Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 | /* * sparse memory mappings. */ #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/bootmem.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <asm/dma.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> /* * Permanent SPARSEMEM data: * * 1) mem_section - memory sections, mem_map's for valid memory */ #ifdef CONFIG_SPARSEMEM_EXTREME struct mem_section *mem_section[NR_SECTION_ROOTS] ____cacheline_internodealigned_in_smp; #else struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] ____cacheline_internodealigned_in_smp; #endif EXPORT_SYMBOL(mem_section); #ifdef NODE_NOT_IN_PAGE_FLAGS /* * If we did not store the node number in the page then we have to * do a lookup in the section_to_node_table in order to find which * node the page belongs to. */ #if MAX_NUMNODES <= 256 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; #else static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; #endif int page_to_nid(struct page *page) { return section_to_node_table[page_to_section(page)]; } EXPORT_SYMBOL(page_to_nid); static void set_section_nid(unsigned long section_nr, int nid) { section_to_node_table[section_nr] = nid; } #else /* !NODE_NOT_IN_PAGE_FLAGS */ static inline void set_section_nid(unsigned long section_nr, int nid) { } #endif #ifdef CONFIG_SPARSEMEM_EXTREME static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) { struct mem_section *section = NULL; unsigned long array_size = SECTIONS_PER_ROOT * sizeof(struct mem_section); if (slab_is_available()) section = kmalloc_node(array_size, GFP_KERNEL, nid); else section = alloc_bootmem_node(NODE_DATA(nid), array_size); if (section) memset(section, 0, array_size); return section; } static int __meminit sparse_index_init(unsigned long section_nr, int nid) { static DEFINE_SPINLOCK(index_init_lock); unsigned long root = SECTION_NR_TO_ROOT(section_nr); struct mem_section *section; int ret = 0; if (mem_section[root]) return -EEXIST; section = sparse_index_alloc(nid); if (!section) return -ENOMEM; /* * This lock keeps two different sections from * reallocating for the same index */ spin_lock(&index_init_lock); if (mem_section[root]) { ret = -EEXIST; goto out; } mem_section[root] = section; out: spin_unlock(&index_init_lock); return ret; } #else /* !SPARSEMEM_EXTREME */ static inline int sparse_index_init(unsigned long section_nr, int nid) { return 0; } #endif /* * Although written for the SPARSEMEM_EXTREME case, this happens * to also work for the flat array case because * NR_SECTION_ROOTS==NR_MEM_SECTIONS. */ int __section_nr(struct mem_section* ms) { unsigned long root_nr; struct mem_section* root; for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); if (!root) continue; if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) break; } return (root_nr * SECTIONS_PER_ROOT) + (ms - root); } /* * During early boot, before section_mem_map is used for an actual * mem_map, we use section_mem_map to store the section's NUMA * node. This keeps us from having to use another data structure. The * node information is cleared just before we store the real mem_map. */ static inline unsigned long sparse_encode_early_nid(int nid) { return (nid << SECTION_NID_SHIFT); } static inline int sparse_early_nid(struct mem_section *section) { return (section->section_mem_map >> SECTION_NID_SHIFT); } /* Record a memory area against a node. */ void __init memory_present(int nid, unsigned long start, unsigned long end) { unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); unsigned long pfn; /* * Sanity checks - do not allow an architecture to pass * in larger pfns than the maximum scope of sparsemem: */ if (start >= max_arch_pfn) return; if (end >= max_arch_pfn) end = max_arch_pfn; start &= PAGE_SECTION_MASK; for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { unsigned long section = pfn_to_section_nr(pfn); struct mem_section *ms; sparse_index_init(section, nid); set_section_nid(section, nid); ms = __nr_to_section(section); if (!ms->section_mem_map) ms->section_mem_map = sparse_encode_early_nid(nid) | SECTION_MARKED_PRESENT; } } /* * Only used by the i386 NUMA architecures, but relatively * generic code. */ unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn; unsigned long nr_pages = 0; for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { if (nid != early_pfn_to_nid(pfn)) continue; if (pfn_present(pfn)) nr_pages += PAGES_PER_SECTION; } return nr_pages * sizeof(struct page); } /* * Subtle, we encode the real pfn into the mem_map such that * the identity pfn - section_mem_map will return the actual * physical page frame number. */ static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) { return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); } /* * We need this if we ever free the mem_maps. While not implemented yet, * this function is included