early(__pa(sparsemap_buf), size); } static void __init sparse_buffer_init(unsigned long size, int nid) { phys_addr_t addr = __pa(MAX_DMA_ADDRESS); WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ /* * Pre-allocated buffer is mainly used by __populate_section_memmap * and we want it to be properly aligned to the section size - this is * especially the case for VMEMMAP which maps memmap to PMDs */ sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); sparsemap_buf_end = sparsemap_buf + size; } static void __init sparse_buffer_fini(void) { unsigned long size = sparsemap_buf_end - sparsemap_buf; if (sparsemap_buf && size > 0) sparse_buffer_free(size); sparsemap_buf = NULL; } void * __meminit sparse_buffer_alloc(unsigned long size) { void *ptr = NULL; if (sparsemap_buf) { ptr = (void *) roundup((unsigned long)sparsemap_buf, size); if (ptr + size > sparsemap_buf_end) ptr = NULL; else { /* Free redundant aligned space */ if ((unsigned long)(ptr - sparsemap_buf) > 0) sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); sparsemap_buf = ptr + size; } } return ptr; } void __weak __meminit vmemmap_populate_print_last(void) { } /* * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) * And number of present sections in this node is map_count. */ static void __init sparse_init_nid(int nid, unsigned long pnum_begin, unsigned long pnum_end, unsigned long map_count) { struct mem_section_usage *usage; unsigned long pnum; struct page *map; usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), mem_section_usage_size() * map_count); if (!usage) { pr_err("%s: node[%d] usemap allocation failed", __func__, nid); goto failed; } sparse_buffer_init(map_count * section_map_size(), nid); for_each_present_section_nr(pnum_begin, pnum) { unsigned long pfn = section_nr_to_pfn(pnum); if (pnum >= pnum_end) break; map = __populate_section_memmap(pfn, PAGES_PER_SECTION, nid, NULL); if (!map) { pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", __func__, nid); pnum_begin = pnum; goto failed; } check_usemap_section_nr(nid, usage); sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, SECTION_IS_EARLY); usage = (void *) usage + mem_section_usage_size(); } sparse_buffer_fini(); return; failed: /* We failed to allocate, mark all the following pnums as not present */ for_each_present_section_nr(pnum_begin, pnum) { struct mem_section *ms; if (pnum >= pnum_end) break; ms = __nr_to_section(pnum); ms->section_mem_map = 0; } } /* * Allocate the accumulated non-linear sections, allocate a mem_map * for each and record the physical to section mapping. */ void __init sparse_init(void) { unsigned long pnum_begin = first_present_section_nr(); int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); unsigned long pnum_end, map_count = 1; /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ set_pageblock_order(); for_each_present_section_nr(pnum_begin + 1, pnum_end) { int nid = sparse_early_nid(__nr_to_section(pnum_end)); if (nid == nid_begin) { map_count++; continue; } /* Init node with sections in range [pnum_begin, pnum_end) */ sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); nid_begin = nid; pnum_begin = pnum_end; map_count = 1; } /* cover the last node */ sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); vmemmap_populate_print_last(); } #ifdef CONFIG_MEMORY_HOTPLUG /* Mark all memory sections within the pfn range as online */ void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn; for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { unsigned long section_nr = pfn_to_section_nr(pfn); struct mem_section *ms; /* onlining code should never touch invalid ranges */ if (WARN_ON(!valid_section_nr(section_nr))) continue; ms = __nr_to_section(section_nr); ms->section_mem_map |= SECTION_IS_ONLINE; } } #ifdef CONFIG_MEMORY_HOTREMOVE /* Mark all memory sections within the pfn range as offline */ void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn; for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { unsigned long section_nr = pfn_to_section_nr(pfn); struct mem_section *ms; /* * TODO this needs some double checking. Offlining code makes * sure to check pfn_valid but those checks might be just bogus */ if (WARN_ON(!valid_section_nr(section_nr))) continue; ms = __nr_to_section(section_nr); ms->section_mem_map &= ~SECTION_IS_ONLINE; } } #endif #ifdef CONFIG_SPARSEMEM_VMEMMAP static struct page * __meminit populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap) { return __populate_section_memmap(pfn, nr_pages, nid, altmap); } static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, struct vmem_altmap *altmap) { unsigned long start = (unsigned long) pfn_to_page(pfn); unsigned long end = start + nr_pages * sizeof(struct page); vmemmap_free(start, end, altmap); } static void free_map_bootmem(struct page *memmap) { unsigned long start = (unsigned long)memmap; unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); vmemmap_free(start, end, NULL); } static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) { DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; struct mem_section *ms = __pfn_to_section(pfn); unsigned long *subsection_map = ms->usage ? &ms->usage->subsection_map[0] : NULL; subsection_mask_set(map, pfn, nr_pages); if (subsection_map) bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), "section already deactivated (%#lx + %ld)\n", pfn, nr_pages)) return -EINVAL; bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); return 0; } static bool is_subsection_map_empty(struct mem_section *ms) { return bitmap_empty(&ms->usage->subsection_map[0], SUBSECTIONS_PER_SECTION); } static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) { struct mem_section *ms = __pfn_to_section(pfn); DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; unsigned long *subsection_map; int rc = 0; subsection_mask_set(map, pfn, nr_pages); subsection_map = &ms->usage->subsection_map[0]; if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) rc = -EINVAL; else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) rc = -EEXIST; else bitmap_or(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); return rc; } #else struct page * __meminit populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap) { return kvmalloc_node(array_size(sizeof(struct page), PAGES_PER_SECTION), GFP_KERNEL, nid); } static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, struct vmem_altmap *altmap) { kvfree(pfn_to_page(pfn)); } static void free_map_bootmem(struct page *memmap) { unsigned long maps_section_nr, removing_section_nr, i; unsigned long magic, nr_pages; struct page *page = virt_to_page(memmap); nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) >> PAGE_SHIFT; for (i = 0; i < nr_pages; i++, page++) { magic = (unsigned long) page->freelist; BUG_ON(magic == NODE_INFO); maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); removing_section_nr = page_private(page); /* * When this function is called, the removing section is * logical offlined state. This means all pages are isolated * from page allocator. If removing section's memmap is placed * on the same section, it must not be freed. * If it is freed, page allocator may allocate it which will * be removed physically soon. */ if (maps_section_nr != removing_section_nr) put_page_bootmem(page); } } static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) { return 0; } static bool is_subsection_map_empty(struct mem_section *ms) { return true; } static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) { return 0; } #endif /* CONFIG_SPARSEMEM_VMEMMAP */ /* * To deactivate a memory region, there are 3 cases to handle across * two configurations (SPARSEMEM_VMEMMAP={y,n}): * * 1. deactivation of a partial hot-added section (only possible in * the SPARSEMEM_VMEMMAP=y case). * a) section was present at memory init. * b) section was hot-added post memory init. * 2. deactivation of a complete hot-added section. * 3. deactivation of a complete section from memory init. * * For 1, when subsection_map does not empty we will not be freeing the * usage map, but still need to free the vmemmap range. * * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified */ static void section_deactivate(unsigned long pfn, unsigned long nr_pages, struct vmem_altmap *altmap) { struct mem_section *ms = __pfn_to_section(pfn); bool section_is_early = early_section(ms); struct page *memmap = NULL; bool empty; if (clear_subsection_map(pfn, nr_pages)) return; empty = is_subsection_map_empty(ms); if (empty) { unsigned long section_nr = pfn_to_section_nr(pfn); /* * When removing an early section, the usage map is kept (as the * usage maps of other sections fall into the same page). It * will be re-used when re-adding the section - which is then no * longer an early section. If the usage map is PageReserved, it * was allocated during boot. */ if (!PageReserved(virt_to_page(ms->usage))) { kfree(ms->usage); ms->usage = NULL; } memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); /* * Mark the section invalid so that valid_section() * return false. This prevents code from dereferencing * ms->usage array. */ ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; } if (section_is_early && memmap) free_map_bootmem(memmap); else depopulate_section_memmap(pfn, nr_pages, altmap); if (empty) ms->section_mem_map = (unsigned long)NULL; } static struct page * __meminit section_activate(int nid, unsigned long pfn, unsigned long nr_pages, struct vmem_altmap *altmap) { struct mem_section *ms = __pfn_to_section(pfn); struct mem_section_usage *usage = NULL; struct page *memmap; int rc = 0; if (!ms->usage) { usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); if (!usage) return ERR_PTR(-ENOMEM); ms->usage = usage; } rc = fill_subsection_map(pfn, nr_pages); if (rc) { if (usage) ms->usage = NULL; kfree(usage); return ERR_PTR(rc); } /* * The early init code does not consider partially populated * initial sections, it simply assumes that memory will never be * referenced. If we hot-add memory into such a section then we * do not need to populate the memmap and can simply reuse what * is already there. */ if (nr_pages < PAGES_PER_SECTION && early_section(ms)) return pfn_to_page(pfn); memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); if (!memmap) { section_deactivate(pfn, nr_pages, altmap); return ERR_PTR(-ENOMEM); } return memmap; } /** * sparse_add_section - add a memory section, or populate an existing one * @nid: The node to add section on * @start_pfn: start pfn of the memory range * @nr_pages: number of pfns to add in the section * @altmap: device page map * * This is only intended for hotplug. * * Note that only VMEMMAP supports sub-section aligned hotplug, * the proper alignment and size are gated by check_pfn_span(). * * * Return: * * 0 - On success. * * -EEXIST - Section has been present. * * -ENOMEM - Out of memory. */ int __meminit sparse_add_section(int nid, unsigned long start_pfn, unsigned long nr_pages, struct vmem_altmap *altmap) { unsigned long section_nr = pfn_to_section_nr(start_pfn); struct mem_section *ms; struct page *memmap; int ret; ret = sparse_index_init(section_nr, nid); if (ret < 0) return ret; memmap = section_activate(nid, start_pfn, nr_pages, altmap); if (IS_ERR(memmap)) return PTR_ERR(memmap); /* * Poison uninitialized struct pages in order to catch invalid flags * combinations. */ page_init_poison(memmap, sizeof(struct page) * nr_pages); ms = __nr_to_section(section_nr); set_section_nid(section_nr, nid); section_mark_present(ms); /* Align memmap to section boundary in the subsection case */ if (section_nr_to_pfn(section_nr) != start_pfn) memmap = pfn_to_page(section_nr_to_pfn(section_nr)); sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); return 0; } #ifdef CONFIG_MEMORY_FAILURE static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) { int i; /* * A further optimization is to have per section refcounted * num_poisoned_pages. But that would need more space per memmap, so * for now just do a quick global check to speed up this routine in the * absence of bad pages. */ if (atomic_long_read(&num_poisoned_pages) == 0) return; for (i = 0; i < nr_pages; i++) { if (PageHWPoison(&memmap[i])) { num_poisoned_pages_dec(); ClearPageHWPoison(&memmap[i]); } } } #else static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) { } #endif void sparse_remove_section(struct mem_section *ms, unsigned long pfn, unsigned long nr_pages, unsigned long map_offset, struct vmem_altmap *altmap) { clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, nr_pages - map_offset); section_deactivate(pfn, nr_pages, altmap); } #endif /* CONFIG_MEMORY_HOTPLUG */ |