for parity with its sibling. */ static __attribute((unused)) struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) { return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); } static int __meminit sparse_init_one_section(struct mem_section *ms, unsigned long pnum, struct page *mem_map, unsigned long *pageblock_bitmap) { if (!present_section(ms)) return -EINVAL; ms->section_mem_map &= ~SECTION_MAP_MASK; ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | SECTION_HAS_MEM_MAP; ms->pageblock_flags = pageblock_bitmap; return 1; } static unsigned long usemap_size(void) { unsigned long size_bytes; size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; size_bytes = roundup(size_bytes, sizeof(unsigned long)); return size_bytes; } #ifdef CONFIG_MEMORY_HOTPLUG static unsigned long *__kmalloc_section_usemap(void) { return kmalloc(usemap_size(), GFP_KERNEL); } #endif /* CONFIG_MEMORY_HOTPLUG */ static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) { unsigned long *usemap; struct mem_section *ms = __nr_to_section(pnum); int nid = sparse_early_nid(ms); usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); if (usemap) return usemap; /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ nid = 0; printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__); return NULL; } #ifndef CONFIG_SPARSEMEM_VMEMMAP struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) { struct page *map; map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); if (map) return map; map = alloc_bootmem_node(NODE_DATA(nid), sizeof(struct page) * PAGES_PER_SECTION); return map; } #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) { struct page *map; struct mem_section *ms = __nr_to_section(pnum); int nid = sparse_early_nid(ms); map = sparse_mem_map_populate(pnum, nid); if (map) return map; printk(KERN_ERR "%s: sparsemem memory map backing failed " "some memory will not be available.\n", __FUNCTION__); ms->section_mem_map = 0; return NULL; } /* * Allocate the accumulated non-linear sections, allocate a mem_map * for each and record the physical to section mapping. */ void __init sparse_init(void) { unsigned long pnum; struct page *map; unsigned long *usemap; for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { if (!present_section_nr(pnum)) continue; map = sparse_early_mem_map_alloc(pnum); if (!map) continue; usemap = sparse_early_usemap_alloc(pnum); if (!usemap) continue; sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap); } } #ifdef CONFIG_MEMORY_HOTPLUG #ifdef CONFIG_SPARSEMEM_VMEMMAP static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, unsigned long nr_pages) { /* This will make the necessary allocations eventually. */ return sparse_mem_map_populate(pnum, nid); } static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) { return; /* XXX: Not implemented yet */ } #else static struct page *__kmalloc_section_memmap(unsigned long nr_pages) { struct page *page, *ret; unsigned long memmap_size = sizeof(struct page) * nr_pages; page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); if (page) goto got_map_page; ret = vmalloc(memmap_size); if (ret) goto got_map_ptr; return NULL; got_map_page: ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); got_map_ptr: memset(ret, 0, memmap_size); return ret; } static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, unsigned long nr_pages) { return __kmalloc_section_memmap(nr_pages); } static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) { if (is_vmalloc_addr(memmap)) vfree(memmap); else free_pages((unsigned long)memmap, get_order(sizeof(struct page) * nr_pages)); } #endif /* CONFIG_SPARSEMEM_VMEMMAP */ /* * returns the number of sections whose mem_maps were properly * set. If this is <=0, then that means that the passed-in * map was not consumed and must be freed. */ int sparse_add_one_section(struct zone *zone, unsigned long start_pfn, int nr_pages) { unsigned long section_nr = pfn_to_section_nr(start_pfn); struct pglist_data *pgdat = zone->zone_pgdat; struct mem_section *ms; struct page *memmap; unsigned long *usemap; unsigned long flags; int ret; /* * no locking for this, because it does its own * plus, it does a kmalloc */ ret = sparse_index_init(section_nr, pgdat->node_id); if (ret < 0 && ret != -EEXIST) return ret; memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); if (!memmap) return -ENOMEM; usemap = __kmalloc_section_usemap(); if (!usemap) { __kfree_section_memmap(memmap, nr_pages); return -ENOMEM; } pgdat_resize_lock(pgdat, &flags); ms = __pfn_to_section(start_pfn); if (ms->section_mem_map & SECTION_MARKED_PRESENT) { ret = -EEXIST; goto out; } ms->section_mem_map |= SECTION_MARKED_PRESENT; ret = sparse_init_one_section(ms, section_nr, memmap, usemap); out: pgdat_resize_unlock(pgdat, &flags); if (ret <= 0) { kfree(usemap); __kfree_section_memmap(memmap, nr_pages); } return ret; } #endif |